Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Plant Biotechnol J ; 22(6): 1468-1490, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38169146

RESUMO

Variation in anthocyanin biosynthesis in pear fruit provides genetic germplasm resources for breeding, while dwarfing is an important agronomic trait, which is beneficial to reduce the management costs and allow for the implementation of high-density cultivation. Here, we combined bulked segregant analysis (BSA), quantitative trait loci (QTL), and structural variation (SV) analysis to identify a 14-bp deletion which caused a frame shift mutation and resulted in the premature translation termination of a B-box (BBX) family of zinc transcription factor, PyBBX24, and its allelic variation termed PyBBX24ΔN14. PyBBX24ΔN14 overexpression promotes anthocyanin biosynthesis in pear, strawberry, Arabidopsis, tobacco, and tomato, while that of PyBBX24 did not. PyBBX24ΔN14 directly activates the transcription of PyUFGT and PyMYB10 through interaction with PyHY5. Moreover, stable overexpression of PyBBX24ΔN14 exhibits a dwarfing phenotype in Arabidopsis, tobacco, and tomato plants. PyBBX24ΔN14 can activate the expression of PyGA2ox8 via directly binding to its promoter, thereby deactivating bioactive GAs and reducing the plant height. However, the nuclear localization signal (NLS) and Valine-Proline (VP) motifs in the C-terminus of PyBBX24 reverse these effects. Interestingly, mutations leading to premature termination of PyBBX24 were also identified in red sports of un-related European pear varieties. We conclude that mutations in PyBBX24 gene link both an increase in pigmentation and a decrease in plant height.


Assuntos
Proteínas de Plantas , Pyrus , Pyrus/genética , Pyrus/metabolismo , Pyrus/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Alelos , Antocianinas/metabolismo , Pigmentação/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Locos de Características Quantitativas/genética , Plantas Geneticamente Modificadas/genética , Frutas/genética , Frutas/metabolismo , Frutas/crescimento & desenvolvimento , Nicotiana/genética , Nicotiana/metabolismo , Fenótipo
2.
Plant Physiol ; 192(3): 1696-1710, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37129240

RESUMO

The genus Vaccinium L. (Ericaceae) contains premium berryfruit crops, including blueberry, cranberry, bilberry, and lingonberry. Consumption of Vaccinium berries is strongly associated with various potential health benefits, many of which are attributed to the relatively high concentrations of flavonoids, including the anthocyanins that provide the attractive red and blue berry colors. Because these phytochemicals are increasingly appealing to consumers, they have become a crop breeding target. There has been substantial recent progress in Vaccinium genomics and genetics together with new functional data on the transcriptional regulation of flavonoids. This is helping to unravel the developmental control of flavonoids and identify genetic regions and genes that can be selected for to further improve Vaccinium crops and advance our understanding of flavonoid regulation and biosynthesis across a broader range of fruit crops. In this update we consider the recent progress in understanding flavonoid regulation in fruit crops, using Vaccinium as an example and highlighting the significant gains in both genomic tools and functional analysis.


Assuntos
Flavonoides , Vaccinium , Vaccinium/genética , Antocianinas , Frutas/genética , Melhoramento Vegetal
3.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38542498

RESUMO

Tea grey blight disease is one of the most destructive diseases that infects tea and is caused by the pathogen Pestalotiopsis theae (Sawada) Steyaert. L-theanine is a unique non-protein amino acid of the tea plant. Different concentrations of L-theanine exhibit significant inhibitory effects on the growth and sporulation ability of the pathogen causing tea grey blight disease. To understand the effect mechanism of L-theanine on P. theae, transcriptome profiling was performed on the pathogenic mycelium treated with three different concentrations of L-theanine: no L-theanine treatment (TH0), 20 mg/mL theanine treatment (TH2), and 40 mg/mL theanine treatment (TH4). The colony growths were significantly lower in the treatment with L-theanine than those without L-theanine. The strain cultured with a high concentration of L-theanine produced no spores or only a few spores. In total, 2344, 3263, and 1158 differentially expressed genes (DEGs) were detected by RNA-sequencing in the three comparisons, Th2 vs. Th0, Th4 vs. Th0, and Th4 vs. Th2, respectively. All DEGs were categorized into 24 distinct clusters. According to GO analysis, low concentrations of L-theanine primarily affected molecular functions, while high concentrations of L-theanine predominantly affected biological processes including external encapsulating structure organization, cell wall organization or biogenesis, and cellular amino acid metabolic process. Based on KEGG, the DEGs of Th2 vs. Th0 were primarily involved in pentose and glucuronate interconversions, histidine metabolism, and tryptophan metabolism. The DEGs of Th4 vs. Th0 were mainly involved in starch and sucrose metabolism, amino sugar, and nucleotide sugar metabolism. This study indicated that L-theanine has a significant impact on the growth and sporulation of the pathogen of tea grey blight disease and mainly affects amino acid metabolism, carbohydrate metabolism, and cellular structure-related biosynthesis processes of pathogenic fungi. This work provides insights into the direct control effect of L-theanine on pathogenic growth and also reveals the molecular mechanisms of inhibition of L-theanine to P. theae.


Assuntos
Ascomicetos , Camellia sinensis , Transcriptoma , Glutamatos/farmacologia , Camellia sinensis/metabolismo , Folhas de Planta/metabolismo , Chá/química
4.
Plant Physiol ; 190(1): 305-318, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-35674376

RESUMO

The ubiquitin ligase CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) plays a central role in light-induced anthocyanin biosynthesis. However, the upstream regulatory factors of COP1 remain poorly understood, particularly in horticultural plants. Here, we identified an MdCOP1-interacting protein, BROAD-COMPLEX, TRAMTRACK AND BRIC A BRAC2 (MdBT2), in apple (Malus domestica). MdBT2 is a BTB protein that directly interacts with and stabilizes MdCOP1 by inhibiting self-ubiquitination. Fluorescence observation and cell fractionation assays showed that MdBT2 increased the abundance of MdCOP1 in the nucleus. Moreover, a series of phenotypic analyses indicated that MdBT2 promoted MdCOP1-mediated ubiquitination and degradation of the MdMYB1 transcription factor, inhibiting the expression of anthocyanin biosynthesis genes and anthocyanin accumulation. Overall, our findings reveal a molecular mechanism by which MdBT2 positively regulates MdCOP1, providing insight into MdCOP1-mediated anthocyanin biosynthesis.


Assuntos
Malus , Antocianinas/metabolismo , Regulação da Expressão Gênica de Plantas , Malus/genética , Malus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ubiquitinação
5.
Plant Cell Environ ; 46(12): 3663-3679, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37555620

RESUMO

For many fruit crops, the colour of the fruit outwardly defines its eating quality. Fruit pigments provide reproductive advantage for the plant as well as providing protection against unfavourable environmental conditions and pathogens. For consumers these colours are considered attractive and provide many of the dietary benefits derived from fruits. In the majority of species, the main pigments are either carotenoids and/or anthocyanins. They are produced in the fruit as part of the ripening process, orchestrated by phytohormones and an ensuing transcriptional cascade, culminating in pigment biosynthesis. Whilst this is a controlled developmental process, the production of pigments is also attuned to environmental conditions such as light quantity and quality, availability of water and ambient temperature. If these factors intensify to stress levels, fruit tissues respond by increasing (or ceasing) pigment production. In many cases, if the stress is not severe, this can have a positive outcome for fruit quality. Here, we focus on the principal environmental factors (light, temperature and water) that can influence fruit colour.


Assuntos
Antocianinas , Frutas , Frutas/metabolismo , Carotenoides , Pigmentação , Água , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
6.
New Phytol ; 235(2): 630-645, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35348217

RESUMO

Anthocyanins are visual cues for pollination and seed dispersal. Fruit containing anthocyanins also appeals to consumers due to its appearance and health benefits. In kiwifruit (Actinidia spp.) studies have identified at least two MYB activators of anthocyanin, but their functions in fruit and the mechanisms by which they act are not fully understood. Here, transcriptome and small RNA high-throughput sequencing were used to comprehensively identify contributors to anthocyanin accumulation in kiwifruit. Stable overexpression in vines showed that both 35S::MYB10 and MYB110 can upregulate anthocyanin biosynthesis in Actinidia chinensis fruit, and that MYB10 overexpression resulted in anthocyanin accumulation which was limited to the inner pericarp, suggesting that repressive mechanisms underlie anthocyanin biosynthesis in this species. Furthermore, motifs in the C-terminal region of MYB10/110 were shown to be responsible for the strength of activation of the anthocyanic response. Transient assays showed that both MYB10 and MYB110 were not directly cleaved by miRNAs, but that miR828 and its phased small RNA AcTAS4-D4(-) efficiently targeted MYB110. Other miRNAs were identified, which were differentially expressed between the inner and outer pericarp, and cleavage of SPL13, ARF16, SCL6 and F-box1, all of which are repressors of MYB10, was observed. We conclude that it is the differential expression and subsequent repression of MYB activators that is responsible for variation in anthocyanin accumulation in kiwifruit species.


Assuntos
Actinidia , MicroRNAs , Actinidia/genética , Actinidia/metabolismo , Antocianinas/metabolismo , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas de Plantas/metabolismo
7.
J Exp Bot ; 73(5): 1344-1356, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-34664645

RESUMO

Members of the Vaccinium genus bear fruits rich in anthocyanins, a class of red-purple flavonoid pigments that provide human health benefits, although the localization and concentrations of anthocyanins differ between species: blueberry (V. corymbosum) has white flesh, while bilberry (V. myrtillus) has red flesh. Comparative transcriptomics between blueberry and bilberry revealed that MYBPA1.1 and MYBA1 strongly correlated with the presence of anthocyanins, but were absent or weakly expressed in blueberry flesh. MYBPA1.1 had a biphasic expression profile, correlating with both proanthocyanidin biosynthesis early during fruit development and anthocyanin biosynthesis during berry ripening. MYBPA1.1 was unable to induce anthocyanin or proanthocyanidin accumulation in Nicotiana benthamiana, but activated promoters of flavonoid biosynthesis genes. The MYBPA1.1 promoter is directly activated by MYBA1 and MYBPA2 proteins, which regulate anthocyanins and proanthocyanidins, respectively. Our findings suggest that the lack of VcMYBA1 expression in blueberry flesh results in an absence of VcMYBPA1.1 expression, which are both required for anthocyanin regulation. In contrast, VmMYBA1 is well expressed in bilberry flesh, up-regulating VmMYBPA1.1, allowing coordinated regulation of flavonoid biosynthesis genes and anthocyanin accumulation. The hierarchal model described here for Vaccinium may also occur in a wider group of plants as a means to co-regulate different branches of the flavonoid pathway.


Assuntos
Proantocianidinas , Vaccinium , Antocianinas/metabolismo , Frutas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proantocianidinas/metabolismo , Vaccinium/genética , Vaccinium/metabolismo
8.
New Phytol ; 232(3): 1350-1367, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34351627

RESUMO

The regulatory network of R2R3 MYB transcription factors in anthocyanin biosynthesis is not fully understood in blue-coloured berries containing delphinidin compounds. We used blue berries of bilberry (Vaccinium myrtillus) to comprehensively characterise flavonoid-regulating R2R3 MYBs, which revealed a new type of co-regulation in anthocyanin biosynthesis between members of MYBA-, MYBPA1- and MYBPA2-subgroups. VmMYBA1, VmMYBPA1.1 and VmMYBPA2.2 expression was elevated at berry ripening and by abscisic acid treatment. Additionally, VmMYBA1 and VmMYBPA1.1 expression was strongly downregulated in a white berry mutant. Complementation and transient overexpression assays confirmed VmMYBA1 and VmMYBA2 to induce anthocyanin accumulation. Promoter activation assays showed that VmMYBA1, VmMYBPA1.1 and VmMYBPA2.2 had similar activity towards dihydroflavonol 4-reductase (DFR) and anthocyanidin synthase (ANS), but differential regulation activity for UDP-glucose flavonoid 3-O-glucosyltransferase (UFGT) and flavonoid 3'5'-hydroxylase (F3'5'H) promoters. Silencing of VmMYBPA1.1 in berries led to the downregulation of key anthocyanin and delphinidin biosynthesis genes. Functional analyses of other MYBPA regulators, and a member of novel MYBPA3 subgroup, associated them with proanthocyanidin biosynthesis and F3'5'H expression. The existence of 18 flavonoid-regulating MYBs indicated gene duplication, which may have enabled functional diversification among MYBA, MYBPA1 and MYBPA2 subgroups. Our results provide new insights into the intricate regulation of the complex anthocyanin profile found in blue-coloured berries involving regulation of both cyanidin and delphinidin branches.


Assuntos
Antocianinas , Frutas , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Plant Cell Environ ; 44(10): 3227-3245, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34337774

RESUMO

The biosynthesis of anthocyanins has been shown to be influenced by light quality. However, the molecular mechanisms underlying the light-mediated regulation of fruit anthocyanin biosynthesis are not well understood. In this study, we analysed the effects of supplemental red and blue light on the anthocyanin biosynthesis in non-climacteric bilberry (Vaccinium myrtillus L.). After 6 days of continuous irradiation during ripening, both red and blue light elevated concentration of anthocyanins, up to 12- and 4-folds, respectively, compared to the control. Transcriptomic analysis of ripening berries showed that both light treatments up-regulated all the major anthocyanin structural genes, the key regulatory MYB transcription factors and abscisic acid (ABA) biosynthetic genes. However, higher induction of specific genes of anthocyanin and delphinidin biosynthesis alongside ABA signal perception and metabolism were found in red light. The difference in red and blue light signalling was found in 9-cis-epoxycarotenoid dioxygenase (NCED), ABA receptor pyrabactin resistance-like (PYL) and catabolic ABA-8'hydroxylase gene expression. Red light also up-regulated expression of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) domain transporters, which may indicate involvement of these proteins in vesicular trafficking of anthocyanins during fruit ripening. Our results suggest differential signal transduction and transport mechanisms between red and blue light in ABA-regulated anthocyanin and delphinidin biosynthesis during bilberry fruit ripening.


Assuntos
Ácido Abscísico/farmacologia , Antocianinas/biossíntese , Frutas/efeitos da radiação , Luz , Transdução de Sinais , Vaccinium myrtillus/efeitos da radiação , Frutas/efeitos dos fármacos , Frutas/fisiologia , Vaccinium myrtillus/efeitos dos fármacos , Vaccinium myrtillus/fisiologia
10.
Plant Cell Physiol ; 61(1): 130-143, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31550006

RESUMO

As an important environment factor, light affects plant growth and development throughout life. B-BOX (BBX) proteins play key roles in the regulation of light signaling. Although the multiple roles of BBX proteins have been extensively studied in Arabidopsis, the research in apple is much less extensive. In this study, we systematically characterized the negative role of an apple BBX protein MdBBX37 in light signaling, including inhibiting anthocyanin biosynthesis and promoting hypocotyl elongation. We found that MdBBX37 interacted with MdMYB1 and MdMYB9, two key positive regulators of anthocyanin biosynthesis, and inhibited the binding of those two proteins to their target genes and, therefore, negatively regulated anthocyanin biosynthesis. In addition, MdBBX37 directly bound to the promoter of MdHY5, a positive regulator of light signaling, and suppressed its expression, and thus relieved MdHY5-mediated hypocotyl inhibition. Taken together, our investigations suggest that MdBBX37 is a negative regulator of light signaling in apple. Our study will provide reference for further study on the functions of BBX proteins in apple.


Assuntos
Antocianinas/biossíntese , Genes de Plantas , Hipocótilo/metabolismo , Malus/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte , Ritmo Circadiano , Regulação da Expressão Gênica de Plantas , Luz , Malus/crescimento & desenvolvimento , Malus/metabolismo , Morfogênese/fisiologia , Desenvolvimento Vegetal/genética , Plantas Geneticamente Modificadas/genética , Regiões Promotoras Genéticas , Alinhamento de Sequência , Fatores de Transcrição/metabolismo
11.
New Phytol ; 221(1): 309-325, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30067292

RESUMO

MYB transcription factors (TFs) regulate diverse plant developmental processes and understanding their roles in controlling pigment accumulation in fruit is important for developing new cultivars. In this study, we characterised kiwifruit TFMYB7, which was found to activate the promoter of the kiwifruit lycopene beta-cyclase (AdLCY-ß) gene that plays a key role in the carotenoid biosynthetic pathway. To determine the role of MYB7, we analysed gene expression and metabolite profiles in Actinidia fruit which show different pigment profiles. The impact of MYB7 on metabolic biosynthetic pathways was then evaluated by overexpression in Nicotiana benthamiana followed by metabolite and gene expression analysis of the transformants. MYB7 was expressed in fruit that accumulated carotenoid and Chl pigments with high transcript levels associated with both pigments. Constitutive over-expression of MYB7, through transient or stable transformation of N. benthamiana, altered Chl and carotenoid pigment levels. MYB7 overexpression was associated with transcriptional activation of certain key genes involved in carotenoid biosynthesis, Chl biosynthesis, and other processes such as chloroplast and thylakoid membrane organization. Our results suggest that MYB7 plays a role in modulating carotenoid and Chl pigment accumulation in tissues through transcriptional activation of metabolic pathway genes.


Assuntos
Actinidia/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Actinidia/genética , Clorofila/genética , Regulação da Expressão Gênica de Plantas , Liases Intramoleculares/genética , Liases Intramoleculares/metabolismo , Filogenia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Nicotiana/genética , Nicotiana/metabolismo , Fatores de Transcrição/genética
12.
New Phytol ; 221(4): 1919-1934, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30222199

RESUMO

Anthocyanin and proanthocyanidin (PA) accumulation is regulated by both myeloblastosis (MYB) activators and repressors, but little information is available on hierarchical interactions between the positive and negative regulators. Here, we report on a R2R3-MYB repressor in peach, designated PpMYB18, which acts as a negative regulator of anthocyanin and PA accumulation. PpMYB18 can be activated by both anthocyanin- and PA-related MYB activators, and is expressed both at fruit ripening and juvenile stages when anthocyanins or PAs, respectively, are being synthesized. The PpMYB18 protein competes with MYB activators for binding to basic Helix Loop Helixes (bHLHs), which develops a fine-tuning regulatory loop to balance PA and anthocyanin accumulation. In addition, the bHLH binding motif in the R3 domain and the C1 and C2 repression motifs in the C-terminus of PpMYB18 both confer repressive activity of PpMYB18. Our study also demonstrates a modifying negative feedback loop, which prevents cells from excess accumulation of anthocyanin and PAs, and serves as a model for balancing secondary metabolite accumulation at the transcriptional level.


Assuntos
Antocianinas/metabolismo , Genes de Plantas , Genes myb , Proteínas de Plantas/genética , Proantocianidinas/metabolismo , Prunus persica/genética , Proteínas Repressoras/genética , Sequência de Aminoácidos , Vias Biossintéticas/genética , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Mutação/genética , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Ligação Proteica , Prunus persica/crescimento & desenvolvimento , Proteínas Repressoras/metabolismo , Transcrição Gênica
13.
J Exp Bot ; 70(15): 3809-3824, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31020330

RESUMO

High temperatures are known to reduce anthocyanin accumulation in a number of diverse plant species. In potato (Solanum tuberosum L.), high temperature significantly reduces tuber anthocyanin pigment content. However, the mechanism of anthocyanin biosynthesis in potato tuber under heat stress remains unknown. Here we show that high temperature causes reduction of anthocyanin biosynthesis in both potato tuber skin and flesh, with white areas forming between the vasculature and periderm. Heat stress reduced the expression of the R2R3 MYB transcription factors (TFs) StAN1 and StbHLH1, members of the transcriptional complex responsible for coordinated regulation of the skin and flesh pigmentation, as well as anthocyanin biosynthetic pathway genes in white regions. However, the core phenylpropanoid pathway, lignin, and chlorogenic acid (CGA) pathway genes were up-regulated in white areas, suggesting that suppression of the anthocyanin branch may result in re-routing phenylpropanoid flux into the CGA or lignin biosynthesis branches. Two R2R3 MYB TFs, StMYB44-1 and StMYB44-2, were highly expressed in white regions under high temperature. In transient assays, StMYB44 represses anthocyanin accumulation in leaves of Nicotiana tabacum and N. benthamiana by directly suppressing the activity of the dihydroflavonol reductase (DFR) promoter. StMYB44-1 showed stronger repressive capacity than StMYB44-2, with both predicted proteins containing the repression-associated EAR motif with some variation. StMYB44-1 conferred repression without a requirement for a basic helix-loop-helix (bHLH) partner, suggesting a different repression mechanism from that of reported anthocyanin repressors. We propose that temperature-induced reduction of anthocyanin accumulation in potato flesh is caused by down-regulation of the activating anthocyanin regulatory complex, by enhancing the expression of flesh-specific StMYB44 and alteration of phenylpropanoid flux.


Assuntos
Tubérculos/metabolismo , Solanum tuberosum/metabolismo , Oxirredutases do Álcool/metabolismo , Antocianinas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Tubérculos/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Temperatura , Nicotiana/genética , Nicotiana/metabolismo
14.
Plant J ; 91(2): 292-305, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28380280

RESUMO

Fruit accumulate a diverse set of volatiles including esters and phenylpropenes. Volatile esters are synthesised via fatty acid degradation or from amino acid precursors, with the final step being catalysed by alcohol acyl transferases (AATs). Phenylpropenes are produced as a side branch of the general phenylpropanoid pathway. Major quantitative trait loci (QTLs) on apple (Malus × domestica) linkage group (LG)2 for production of the phenylpropene estragole and volatile esters (including 2-methylbutyl acetate and hexyl acetate) both co-located with the MdAAT1 gene. MdAAT1 has previously been shown to be required for volatile ester production in apple (Plant J., 2014, https://doi.org/10.1111/tpj.12518), and here we show it is also required to produce p-hydroxycinnamyl acetates that serve as substrates for a bifunctional chavicol/eugenol synthase (MdoPhR5) in ripe apple fruit. Fruit from transgenic 'Royal Gala' MdAAT1 knockdown lines produced significantly reduced phenylpropene levels, whilst manipulation of the phenylpropanoid pathway using MdCHS (chalcone synthase) knockout and MdMYB10 over-expression lines increased phenylpropene production. Transient expression of MdAAT1, MdoPhR5 and MdoOMT1 (O-methyltransferase) genes reconstituted the apple pathway to estragole production in tobacco. AATs from ripe strawberry (SAAT1) and tomato (SlAAT1) fruit can also utilise p-coumaryl and coniferyl alcohols, indicating that ripening-related AATs are likely to link volatile ester and phenylpropene production in many different fruit.


Assuntos
Anisóis/metabolismo , Malus/metabolismo , Proteínas/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Derivados de Alilbenzenos , Ésteres/metabolismo , Fragaria/genética , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Solanum lycopersicum/genética , Malus/genética , Redes e Vias Metabólicas , Fenóis/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteínas/genética , Locos de Características Quantitativas , Nicotiana/metabolismo
15.
Plant Cell Environ ; 41(3): 675-688, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29315644

RESUMO

Ultraviolet-B light (UV-B) is one environmental signal perceived by plants that affects the flavonoid pathway and influences the levels of anthocyanins, flavonols, and proanthocyanidins. To understand the mechanisms underlying UV exposure, apple trees were grown under spectral filters that altered transmission of solar UV light. Fruit analysis showed that UV induced changes in physiology, metabolism, and gene expression levels during development over a season. These changes were sustained after storage. Under low UV, ripening was delayed, fruit size decreased, and anthocyanin and flavonols were reduced. Expression analysis showed changes in response to UV light levels for genes in the regulation and biosynthesis of anthocyanin and flavonols. Transcription of flavonol synthase (FLS), ELONGATED HYPOCOTYL 5 (HY5), MYB10, and MYB22 were down-regulated throughout fruit development under reduced UV. Functional testing showed that the FLS promoter was activated by HY5, and this response was enhanced by the presence of MYB22. The MYB22 promoter can also be activated by the anthocyanin regulator, MYB10. As ambient levels of UV light vary around the globe, this study has implications for future crop production, the quality of which can be determined by the response to UV.


Assuntos
Flavonoides/metabolismo , Frutas/metabolismo , Malus/metabolismo , Proteínas de Plantas/genética , Antocianinas/metabolismo , Flavonoides/genética , Flavonóis/metabolismo , Armazenamento de Alimentos , Frutas/fisiologia , Regulação da Expressão Gênica de Plantas , Malus/genética , Oxirredutases/genética , Oxirredutases/metabolismo , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Metabolismo Secundário , Luz Solar , Raios Ultravioleta
16.
Plant J ; 82(1): 105-21, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25688923

RESUMO

Anthocyanin pigmentation is an important consumer trait in peach (Prunus persica). In this study, the genetic basis of the blood-flesh trait was investigated using the cultivar Dahongpao, which shows high levels of cyanidin-3-glucoside in the mesocarp. Elevation of anthocyanin levels in the flesh was correlated with the expression of an R2R3 MYB transcription factor, PpMYB10.1. However, PpMYB10.1 did not co-segregate with the blood-flesh trait. The blood-flesh trait was mapped to a 200-kb interval on peach linkage group (LG) 5. Within this interval, a gene encoding a NAC domain transcription factor (TF) was found to be highly up-regulated in blood-fleshed peaches when compared with non-red-fleshed peaches. This NAC TF, designated blood (BL), acts as a heterodimer with PpNAC1 which shows high levels of expression in fruit at late developmental stages. We show that the heterodimer of BL and PpNAC1 can activate the transcription of PpMYB10.1, resulting in anthocyanin pigmentation in tobacco. Furthermore, silencing the BL gene reduces anthocyanin pigmentation in blood-fleshed peaches. The transactivation activity of the BL-PpNAC1 heterodimer is repressed by a SQUAMOSA promoter-binding protein-like TF, PpSPL1. Low levels of PpMYB10.1 expression in fruit at early developmental stages is probably attributable to lower levels of expression of PpNAC1 plus the presence of high levels of repressors such as PpSPL1. We present a mechanism whereby BL is the key gene for the blood-flesh trait in peach via its activation of PpMYB10.1 in maturing fruit. Partner TFs such as basic helix-loop-helix proteins and NAC1 are required, as is the removal of transcriptional repressors.


Assuntos
Antocianinas/metabolismo , Regulação da Expressão Gênica de Plantas , Glucosídeos/metabolismo , Prunus persica/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Mapeamento Cromossômico , Frutas/genética , Frutas/metabolismo , Fenótipo , Pigmentação , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Prunus persica/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma , Técnicas do Sistema de Duplo-Híbrido
17.
J Exp Bot ; 67(8): 2159-76, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26884602

RESUMO

In potato (Solanum tuberosum L.), R2R3 MYBs are involved in the regulation of anthocyanin biosynthesis. We examined sequences of these MYBs in cultivated potatoes, which are more complex than diploid potato due to ploidy and heterozygosity. We found amino acid variants in the C-terminus of the MYB StAN1, termed R0, R1, and R3, due to the presence of a repeated 10-amino acid motif. These variant MYBs showed some expression in both white and pigmented tubers. We found several new alleles or gene family members of R2R3 MYBs,StMYBA1 and StMYB113, which were also expressed in white potato tubers. From functional analysis in tobacco, we showed that the presence of a C-terminal 10-amino acid motif is optimal for activating anthocyanin accumulation. Engineering a motif back into a MYB lacking this sequence enhanced its activating ability. Versions of StMYBA1 and StMYB113 can also activate anthocyanin accumulation in tobacco leaves, with the exception of StMYB113-3, which has a partial R2R3 domain. We isolated five family members of potato StbHLH1, and one StJAF13, to test their ability to interact with MYB variants. The results showed that two alleles of StbHLH1 from white skin and red skin are non-functional, while three other StbHLH1s have different co-regulating abilities, and need to be activated by StJAF13. Combined with expression analysis in potato tuber, results suggest that StbHLH1 and StJAF13a re key co-regulators of anthocyanin biosynthesis, while the transcripts of MYB variants StAN1,StMYBA1, and StMYB113 are well expressed, even in the absence of pigmentation.


Assuntos
Antocianinas/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Solanum tuberosum/metabolismo , Sequência de Aminoácidos , Regulação da Expressão Gênica de Plantas , Genótipo , Filogenia , Pigmentação/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tubérculos/metabolismo , Plantas Geneticamente Modificadas , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Alinhamento de Sequência , Solanum tuberosum/genética , Nicotiana/genética
18.
BMC Plant Biol ; 15: 185, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26215656

RESUMO

BACKGROUND: Carotenoid compounds play essential roles in plants such as protecting the photosynthetic apparatus and in hormone signalling. Coloured carotenoids provide yellow, orange and red colour to plant tissues, as well as offering nutritional benefit to humans and animals. The enzyme phytoene synthase (PSY) catalyses the first committed step of the carotenoid biosynthetic pathway and has been associated with control of pathway flux. We characterised four PSY genes found in the apple genome to further understand their involvement in fruit carotenoid accumulation. RESULTS: The apple PSY gene family, containing six members, was predicted to have three functional members, PSY1, PSY2, and PSY4, based on translation of the predicted gene sequences and/or corresponding cDNAs. However, only PSY1 and PSY2 showed activity in a complementation assay. Protein localisation experiments revealed differential localization of the PSY proteins in chloroplasts; PSY1 and PSY2 localized to the thylakoid membranes, while PSY4 localized to plastoglobuli. Transcript levels in 'Granny Smith' and 'Royal Gala' apple cultivars showed PSY2 was most highly expressed in fruit and other vegetative tissues. We tested the transient activation of the apple PSY1 and PSY2 promoters and identified potential and differential regulation by AP2/ERF transcription factors, which suggested that the PSY genes are controlled by different transcriptional mechanisms. CONCLUSION: The first committed carotenoid pathway step in apple is controlled by MdPSY1 and MdPSY2, while MdPSY4 play little or no role in this respect. This has implications for apple breeding programmes where carotenoid enhancement is a target and would allow co-segregation with phenotypes to be tested during the development of new cultivars.


Assuntos
Carotenoides/metabolismo , Regulação da Expressão Gênica de Plantas , Geranil-Geranildifosfato Geranil-Geraniltransferase/genética , Malus/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos , Frutas/metabolismo , Geranil-Geranildifosfato Geranil-Geraniltransferase/metabolismo , Malus/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Alinhamento de Sequência
19.
Plant Cell Rep ; 34(10): 1817-23, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26113165

RESUMO

KEY MESSAGE: The Md - MYB10 R6 gene from apple is capable of self-regulating in heterologous host species and enhancing anthocyanin pigmentation, but the activity of MYB10 is dependent on endogenous protein partners. Coloured foliage due to anthocyanin pigments (bronze/red/black) is an attractive trait that is often lacking in many bedding, ornamental and horticultural plants. Apples (Malus × domestica) containing an allelic variant of the anthocyanin regulator, Md-MYB10 R6 , are highly pigmented throughout the plant, due to autoregulation by MYB10 upon its own promoter. We investigated whether Md-MYB10 R6 from apple is capable of functioning within the heterologous host Petunia hybrida to generate plants with novel pigmentation patterns. The Md-MYB10 R6 transgene (MYB10-R6 pro :MYB10:MYB10 term ) activated anthocyanin synthesis when transiently expressed in Antirrhinum rosea (dorsea) petals and petunia leaf discs. Stable transgenic petunias containing Md-MYB10 R6 lacked foliar pigmentation but had coloured flowers, complementing the an2 phenotype of 'Mitchell' petunia. The absence of foliar pigmentation was due to the failure of the Md-MYB10 R6 gene to self-activate in vegetative tissues, suggesting that additional protein partners are required for Md-MYB10 to activate target genes in this heterologous system. In petunia flowers, where endogenous components including MYB-bHLH-WDR (MBW) proteins were present, expression of the Md-MYB10 R6 promoter was initiated, allowing auto-regulation to occur and activating anthocyanin production. Md-MYB10 is capable of operating within the petunia MBW gene regulation network that controls the expression of the anthocyanin biosynthesis genes, AN1 (bHLH) and MYBx (R3-MYB repressor) in petals.


Assuntos
Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Petunia/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flores/genética , Petunia/genética
20.
BMC Plant Biol ; 14: 388, 2014 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-25551393

RESUMO

BACKGROUND: Leaf red coloration is an important characteristic in many plant species, including cultivars of ornamental peach (Prunus persica). Peach leaf color is controlled by a single Gr gene on linkage group 6, with a red allele dominant over the green allele. Here, we report the identification of a candidate gene of Gr in peach. RESULTS: The red coloration of peach leaves is due to accumulation of anthocyanin pigments, which is regulated at the transcriptional level. Based on transcriptome comparison between red- and green-colored leaves, an MYB transcription regulator PpMYB10.4 in the Gr interval was identified to regulate anthocyanin pigmentation in peach leaf. Transient expression of PpMYB10.4 in tobacco and peach leaves can induce anthocyain accumulation. Moreover, a functional MYB gene PpMYB10.2 on linkage group 3, which is homologous to PpMYB10.4, is also expressed in both red- and green-colored leaves, but plays no role in leaf red coloration. This suggests a complex mechanism underlying anthocyanin accumulation in peach leaf. In addition, PpMYB10.4 and other anthocyanin-activating MYB genes in Rosaceae responsible for anthocyanin accumulation in fruit are dated to a common ancestor about 70 million years ago (MYA). However, PpMYB10.4 has diverged from these anthocyanin-activating MYBs to generate a new gene family, which regulates anthocyanin accumulation in vegetative organs such as leaves. CONCLUSIONS: Activation of an ancient duplicated MYB gene PpMYB10.4 in the Gr interval on LG 6, which represents a novel branch of anthocyanin-activating MYB genes in Rosaceae, is able to activate leaf red coloration in peach.


Assuntos
Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Prunus/fisiologia , Fatores de Transcrição/genética , Antocianinas/biossíntese , Antocianinas/genética , Sequência de Bases , Flores/genética , Flores/fisiologia , Perfilação da Expressão Gênica , Dados de Sequência Molecular , Filogenia , Pigmentação , Folhas de Planta/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/fisiologia , Prunus/genética , Nicotiana/genética , Nicotiana/fisiologia , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa