Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
AAPS PharmSciTech ; 25(2): 28, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302687

RESUMO

Cyclosporine A (CsA) is a cyclic peptide immunosuppressant drug that is beneficial in the treatment of various ocular diseases. However, its ocular bioavailability in the posterior eye is limited due to its poor aqueous solubility. Conventional CsA formulations such as a solution or emulsion permeate poorly across the eye due to various static and dynamic barriers of the eye. Dissolvable microneedle (MN)-based patches can be used to overcome barrier properties and, thus, enhance the ocular bioavailability of CsA in the posterior eye. CsA-loaded dissolvable MN patches were fabricated using polyvinylpyrrolidone (PVP) and characterized for MN uniformity and sharpness using SEM. Further characterization for its failure force, penetration force, and depth of penetration were analyzed using a texture analyzer. Finally, the dissolution time, ex vivo permeation, and ocular distribution of cyclosporine were determined in isolated porcine eyes. PVP MNs were sharp, uniform with good mechanical properties, and dissolved within 5 min. Ocular distribution of CsA in a whole porcine eye perfusion model showed a significant increase of CsA levels in various posterior segment ocular tissues as compared to a topically applied ophthalmic emulsion (Restasis®) (P < 0.001). Dissolving MNs of CsA were prepared, and the MN arrays can deliver CsA to the back of the eye offering potential for treating various inflammatory diseases.


Assuntos
Ciclosporina , Olho , Animais , Suínos , Emulsões , Imunossupressores , Sistemas de Liberação de Medicamentos
2.
AAPS PharmSciTech ; 24(7): 200, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37783858

RESUMO

Diet-induced obesity and hyperlipidemia are a growing public health concern leading to various metabolic disorders. Capsaicin, a major bioactive compound obtained from natural chili peppers, has demonstrated its numerous beneficial roles in treating obesity and weight loss. Current treatment involves either administration of antiobesity drugs or surgical procedures such as Roux-en-Y-gastric bypass or sleeve gastrectomy, both of which are associated with serious side effects and poor patient acceptance. Capsaicin, a pungent molecule, has low oral bioavailability. Therefore, there is a need for the development of site-specific drug delivery system for capsaicin. The present study is aimed at preparing and characterizing 3D-printed capsaicin-loaded rod-shaped implants by thermoplastic extrusion-based 3D printing technology. The implants were printed with capsaicin-loaded into a biodegradable polymer, polycaprolactone, at different drug loadings and infill densities. The surface morphology revealed a smooth and uniform external surface without any capsaicin crystals. DSC thermograms showed no significant changes/exothermic events among the blends suggesting no drug polymer interactions. The in vitro release studies showed a biphasic release profile for capsaicin, and the release was sustained for more than three months (~ 85% released) irrespective of drug loading and infill densities. The HPLC method was stability-indicating and showed good resolution for its analogs, dihydrocapsaicin and nordihydrocapsaicin. The implants were stable for three months at accelerated conditions (40°C) without any significant decrease in the assay of capsaicin. Therefore, capsaicin-loaded implants can serve as a long-acting injectable formulation for targeting the adipose tissue region in obese patients.


Assuntos
Capsaicina , Obesidade , Humanos , Capsaicina/química , Obesidade/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Impressão Tridimensional , Polímeros/uso terapêutico , Liberação Controlada de Fármacos
3.
Int J Mol Sci ; 23(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36430965

RESUMO

Hispolon, a phenolic pigment isolated from the mushroom species Phellinus linteus, has been investigated for anti-inflammatory, antioxidant, and anticancer properties; however, low solubility and poor bioavailability have limited its potential clinical translation. In this study, the inclusion complex of hispolon with Sulfobutylether-ß-cyclodextrin (SBEßCD) was characterized, and the Hispolon-SBEßCD Complex (HSC) was included within the sterically stabilized liposomes (SL) to further investigate its anticancer activity against melanoma cell lines. The HSC-trapped-Liposome (HSC-SL) formulation was investigated for its sustained drug delivery and enhanced cytotoxicity. The inclusion complex in the solid=state was confirmed by a Job's plot analysis, molecular modeling, differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), Proton nuclear magnetic resonance (NMR) spectroscopy, and scanning electron microscopy (SEM). The HSC-SL showed no appreciable deviation in size (<150 nm) and polydispersity index (<0.2) and improved drug encapsulation efficiency (>90%) as compared to control hispolon liposomes. Individually incorporated hispolon and SBEßCD in the liposomes (H-CD-SL) was not significant in loading the drug in the liposomes, compared to HSC-SL, as a substantial amount of free drug was separated during dialysis. The HSC-SL formulation showed a sustained release compared to hispolon liposomes (H-SLs) and Hispolon-SBEßCD liposomes (H-CD-SLs). The anticancer activity on melanoma cell lines (B16BL6) of HSC and HSC-SL was higher than in H-CD-SL and hispolon solution. These findings suggest that HSC inclusion in the HSC-SL liposomes stands out as a potential formulation approach for enhancing drug loading, encapsulation, and chemotherapeutic efficiency of hispolon and similar water insoluble drug molecules.


Assuntos
Ciclodextrinas , Melanoma , Humanos , Lipossomos/química , Diálise Renal , Linhagem Celular Tumoral , Melanoma/tratamento farmacológico
4.
AAPS PharmSciTech ; 23(8): 305, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36401127

RESUMO

Acyclovir a widely used drug in the treatment of herpes simplex virus (HSV) infections and lidocaine a local anesthetic were combined in a topical gel formulation. The topical gel with Transcutol P (TP) or N-methyl 2-pyrrolidone (NMP) was prepared and tested for in vitro skin permeation across the intact and microneedle-treated human cadaver skin. The topical gels containing 5% each of acyclovir and lidocaine showed optimal pH, spreadability, and 100% drug release. The transdermal flux and skin retention of the gels were significantly higher compared to Generic 5% acyclovir ointment (Zovirax) (p < 0.001), and 5% lidocaine gel (numb gel) (p < 0.05). As expected, topical gels showed a very high increase in the skin permeation across microporated skin versus intact skin. In viral infections, skin is inflamed, and barrier integrity may be disrupted. The results of the present study are significant because the co-delivery formulation showed a very high increase in the skin permeation across intact and microporated skin (versus respective commercial formulations). The results of this study demonstrate enhanced co-delivery of acyclovir and lidocaine in a topical formulation across skin (intact or barrier compromised) for the treatment of herpes virus infections.


Assuntos
Aciclovir , Lidocaína , Humanos , Pele , Administração Cutânea , Géis
5.
Sensors (Basel) ; 16(9)2016 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-27618901

RESUMO

As new markets, technologies and economies evolve in the low carbon bioeconomy, forest logging residue, a largely untapped renewable resource will play a vital role. The feedstock can however be variable depending on plant species and plant part component. This heterogeneity can influence the physical, chemical and thermochemical properties of the material, and thus the final yield and quality of products. Although it is challenging to control compositional variability of a batch of feedstock, it is feasible to monitor this heterogeneity and make the necessary changes in process parameters. Such a system will be a first step towards optimization, quality assurance and cost-effectiveness of processes in the emerging biofuel/chemical industry. The objective of this study was therefore to qualitatively classify forest logging residue made up of different plant parts using both near infrared spectroscopy (NIRS) and Fourier transform infrared spectroscopy (FTIRS) together with linear discriminant analysis (LDA). Forest logging residue harvested from several Pinus taeda (loblolly pine) plantations in Alabama, USA, were classified into three plant part components: clean wood, wood and bark and slash (i.e., limbs and foliage). Five-fold cross-validated linear discriminant functions had classification accuracies of over 96% for both NIRS and FTIRS based models. An extra factor/principal component (PC) was however needed to achieve this in FTIRS modeling. Analysis of factor loadings of both NIR and FTIR spectra showed that, the statistically different amount of cellulose in the three plant part components of logging residue contributed to their initial separation. This study demonstrated that NIR or FTIR spectroscopy coupled with PCA and LDA has the potential to be used as a high throughput tool in classifying the plant part makeup of a batch of forest logging residue feedstock. Thus, NIR/FTIR could be employed as a tool to rapidly probe/monitor the variability of forest biomass so that the appropriate online adjustments to parameters can be made in time to ensure process optimization and product quality.


Assuntos
Análise Discriminante , Florestas , Plantas/anatomia & histologia , Análise de Componente Principal , Reprodutibilidade dos Testes , Espectroscopia de Infravermelho com Transformada de Fourier , Espectroscopia de Luz Próxima ao Infravermelho
6.
Bioengineering (Basel) ; 11(3)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38534533

RESUMO

Despite rapid progress in tissue engineering, the repair and regeneration of bone defects remains challenging, especially for non-homogenous and complicated defects. We have developed and characterized biodegradable drug-eluting scaffolds for bone regeneration utilizing direct powder extrusion-based three-dimensional (3D) printing techniques. The PLGA scaffolds were fabricated using poly (lactic-co-glycolic acid) (PLGA) with inherent viscosities of 0.2 dl/g and 0.4 dl/g and ketoprofen. The effect of parameters such as the infill, geometry, and wall thickness of the drug carrier on the release kinetics of ketoprofen was studied. The release studies revealed that infill density significantly impacts the release performance, where 10% infill showed faster and almost complete release of the drug, whereas 50% infill demonstrated a sustained release. The Korsmeyer-Peppas model showed the best fit for release data irrespective of the PLGA molecular weight and infill density. It was demonstrated that printing parameters such as infill density, scaffold wall thickness, and geometry played an important role in controlling the release and, therefore, in designing customized drug-eluting scaffolds for bone regeneration.

7.
J Ocul Pharmacol Ther ; 38(6): 449-458, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35167767

RESUMO

Purpose: Difluprednate ophthalmic emulsion (Durezol®) is currently used for the treatment of anterior uveitis; however, recent studies have shown that difluprednate can treat posterior eye conditions. Topical formulations limit the amount of drug capable of permeating to the posterior segment due to permeation barriers, lacrimation, and lymphatic clearance. Methods: Resomer®-based microneedle patches were fabricated for difluprednate using poly(acrylic acid) (PAA) for the rapidly dissolvable backing. The patches were analyzed for microneedle uniformity and sharpness using scanning electron microscopy, and the penetration depth was analyzed by confocal microscopy. Failure force necessary to break the microneedles and force needed to penetrate the sclera were analyzed by the texture analyzer. Difluprednate release and trans-scleral permeation studies on microneedles were performed using Franz diffusion cells. Results: The microneedles were uniform, sharp, and penetrated to 500 µm depth on sclera. The microneedles have a failure force proportional to the molecular weight (MW) of the polymer used. There was no correlation between failure force and the penetration force of the microneedles. The PAA backing dissolved within 30-40 min, while release studies showed a matrix diffusion-controlled release over the 7-day study. The amount of drug permeation and retention in the sclera were decreased with an increase in the MW of the Resomer and failure force of each array. Conclusions: Resomer-based microneedles have a potential application for the sustained release of difluprednate for posterior segment conditions.


Assuntos
Fluprednisolona , Administração Cutânea , Preparações de Ação Retardada , Sistemas de Liberação de Medicamentos , Fluprednisolona/análogos & derivados , Agulhas , Pele
8.
AAPS PharmSciTech ; 10(1): 81-7, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19148759

RESUMO

Efavirenz (EFV) is an oral antihuman immunodeficiency virus type 1 drug with extremely poor aqueous solubility. Thus, its gastrointestinal absorption is limited by the dissolution rate of the drug. The objective of this study was to characterize the inclusion complexes of EFV with beta-cyclodextrin (beta-CD), hydroxypropyl beta-CD (HPbetaCD), and randomly methylated beta-CD (RMbetaCD) to improve the solubility and dissolution of EFV. The inclusion complexation of EFV with cyclodextrins in the liquid state was characterized by phase solubility studies. The solid-state characterization of various EFV and CD systems was performed by X-ray diffraction, differential scanning calorimetry, and scanning electron microscopy analyses. Dissolution studies were carried out in distilled water using US Pharmacopeia dissolution rate testing equipment. Phase solubility studies provided an A(L)-type solubility diagram for beta-CD and A(P)-type solubility diagram for HPbetaCD and RMbetaCD. The phase solubility data enabled calculating stability constants (K (s)) for EFV-betaCD, EFV-HPbetaCD, and EFV-RMbetaCD systems which were 288, 469, and 1,073 M(-1), respectively. The physical and kneaded mixtures of EFV with CDs generally provided higher dissolution of EFV as expected. The dissolution of EFV was substantially higher with HPbetaCD and RMbetaCD inclusion complexes prepared by the freeze drying method. Thus, complexation with HPbetaCD and RMbetaCD could possibly improve the dissolution rate-limited absorption of EFV.


Assuntos
Benzoxazinas/química , Portadores de Fármacos , Inibidores da Protease de HIV/química , beta-Ciclodextrinas/química , 2-Hidroxipropil-beta-Ciclodextrina , Alcinos , Varredura Diferencial de Calorimetria , Química Farmacêutica , Cristalografia por Raios X , Ciclopropanos , Composição de Medicamentos , Estabilidade de Medicamentos , Liofilização , Cinética , Microscopia Eletrônica de Varredura , Solubilidade , Tecnologia Farmacêutica/métodos
9.
PLoS One ; 12(3): e0172999, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28253322

RESUMO

The objective of this study was to investigated the use of chemometric modeling of thermogravimetric (TG) data as an alternative approach to estimate the chemical and proximate (i.e. volatile matter, fixed carbon and ash contents) composition of lignocellulosic biomass. Since these properties affect the conversion pathway, processing costs, yield and / or quality of products, a capability to rapidly determine these for biomass feedstock entering the process stream will be useful in the success and efficiency of bioconversion technologies. The 38-minute long methodology developed in this study enabled the simultaneous prediction of both the chemical and proximate properties of forest-derived biomass from the same TG data. Conventionally, two separate experiments had to be conducted to obtain such information. In addition, the chemometric models constructed with normalized TG data outperformed models developed via the traditional deconvolution of TG data. PLS and PCR models were especially robust in predicting the volatile matter (R2-0.92; RPD- 3.58) and lignin (R2-0.82; RPD- 2.40) contents of the biomass. The application of chemometrics to TG data also made it possible to predict some monomeric sugars in this study. Elucidation of PC loadings obtained from chemometric models also provided some insights into the thermal decomposition behavior of the chemical constituents of lignocellulosic biomass. For instance, similar loadings were noted for volatile matter and cellulose, and for fixed carbon and lignin. The findings indicate that common latent variables are shared between these chemical and thermal reactivity properties. Results from this study buttresses literature that have reported that the less thermally stable polysaccharides are responsible for the yield of volatiles whereas the more recalcitrant lignin with its higher percentage of elementary carbon contributes to the yield of fixed carbon.


Assuntos
Biomassa , Florestas , Termogravimetria , Cinética , Lignina/química
10.
J Anal Methods Chem ; 2016: 1839598, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28003929

RESUMO

Fourier transform infrared reflectance (FTIR) spectroscopy has been used to predict properties of forest logging residue, a very heterogeneous feedstock material. Properties studied included the chemical composition, thermal reactivity, and energy content. The ability to rapidly determine these properties is vital in the optimization of conversion technologies for the successful commercialization of biobased products. Partial least squares regression of first derivative treated FTIR spectra had good correlations with the conventionally measured properties. For the chemical composition, constructed models generally did a better job of predicting the extractives and lignin content than the carbohydrates. In predicting the thermochemical properties, models for volatile matter and fixed carbon performed very well (i.e., R2 > 0.80, RPD > 2.0). The effect of reducing the wavenumber range to the fingerprint region for PLS modeling and the relationship between the chemical composition and higher heating value of logging residue were also explored. This study is new and different in that it is the first to use FTIR spectroscopy to quantitatively analyze forest logging residue, an abundant resource that can be used as a feedstock in the emerging low carbon economy. Furthermore, it provides a complete and systematic characterization of this heterogeneous raw material.

11.
Carbohydr Polym ; 121: 336-41, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25659707

RESUMO

This study used Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and Fourier transform near-infrared (FT-NIR) spectroscopy with principal component regression (PCR) and partial least squares regression (PLS) to build hardwood prediction models. Wet chemistry analysis coupled with high performance liquid chromatography (HPLC) was employed to obtain the chemical composition of these samples. Spectra loadings were studied to identify key wavenumber in the prediction of chemical composition. NIR-PLS and FTIR-PLS performed the best for extractives, lignin and xylose, whose residual predictive deviation (RPD) values were all over 3 and indicates the potential for either instrument to provide superior prediction models with NIR performing slightly better. During testing, it was found that more accurate determination of holocellulose content was possible when HPLC was used. Independent chemometric models, for FT-NIR and ATR-FTIR, identified similar functional groups responsible for the prediction of chemical composition and suggested that coupling the two techniques could strengthen interpretation and prediction.

12.
Bioresour Technol ; 101(21): 8389-95, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20558057

RESUMO

A fast pyrolysis process produces a high yield of liquid (a.k.a. bio-oil) and has gained a lot of interest among various stakeholders. Nonetheless, some of the properties inherent by the bio-oil create significant challenges for its wider applications. Quality of the bio-oil and its yield are highly dependent on process parameters, such as temperature, feedstock, moisture content and residence time. In this study, the effect of temperature on bio-oil quality and its yield were examined using pine wood, an abundant biomass source in the southeastern part of the United States. Physical properties of bio-oil such as pH, water content, higher heating value, solid content and ash were analyzed and compared with a recently published ASTM standard. Bio-oil produced from pine wood using an auger reactor met specifications suggested by the ASTM standard. Thirty-two chemical compounds were analyzed. The study found that the concentration of phenol and its derivatives increased with the increase in pyrolysis temperature whereas the concentration of guaiacol and its derivatives decreased as the temperature increased. Concentration of acetic and other acids remained almost constant or increased with the increase in temperature although the pH value of the bio-oil decreased with the increase in temperature.


Assuntos
Biocombustíveis/análise , Reatores Biológicos , Pinus/química , Temperatura , Madeira/química , Biomassa , Viscosidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa