Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Glob Antimicrob Resist ; 38: 212-215, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38945364

RESUMO

OBJECTIVES: The use of cephalosporins combined with clavulanate for the treatment of ESBL-harbouring Enterobacteriaceae has been scarcely described. We aimed to describe the effect of different concentrations of clavulanate in the MIC of cefixime and ceftibuten of ESBL-producing Escherichia coli and Klebsiella pneumoniae. METHODS: ESBL-producing E. coli and K. pneumoniae isolates were studied. Fixed concentrations of cefixime and ceftibuten (ranges of 32-0.25 and 64-0.5 ng/ml, respectively) were used. Combinations of cefixime/clavulanate and ceftibuten/clavulanate in different ratios (1:0, 1:1, 2:1, 4:1, 8:1, 16:1, 32:1) were tested. MIC were determined by broth microdilution. RESULTS: A total of 6 ESBL-producing E. coli, 6 ESBL-producing K. pneumoniae and 2 control E. coli were tested. When different quantities of clavulanate were added to cefixime and ceftibuten, greater than two-fold decreases in the MIC were observed. When testing the 1:1 cefixime/clavulanate ratio, 10/12 isolates were susceptible. When the ratios 2:1, 4:1, 8:1 and 16:1 were tested, susceptibility was noted for 9/12, 8/12, 4/12 and 5/12 isolates, respectively. Only 2/12 K. pneumoniae isolates were susceptible when the ratio 32:1 was tested. When testing ceftibuten/clavulanate, all isolates remained susceptible across all experiments. CONCLUSIONS: Clavulanic acid has a favourable effect in reducing the MIC of cefixime and ceftibuten in isolates of ESBL-producing E. coli and K. pneumoniae. Combining clavulanate with ceftibuten or cefixime could be a useful treatment strategy.

2.
Bol. méd. Hosp. Infant. Méx ; 71(1): 15-24, ene.-feb. 2014. ilus, tab
Artigo em Inglês | LILACS | ID: lil-728504

RESUMO

Background: Klebsiella pneumoniae is considered an opportunistic pathogen associated with nosocomial infections occurring mainly in pediatric patients, such as premature infants placed in intensive care units. The aim of this study was to characterize K. pneumoniae strains isolated from different clinical sources based on their resistance to antibiotics and the presence of virulence factors associated with their persistence in the hospital environment. Methods: Fifty clinical strains of K. pneumoniae isolated from urine, blood, catheters, and cerebrospinal fluid sources were characterized. Susceptibility testing of antibiotics was performed by the Kirby-Bauer method (Clinical Laboratory Standards Institute, 2010). The ability to form a biofilm was determined by the 96-well microplate method. Capsule and fimbrial structures were visualized by transmission electron microscopy (TEM). Adherence was evaluated on A549 and HT29 cells. Assessment for the presence and expression of the ecpA, fimH, and mrkA genes was performed by PCR and RT-PCR. Results: Clinical strains of K. pneumoniae were isolated from 48% of urine, 24% of blood, 18% of catheters, and 10% of cerebrospinal fluid. Ninety-two percent of the strains showed resistance to cefpodoxime, whereas few strains showed resistance to imipenem and meropenem (4 and 2%, respectively). The extended spectrum-type beta-lactamase (ESBL) phenotype was identified in 97% of the strains positive for resistance to third-generation cephalosporins. In addition, 88% of the strains were multidrug resistant. All strains were able to form biofilms. Capsule and fimbirial structures were visualized by TEM. Based on our adhesion assays, the A549 cell line was more permissive to K. pneumoniae strains than the HT-29 cell line. K. pneumoniae strains amplified and expressed ecpA (100/70%), fimH (98/2%), and mrkA (84/48%) genes, respectively. Conclusion: The K. pneumoniae strains exhibited features that allowed them to survive in the hospital environment (formation of biofilm) and resist antimicrobial therapy (multidrug resistant MDR strains). These strains also possessed a capsule, adhesive properties, and expression of genes encoding colonization factors that favor the selection and persistence of these strains in hospitals.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa