Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 94(48): 16855-16863, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36418227

RESUMO

The comprehensive chemical description of air pollution is a prerequisite for understanding atmospheric transformation processes and effects on climate and environmental health. In this study, a prototype vacuum photoionization Orbitrap mass spectrometer was evaluated for field-suitability by an online on-site investigation of emissions from a ship diesel engine. Despite remote measurements in a challenging environment, the mass spectrometric performance could fully be exploited. Due to the high resolution and mass accuracy in combination with resonance-enhanced multiphoton ionization, the aromatic hydrocarbon profile could selectively and sensitively be analyzed. Limitations from commonly deployed time-of-flight platforms could be overcome, allowing to unraveling the oxygen- and sulfur-containing compounds. Scan-by-scan evaluation of the online data revealed no shift in exact m/z, assignment statistics with root mean square error (RMSE) below 0.2 ppm, continuous high-resolution capabilities, and good isotopic profile matches. Emissions from three different feed fuels were investigated, namely, diesel, heavy fuel oil (HFO), and very low sulfur fuel oil (VLSFO). Regulations mainly concern the fuel sulfur content, and thus, exhaust gas treatment or new emerging fuels, such as the cycle-oil-based VLSFO, can legally be applied. Unfortunately, despite lower CHS-class emissions, a substantial amount of PAHs is emitted by the VLSFO with higher aromaticity compared to the HFO. Hence, legislative measures might need to take further chemical criteria into account.


Assuntos
Poluentes Atmosféricos , Óleos Combustíveis , Material Particulado/análise , Navios , Poluentes Atmosféricos/análise , Óleos Combustíveis/análise , Vácuo , Emissões de Veículos/análise , Espectrometria de Massas , Enxofre/análise
2.
Anal Chem ; 93(27): 9418-9427, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34170684

RESUMO

State-of-the-art mass spectrometry with ultraviolet (UV) photoionization is mostly limited to time-of-flight (ToF) mass spectrometers with 1000-10 000 m/Δm mass resolution. However, higher resolution and higher spectral dynamic range mass spectrometry may be indispensable in complex mixture characterization. Here, we present the concept, implementation, and initial evaluation of a compact ultrahigh-resolution mass spectrometer with gas-phase laser ionization. The concept is based on direct laser photoionization in the ion accumulation and ejection trap (C-trap) of an Orbitrap mass spectrometer. Resonance-enhanced multiphoton ionization (REMPI) using 266 nm UV pulses from a frequency-quadrupled Nd:YAG laser was applied for selective and efficient ionization of monocyclic and polycyclic aromatic hydrocarbons. The system is equipped with a gas inlet for volatile compounds and a heated gas chromatography coupling. The former can be employed for rapid system m/z-calibration and performance evaluation, whereas the latter enables analysis of semivolatile and higher-molecular-weight compounds. The capability to evaluate complex mixtures is demonstrated for selected petrochemical materials. In these experiments, several hundred to over a thousand compounds could be attributed with a root-mean-square mass error generally below 1 ppm and a mass resolution of over 140 000 at 200 m/z. Isobaric interferences could be resolved, and narrow mass splits, such as 3.4 mDa (SH4/C3), are determined. Single laser shots provided limits of detection in the 20-ppb range for p-xylene and 1,2,4-trimethylbenzene, similar to compact vacuum REMPI-ToF systems.


Assuntos
Lasers , Hidrocarbonetos Policíclicos Aromáticos , Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de Massas , Hidrocarbonetos Policíclicos Aromáticos/análise , Vácuo
3.
Rapid Commun Mass Spectrom ; 35(2): e8863, 2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32557743

RESUMO

RATIONALE: Fast and sensitive detection of aromatic hydrocarbons (AHs) in water is of high importance because of their significant impact on human health and the environment. For this, resonance-enhanced multiphoton ionization (REMPI) coupled to trap-and-release membrane-introduction mass spectrometry (T&R-MIMS) offers the possibility of sensitive on-line water analysis with a time resolution of minutes. METHODS: REMPI is a versatile tool for sensitive gas-phase analysis, in which AHs are selectively ionized in complex gas mixtures by the subsequent absorption of at least two photons. In T&R-MIMS, selective extraction and enrichment of analytes from water can be achieved using semipermeable membranes. By the subsequent stimulated desorption of enriched compounds, mass spectrometric detection is enabled. RESULTS: We present an external T&R inlet for hollow-fiber membranes coupled to REMPI time-of-flight mass spectrometry, which enables direct and sensitive detection of semi-volatile AHs in water. In laboratory experiments, spiked water samples were analyzed. For the investigated compounds, limits of detection (LODs) in the range 1-47 ng/L were determined. The LODs are approximately one order of magnitude lower than in a previously reported continuous membrane-introduction approach using a planar membrane. Further improvement of LOD may be realized by extending the trapping time and by increasing the release temperature. Furthermore, the system was applied to investigate different fuels suspended in water and real water samples. The obtained data are in good agreement with findings of a former study. CONCLUSIONS: In the framework of the present study, we demonstrate the high potential of the combination of REMPI and T&R-MIMS in the form of a newly developed external hollow-fiber membrane inlet. With the developed system, semi-volatile AHs can be directly detected down to ng/L levels on a minute time scale. The approach thus may pave the way to future ship application in marine sciences, natural resources exploration or pollutant and hazard detection.

4.
Analyst ; 146(10): 3137-3149, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-33949436

RESUMO

We developed a novel fast gas chromatography (fastGC) instrument with integrated sampling of volatile organic compounds (VOCs) and detection by single-photon ionisation (SPI) time-of-flight mass spectrometry (TOFMS). A consumable-free electrical modulator rapidly cools down to -55 °C to trap VOCs and inject them on a short chromatographic column by prompt heating to 300 °C, followed by carrier gas exchange from air to helium. Due to the low thermal mass and optical heating, the fastGC is operated within total runtimes including cooling for 30 s and 15 s, referring to hyper-fast GC, and at a constantly increasing temperature ramp from 30 °C to 280 °C. The application of soft SPI-TOFMS allows the detection of co-eluting VOCs of different molecular compositions, which cannot be resolved by conventional GC (cGC) with electron ionisation (EI). Among other analytical figures of merit, we achieved limits of detection for toluene and p-xylene of 2 ppb and 0.5 ppb, respectively, at a signal-to-noise ratio of 3 and a linear response over a range of more than five orders of magnitude. Furthermore, we demonstrate the performance of the instrument on samples from the fields of environmental research and food science by headspace analysis of roasted coffee beans and needles from coniferous trees as well as by quasi-real-time analysis of biomass burning emissions and coffee roast gas.

5.
Nicotine Tob Res ; 23(12): 2135-2144, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33993304

RESUMO

INTRODUCTION: A wide array of alternative nicotine delivery devices (ANDD) has been developed and they are often described as less harmful than combustible cigarettes. This work compares the chemical emissions of three ANDD in comparison to cigarette smoke. All the tested ANDD are characterized by not involving combustion of tobacco. AIMS AND METHODS: Single-photon ionization time-of-flight mass spectrometry (SPI-TOFMS) is coupled to a linear smoking machine, which allows a comprehensive, online analysis of the gaseous phase of the ANDD aerosol and the conventional cigarette (CC) smoke. The following devices were investigated in this study: a tobacco cigarette with a glowing piece of coal as a heating source, an electric device for heating tobacco, and a first-generation electronic cigarette. Data obtained from a standard 2R4F research cigarette are taken as a reference. RESULTS: The puff-by-puff profile of all products was recorded. The ANDD show a substantial reduction or complete absence of known harmful and potentially harmful substances compared with the CC. In addition, tar substances (i.e. semivolatile and low volatile aromatic and phenolic compounds) are formed to a much lower extent. Nicotine, however, is supplied in comparable amounts except for the investigated electronic cigarette. CONCLUSIONS: The data show that consumers switching from CC to ANDD are exposed to lower concentrations of harmful and potentially harmful substances. However, toxicological and epidemiological studies must deliver conclusive results if these reduced exposures are beneficial for users. IMPLICATIONS: The comparison of puff-resolved profiles of emissions from different tobacco products, traditional and alternative, may help users switch to lower emission products. Puff-resolved comparison overcomes technical changes, use modes between products and may help in their regulation.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Produtos do Tabaco , Temperatura Alta , Humanos , Espectrometria de Massas , Fumaça/análise
6.
Anal Chem ; 91(24): 15547-15554, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31735029

RESUMO

The development of sensitive analytical techniques for the real-time detection of aromatic hydrocarbons (AHs) and polycyclic aromatic hydrocarbons (PAHs) is of high importance, because of their impact on human health and the environment. A promising approach, regarding to direct determination of (P)AHs in aqueous samples, is resonance-enhanced multiphoton ionization (REMPI) coupled to external-membrane introduction mass spectrometry (eMIMS). In eMIMS, analytes are extracted from the water phase into the gas phase, which is supplied to the MS by using an external semipermeable membrane setup. As a result, no laborious enrichment techniques are needed. With REMPI, ions are formed by the subsequent absorption of two photons via an excited molecular state. The unique ionization scheme of REMPI provides selective and sensitive detection of (P)AHs. When combining the capabilities of REMPI and MIMS, direct measurements of sub-µg/L concentrations of small (polycyclic)aromatic compounds are feasible. In this study, we present an external sheet membrane probe (ESMP) for the determination of selected (polycyclic)aromatic species in water samples by using REMPI time-of-flight mass spectrometry (REMPI-TOFMS). This inlet design shows promising results with respect to the direct analysis of (P)AHs in aquatic environments. With this early stage system, concentrations down to tens of ng/L for selected small (polycyclic)aromatic compounds are accessible within minutes without any sample preparation.

7.
Anal Chem ; 91(15): 10282-10288, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31251028

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are toxic organic trace components in atmospheric aerosols that have impacts on climate and human health. They are bound to airborne particles and transported over long distances. Observations of their distribution, transport pathways, and degradation are crucial for risk assessment and mitigation. Such estimates would benefit from online detection of PAHs along with analysis of the carrying particles to identify the source. Typically, laser desorption/ionization (LDI) in a bipolar mass spectrometer reveals the inorganic constituents and provides limited molecular information. In contrast, two-step ionization approaches produce detailed PAH mass spectra from individual particles but without the source-specific inorganic composition. Here we report a new technique that yields the single-particle PAH composition along with both positive and negative inorganic ions via LDI. Thus, the complete particle characterization and source apportionment from conventional bipolar LDI-analysis becomes possible, combined with a detailed PAH spectrum for the same particle. The key idea of the method is spatiotemporal matching of the ionization laser pulse to the transient component distribution in the particle plume after laser desorption. The technique is robust and field-deployable with only slightly higher costs and complexity compared to two-step approaches. We demonstrate its capability to reveal the PAH-distribution on different particle types in combustion aerosols and ambient air.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Compostos Inorgânicos/análise , Lasers , Espectrometria de Massas/instrumentação , Espectrometria de Massas/métodos , Hidrocarbonetos Policíclicos Aromáticos/análise , Monitoramento Ambiental , Humanos
8.
Anal Chem ; 89(20): 10917-10923, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-28960066

RESUMO

Direct infusion resonance-enhanced multiphoton ionization (DI-REMPI) was performed on liquid samples, which were introduced to the ion source via a direct liquid interface, to enable the investigation of dissolved aromatic compounds. Desolvation and nebulization of the samples were supported by a heated repeller using flow rates in the upper nL min-1 range. The obtained mass spectra of five pure polycyclic aromatic hydrocarbons as well as complex petroleum samples revealed predominantly molecular ions without evidence of solvent or dopant effects as observed in atmospheric pressure photoionization (APPI) and laser ionization (APLI) with limits of detection in the lower pmol range. Furthermore, it is demonstrated by the analysis of different complex oil samples that DI-REMPI covers a larger m/z range than external volatilization of the sample prior to introduction to the ion source by using thermogravimetry (TG) hyphenated to REMPI time-of-flight mass spectrometry (TOFMS). Analogous to reported setups with direct liquid interface and electron ionization, direct-REMPI may be an option for soft ionization in liquid chromatography.

9.
Anal Chem ; 89(12): 6341-6345, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28570048

RESUMO

Online studies of single airborne particles represent a demanding challenge in aerosol chemistry. New technologies that help to unravel the role of ambient aerosols in earth climate and to assess local and specific health risks from air pollution are highly desired. Of particular relevance are polycyclic aromatic hydrocarbons (PAHs) from combustion processes that are associated with both acute and long-term health effects. Usually, online single particle analyses apply laser desorption/ionization (LDI) in a bipolar mass spectrometer, revealing elemental constituents and limited molecular information by detection of both positive and negative ions. Approaches for the detection of PAHs from single particles have been developed but the elemental information from LDI that allows particle classification and source apportionment is lost in that case. Here we present a novel laser desorption and ionization method delivering both the PAH-profile and the inorganic composition from the same, individual particle. Test measurements demonstrate the technique's capability to reveal the single-particle PAH-distribution in aerosols (mixing state) and its assignment to specific pollution sources in a new and direct way.

10.
Anal Chem ; 87(3): 1711-7, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25582882

RESUMO

The highly dynamic, heterogeneous combustion process within a burning cigarette was investigated by a miniaturized extractive sampling probe (microprobe) coupled to photoionization mass spectrometry using soft laser single photon ionization (SPI) for online real-time detection of molecular ions of combustion and pyrolysis products. Research cigarettes smoked by a smoking machine are used as a reproducible model system for solid-state biomass combustion, which up to now is not addressable by current combustion-diagnostic tools. By combining repetitively recorded online measurement sequences from different sampling locations in an imaging approach, highly time- and space-resolved quantitative distribution maps of, e.g., nitrogen monoxide, benzene, and oxygen concentrations were obtained at a near microscopic level. The obtained quantitative distribution maps represent a time-resolved, movie-like imaging of the respective compound's formation and destruction zones in the various combustion and pyrolysis regions of a cigarette during puffing. Furthermore, spatially resolved kinetic data were ascertainable. The here demonstrated methodology can also be applied to various heterogenic combustion/pyrolysis or reaction model systems, such as fossil- or biomass-fuel pellet combustion or to a positional resolved analysis of heterogenic catalytic reactions.


Assuntos
Processamento de Imagem Assistida por Computador , Espectrometria de Massas/métodos , Nicotiana/química , Óxido Nítrico/biossíntese , Fumaça/análise , Volatilização , Temperatura Alta , Cinética
11.
Anal Chem ; 85(22): 11047-53, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24116702

RESUMO

The development of fast, mobile, and sensitive detection systems for security-relevant substances is of enormous importance. Because of the low vapor pressures of explosives and improvised explosive devices, adequate sampling procedures are crucial. Ion mobility spectrometers (IMSs) are fast and sensitive instruments that are used as detection systems for explosives. Ambient pressure laser desorption (APLD) and ambient pressure laser-induced acoustic desorption (AP-LIAD) are new tools suitable to evaporate explosives in order to detect them in the vapor phase. Indeed, the most important advantage of APLD or AP-LIAD is the capability to sample directly from the surface of interest without any transfer of the analyte to other surfaces such as wipe pads. A much more gentle desorption, compared to classical thermal-based desorption, is possible with laser-based desorption using very short laser pulses. With this approach the analyte molecules are evaporated in a very fast process, comparable to a shock wave. The thermal intake is reduced considerably. The functionality of APLD and AP-LIAD techniques combined with a hand-held IMS system is shown for a wide range of common explosives such as EGDN (ethylene glycol dinitrate), urea nitrate, PETN (pentaerythritol tetranitrate), HMTD (hexamethylene triperoxide diamine), RDX (hexogen), tetryl (2,4,6-trinitrophenylmethylnitramine), and TNT (trinitrotoluene). Detection limits down to the low nanogram range are obtained. The successful combination of IMS detection and APLD/AP-LIAD sampling is shown.

12.
Anal Bioanal Chem ; 405(22): 7083-96, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23657458

RESUMO

A micro-probe (µ-probe) gas sampling device for on-line analysis of gases evolving in confined, small objects by single-photon ionisation time-of-flight mass spectrometry (SPI-TOFMS) was developed. The technique is applied for the first time in a feasibility study to record the formation of volatile and flavour compounds during the roasting process within (inside) or in the direct vicinity (outside) of individual coffee beans. A real-time on-line analysis of evolving volatile and semi-volatile organic compounds (VOC and SVOC) as they are formed under the mild pyrolytic conditions of the roasting process was performed. The soft-ionisation mass spectra depict a molecular ion signature, which is well corresponding with the existing knowledge of coffee roasting and evolving compounds. Additionally, thereby it is possible to discriminate between Coffea arabica (Arabica) and Coffea canephora (Robusta). The recognized differences in the roasting gas profiles reflect the differences in the precursor composition of the coffee cultivars very well. Furthermore, a well-known set of marker compounds for Arabica and Robusta, namely the lipids kahweol and cafestol (detected in their dehydrated form at m/z 296 and m/z 298, respectively) were observed. If the variation in time of different compounds is observed, distinctly different evolution behaviours were detected. Here, phenol (m/z 94) and caffeine (m/z 194) are exemplary chosen, whereas phenol shows very sharp emission peaks, caffeine do not have this highly transient behaviour. Finally, the changes of the chemical signature as a function of the roasting time, the influence of sampling position (inside, outside) and cultivar (Arabica, Robusta) is investigated by multivariate statistics (PCA). In summary, this pilot study demonstrates the high potential of the measurement technique to enhance the fundamental knowledge of the formation processes of volatile and semi-volatile flavour compounds inside the individual coffee bean.


Assuntos
Café/química , Sementes/química , Compostos Orgânicos Voláteis/análise , Tecnologia de Alimentos , Gases/análise , Espectrometria de Massas/métodos
13.
Foods ; 9(5)2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32422859

RESUMO

Process control with high time resolution is essential to maintain high product quality in coffee roasting. However, analytical techniques for quality assurance or measurements of desired coffee properties are often labor-intensive and can only be conducted after dropping the coffee beans. Resonance-enhanced multi-photon ionization time-of-flight mass spectrometry (REMPI-TOFMS) at 248 nm and 266 nm was applied to analyze the composition of the roast gas from small-scale Arabica coffee roasting. Coffee beans were dropped after different roasting times, ground and analyzed by Colorette to obtain the roast degree. Additionally, the antioxidant capacity of the coffee brew was determined by Folin-Ciocalteu (FC) assay. Models for the prediction of Colorette and FC values from REMPI mass spectra were constructed by partial least squares (PLS) regression. REMPI-TOFMS enables the prediction of Colorette values with a root-mean-square error in prediction (RMSEP) below 5 for both wavelengths. FC values could be predicted using REMPI at 248 nm with an RMSEP of 80.3 gallic acid equivalents (GA-eq) mg L-1, while REMPI at 266 nm resulted in RMSEP of 151 GA-eq mg L-1. Finally, the prediction of Colorette and FC value at 5 s time resolution were demonstrated with online measurements.

14.
J Agric Food Chem ; 68(17): 4752-4759, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-31967467

RESUMO

Precise controlling and monitoring the status of the coffee roasting process is essential for consistent product quality and optimization toward targeted coffee properties. In small-scale roasting experiments, the chemical composition of the roasting off-gas was analyzed by online single-photon ionization time-of-flight mass spectrometry (SPI-TOFMS) at 118 nm with 5 s time resolution. Subsequently, mass spectra at the drop of the coffee beans were combined with off-line measurements of roast degree, described by color value "Colorette", and the antioxidant capacity, obtained from the Folin-Ciocalteu (FC) assay, in an explanatory projection on latent structure regression model. While the roast degree gives an indication of the coffee flavor, antioxidants in brewed coffee are regarded as beneficial for human health. Colorette and FC values could be derived from the SPI mass spectra with root-mean-square errors from Monte Carlo cross-validation of 6.0 and 139 mg of gallic acid equiv L-1, respectively, and explained covariance (R2CV) better than 89%. Finally, the regression models were applied to the SPI mass spectra over the entire roast to demonstrate the predictive ability for online process control in real time.


Assuntos
Antioxidantes/química , Automação/métodos , Coffea/química , Gases/química , Espectrometria de Massas/métodos , Automação/instrumentação , Culinária , Temperatura Alta , Sementes/química , Tempo , Compostos Orgânicos Voláteis/química
15.
Spectrochim Acta A Mol Biomol Spectrosc ; 219: 129-134, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31030040

RESUMO

Since the introduction of a benchtop vacuum ultraviolet (VUV) absorption spectroscope with an increased wavelength range towards to the high energetic ultraviolet radiation, gas chromatography coupled to VUV has been proven a powerful tool in several fields of application such as petroleomics, permanent gas analytic, pesticide analytic and many more. In this study, the potential of GC-VUV for investigations was examined, focusing on drug- and explosive precursors as well as chemical warfare simulants. The ability of VUV absorption spectra to differentiate isomers is presented, among others for nitroaromatics. In addition, the limit of detection for target compounds was determined to 0.7 ng absolute on column. Furthermore, non-negative matrix factorization (NMF) was successfully implemented as alternative deconvolution approach and evaluated for the deconvolution of unknown substances. In comparison, the spectral library-based deconvolution was applied to a standard mixture and a simulated case study. The results reveal that the NMF is a useful additional tool for deconvolution because, unlike library-based deconvolution, it allows to investigate unknown substances as well.


Assuntos
Substâncias para a Guerra Química/análise , Cromatografia Gasosa/métodos , Substâncias Explosivas/análise , Preparações Farmacêuticas/análise , Espectrofotometria Ultravioleta/métodos , Isomerismo , Vácuo
16.
J Agric Food Chem ; 64(25): 5223-31, 2016 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-27309797

RESUMO

Coffee beans of two cultivars, Arabica (Mexico) and Robusta (Vietnam), were roasted in a small-scale drum roaster at different temperature profiles. Evolving volatile compounds out of the roasting off-gas were analyzed by photoionization mass spectrometry at four different wavelengths, either with single-photon ionization (SPI) or resonance-enhanced multiphoton ionization (REMPI). The different analyte selectivities at the four wavelengths and their relevance for the examination of the roasting process were discussed. Furthermore, intensities of observed m/z were grouped by non-negative matrix factorization (NMF) to reveal the temporal evolutions of four roasting phases ("evaporation", "early roast", "late roast", and "overroast") from NMF scores and the corresponding molecular composition from the NMF factor loadings, giving chemically sound results concerning the roasting phases. Finally, linear classifiers were constructed from real mass spectra at maximum NMF scores by linear discriminant analysis to obtain quantities which are simple to measure for real-time analysis of the roasting process.


Assuntos
Coffea/química , Culinária/métodos , Compostos Orgânicos Voláteis/química , Temperatura Alta , Espectrometria de Massas , Sementes/química
17.
Appl Spectrosc ; 67(8): 860-72, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23876725

RESUMO

The photoionization properties of the pharmaceutically relevant substances amantadine, diazepam, dimethyltryptamine, etomidate, ketamine, mescaline, methadone, and propofol were determined. At beamline U125/2-10m-NIM of the BESSY II synchrotron facility (Berlin, Germany) vacuum ultraviolet (VUV) photoionization spectra were recorded in the energy range 7.1 to 11.9 eV (174.6 to 104.2 nm), showing the hitherto unknown ionization energies and fragmentation appearance energies of the compounds under investigation. Furthermore, (1+1)-resonance-enhanced multiphoton ionization (REMPI) spectra of selected compounds (amantadine, diazepam, etomidate, ketamine, and propofol) were recorded by a continuous scan in the energy range between 3.6 and 5.7 eV (345 to 218 nm) using a tunable optical parametric oscillator (spectral resolution: 0.1 nm) laser system. The resulting REMPI wavelength spectra of these compounds are discussed and put into context with already known UV absorption data. Time-of-flight mass spectrometry was used for ion detection in both experiments. Finally, the implications of the obtained physical-chemical results for potential analytical applications are discussed. In this context, fast detection approaches for the considered compounds from breath gas using photoionization mass spectrometry and a rapid pre-concentration step (e.g., needle trap device) are of interest.


Assuntos
Preparações Farmacêuticas/análise , Processos Fotoquímicos , Fótons , Espectrometria de Massas por Ionização por Electrospray/métodos , Análise Espectral/métodos , Síncrotrons , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa