Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(42): e2308373120, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37816063

RESUMO

A hybrid approach combining water-splitting electrochemistry and H2-oxidizing, CO2-fixing microorganisms offers a viable solution for producing value-added chemicals from sunlight, water, and air. The classic wisdom without thorough examination to date assumes that the electrochemistry in such a H2-mediated process is innocent of altering microbial behavior. Here, we report unexpected metabolic rewiring induced by water-splitting electrochemistry in H2-oxidizing acetogenic bacterium Sporomusa ovata that challenges such a classic view. We found that the planktonic S. ovata is more efficient in utilizing reducing equivalent for ATP generation in the materials-biology hybrids than cells grown with H2 supply, supported by our metabolomic and proteomic studies. The efficiency of utilizing reducing equivalents and fixing CO2 into acetate has increased from less than 80% of chemoautotrophy to more than 95% under electroautotrophic conditions. These observations unravel previously underappreciated materials' impact on microbial metabolism in seemingly simply H2-mediated charge transfer between biotic and abiotic components. Such a deeper understanding of the materials-biology interface will foster advanced design of hybrid systems for sustainable chemical transformation.


Assuntos
Dióxido de Carbono , Proteômica , Dióxido de Carbono/metabolismo , Luz Solar , Acetatos/metabolismo , Água/química
2.
ACS Nano ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39056348

RESUMO

Material-microbial interfaces offer a promising future in sustainable and efficient chemical-energy conversions, yet the impacts of these artificial interfaces on microbial metabolisms remain unclear. Here, we conducted detailed proteomic and metabolomic analyses to study the regulations of microbial metabolism induced by the photocatalytic material-microbial interfaces, especially the intracellular redox and energy homeostasis, which are vital for sustaining cell activity. First, we learned that the materials have a heavier weight in perturbing microbial metabolism and inducing distinctive biological pathways, like the expression of the metal-resisting system, than light stimulations. Furthermore, we observed that the materials-microbe interfaces can maintain the delicate redox balance and the energetic status of the microbial cells since the intracellular redox cofactors and energy currencies show stable levels as naturally inoculated microbes. These observations ensure the possibility of energizing microbial activities with artificial materials-microbe interfaces for diverse applications and also provide guides for future designs of materials-microbe hybrids to guard microbial activities.

3.
Food Chem (Oxf) ; 4: 100097, 2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35769401

RESUMO

Anthocyanin-rich strawberry model solutions were co-pigmented with rooibos phenolics to enhance color and heat stability. The addition of green and fermented rooibos extracts at pigment-to-co-pigment molar ratios of 1:10, 1:50, and 1:100 pelargonidin-3-glucoside equivalents: orientin equivalents induced hyper- and bathochromic shifts at room temperature and during thermal processing at 80 °C for an hour. Co-pigmentation effects on hyperchromic shift were up to 96%, and bathochromic shift reached 19 nm when adding flavonoid-rich fractions of green rooibos phenolics. Following the co-pigmentation tests with rooibos extracts, selected pure phenolic co-pigments were tested for their monomeric contribution to the observed co-pigmentation effects. Orientin was identified as a potent co-pigment for pelargonidin-3-glucoside, showing stronger co-pigmentation effects than that of its aglycon luteolin. Additionally, orientin had the most pronounced bathochromic shift in heat-treated solutions. Rooibos extracts, particularly flavonoid-rich fractions composed of luteolin, apigenin, and quercetin glycosides, are suggested as color enhancers and stabilizers for strawberry products.

4.
Curr Opin Biotechnol ; 75: 102701, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35278746

RESUMO

Complete understanding of a biological system requires quantitation of metabolic fluxes that reflect its dynamic state. Various analytical chemistry tools, enzyme-based probes, and microscopy enable flux measurement. However, any method alone falls short of comprehensive flux quantitation. Here we show that integrating these techniques results in a systems-level quantitative map of absolute metabolic fluxes that constitute an indispensable dimension of characterizing phenotypes. Stable isotopes, mass spectrometry, and NMR spectroscopy reveal relative pathway fluxes. Biochemical probes reveal the physical rate of environmental changes. FRET-based and SRS-based microscopy reveal targeted metabolite and chemical bond formation. These techniques are complementary and can be computationally integrated to reveal actionable information on metabolism. Integrative metabolic flux analysis using various quantitative techniques advances biotechnology and medicine.


Assuntos
Biotecnologia , Análise do Fluxo Metabólico , Isótopos de Carbono , Espectroscopia de Ressonância Magnética/métodos , Espectrometria de Massas/métodos , Modelos Biológicos , Fenótipo
5.
Nat Catal ; 5(11): 1019-1029, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36844635

RESUMO

Integrating light-harvesting materials with microbial biochemistry is a viable approach to produce chemicals with high efficiency from the air, water, and sunlight. Yet it remains unclear whether all absorbed photons in the materials can be transferred through the material-biology interface for solar-to-chemical production and whether the presence of materials beneficially affect the microbial metabolism. Here we report a microbe-semiconductor hybrid by interfacing CO2/N2-fixing bacterium Xanthobacter autotrophicus with CdTe quantum dots for light-driven CO2 and N2 fixation with internal quantum efficiencies of 47.2 ± 7.3% and 7.1 ± 1.1%, respectively, reaching the biochemical limits of 46.1% and 6.9% imposed by the stoichiometry in biochemical pathways. Photophysical studies suggest fast charge-transfer kinetics at the microbe-semiconductor interfaces, while proteomics and metabolomics indicate a material-induced regulation of microbial metabolism favoring higher quantum efficiencies compared to the biological counterparts alone.

6.
Joule ; 4(10): 2047-2051, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32923980

RESUMO

Sevcan Ersan is a postdoctoral researcher at UCLA. Previously, she conducted postdoctoral research at the University of Hohenheim in Germany. She received her PhD in biotechnology from Yeditepe University, Turkey, and her bachelor's and master's degrees in food engineering from Istanbul Technical University, Turkey. She is experienced in waste utilization, bioprocessing technologies, and biological activities associated with phytochemicals. Her current research focuses on natural product chemistry and sustainable biotechnology. Junyoung Park is an assistant professor of Chemical and Biomolecular Engineering and co-director of the Metabolomics Center at UCLA. His research group focuses on systems-level analysis of metabolic networks to elucidate regulatory mechanisms and engineer metabolism. He aims to apply this knowledge to solving energy and environmental problems and curing human diseases such as cancer and diabetes. Before moving to Los Angeles, he conducted postdoctoral research at MIT. He received his bachelor's degrees in mathematics and bioengineering from UC San Diego and a master's and PhD in chemical engineering from Princeton University.

7.
Food Res Int ; 120: 389-398, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31000254

RESUMO

Physicochemical characteristics and phytochemical profiles of red (Physalis alkekengi L., RP) and yellow (P. pubescens L., YP) Physalis fruits cultivated in three provinces of China were characterized. YP fruits showed significantly lower levels of total organic acids and elevated total sugars than those of RP. A total of 18 compounds was tentatively identified in hydromethanolic extracts of Physalis fruits applying HPLC-DAD-ESI-MSn and HR-ESI-MS. Cinnamoyl and hydroxycinnamoyl conjugates prevailed in both fruits. Diverse mono- and dihexosides of cinnamic, coumaric, caffeic, ferulic, and sinapic acid were found in YP, while RP merely contained feruloyl and sinapoyl hexosides. N,N´-dicaffeoylspermidine isomers were found in YP fruits, whereas N,N´-bis(dihydrocaffeoyl)spermine was exclusively detected in two of the RP samples. Additionally, two HDMF (4-hydroxy-2,5-dimethyl-3(2H)-furanone) hexosides were tentatively identified for the first time in YP. Both RP and YP fruits collected from three different provinces in China showed a significant intraspecific variability regarding their phytochemical profiles, despite their similar morphological fruit traits.


Assuntos
Frutas/química , Physalis/química , Compostos Fitoquímicos/análise , Aminoácidos/análise , Ácido Ascórbico/análise , China , Cromatografia Líquida de Alta Pressão , Ácido Cítrico/análise , Cor , Comportamento do Consumidor , Ácidos Cumáricos/análise , Análise de Alimentos , Qualidade dos Alimentos , Frutose/análise , Glucose/análise , Dureza , Concentração de Íons de Hidrogênio , Malatos/análise , Espectrometria de Massas , Ácido Quínico/análise , Sacarose/análise , Tartaratos/análise , Paladar
8.
Food Chem ; 253: 46-54, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29502842

RESUMO

Pistachio hulls, important by-products of pistachio processing, were extracted using an environmentally friendly process with subcritical water (SCW) at a pressure of 6.9 MPa in the range of 110 and 190 °C, and a flow rate of 4 ml/min. Detailed HPLC-DAD-ESI/MSn analyses allowed the identification of 49 phenolic compounds in the SCW extracts. Total gallotannin yields up to 33 g/kg were reached at 150-170 °C, where gallic acid (22.2 g/kg) and penta-O-galloyl-ß-d-glucose (9.77 g/kg) levels were 13.2- and 10.6-fold higher than those in the aqueous methanol extracts. Flavonols were also effectively extracted at 110-150 °C (4.37-5.65 g/kg), while anacardic acid recovery was poor (1.13-2.77 g/kg). Accordingly, high amounts of anacardic acids (up to 50.7 g/kg) were retained in the extraction residue, revealing that SCW extraction allowed selective extraction of gallotannins and flavonols. Antioxidant capacities ranged from 0.68 to 1.20 mmol Trolox equivalents (TE)/g for SCW extracts increasing with temperature up 190 °C.


Assuntos
Antioxidantes/isolamento & purificação , Fracionamento Químico/métodos , Fenóis/isolamento & purificação , Pistacia/química , Sementes/química , Água/química , Antioxidantes/análise , Fenóis/análise , Temperatura
9.
J Agric Food Chem ; 64(26): 5334-44, 2016 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-27292533

RESUMO

Phenolic constituents of the nonlignified red and green pistachio hulls (exo- and mesocarp) were assessed by HPLC-DAD-ESI-MS(n) as well as by HR-MS. A total of 66 compounds was identified in the respective aqueous methanolic extracts. Among them, gallic acid, monogalloyl glucoside, monogalloyl quinic acid, penta-O-galloyl-ß-d-glucose, hexagalloyl hexose, quercetin 3-O-galactoside, quercetin 3-O-glucoside, quercetin 3-O-glucuronide, and (17:1)-, (13:0)-, and (13:1)-anacardic acids were detected at highest signal intensity. The main difference between red and green hulls was the presence of anthocyanins in the former ones. Differently galloylated hydrolyzable tannins, anthocyanins, and minor anacardic acids were identified for the first time. Pistachio hulls were thus shown to be a source of structurally diverse and potentially bioactive phenolic compounds. They therefore represent a valuable byproduct of pistachio processing having potential for further utilization as raw material for the recovery of pharmaceutical, nutraceutical, and chemical products.


Assuntos
Fenóis/química , Pistacia/química , Extratos Vegetais/química , Antocianinas/química , Cromatografia Líquida de Alta Pressão , Estrutura Molecular , Pistacia/classificação , Sementes/química , Espectrometria de Massas por Ionização por Electrospray
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa