Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(2): e2212931120, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36598939

RESUMO

The nonstructural protein 3 (NSP3) of the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) contains a conserved macrodomain enzyme (Mac1) that is critical for pathogenesis and lethality. While small-molecule inhibitors of Mac1 have great therapeutic potential, at the outset of the COVID-19 pandemic, there were no well-validated inhibitors for this protein nor, indeed, the macrodomain enzyme family, making this target a pharmacological orphan. Here, we report the structure-based discovery and development of several different chemical scaffolds exhibiting low- to sub-micromolar affinity for Mac1 through iterations of computer-aided design, structural characterization by ultra-high-resolution protein crystallography, and binding evaluation. Potent scaffolds were designed with in silico fragment linkage and by ultra-large library docking of over 450 million molecules. Both techniques leverage the computational exploration of tangible chemical space and are applicable to other pharmacological orphans. Overall, 160 ligands in 119 different scaffolds were discovered, and 153 Mac1-ligand complex crystal structures were determined, typically to 1 Å resolution or better. Our analyses discovered selective and cell-permeable molecules, unexpected ligand-mediated conformational changes within the active site, and key inhibitor motifs that will template future drug development against Mac1.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Cristalografia , Pandemias , Ligantes , Simulação de Acoplamento Molecular , Inibidores de Proteases/farmacologia , Antivirais/farmacologia , Antivirais/química
2.
Am J Hum Genet ; 108(6): 1083-1094, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34022131

RESUMO

Clinical genetic testing of protein-coding regions identifies a likely causative variant in only around half of developmental disorder (DD) cases. The contribution of regulatory variation in non-coding regions to rare disease, including DD, remains very poorly understood. We screened 9,858 probands from the Deciphering Developmental Disorders (DDD) study for de novo mutations in the 5' untranslated regions (5' UTRs) of genes within which variants have previously been shown to cause DD through a dominant haploinsufficient mechanism. We identified four single-nucleotide variants and two copy-number variants upstream of MEF2C in a total of ten individual probands. We developed multiple bespoke and orthogonal experimental approaches to demonstrate that these variants cause DD through three distinct loss-of-function mechanisms, disrupting transcription, translation, and/or protein function. These non-coding region variants represent 23% of likely diagnoses identified in MEF2C in the DDD cohort, but these would all be missed in standard clinical genetics approaches. Nonetheless, these variants are readily detectable in exome sequence data, with 30.7% of 5' UTR bases across all genes well covered in the DDD dataset. Our analyses show that non-coding variants upstream of genes within which coding variants are known to cause DD are an important cause of severe disease and demonstrate that analyzing 5' UTRs can increase diagnostic yield. We also show how non-coding variants can help inform both the disease-causing mechanism underlying protein-coding variants and dosage tolerance of the gene.


Assuntos
Regiões 5' não Traduzidas , Deficiências do Desenvolvimento/etiologia , Predisposição Genética para Doença , Mutação com Perda de Função , Criança , Estudos de Coortes , Variações do Número de Cópias de DNA , Deficiências do Desenvolvimento/patologia , Humanos , Fatores de Transcrição MEF2/genética , Sequenciamento do Exoma
3.
Am J Hum Genet ; 108(6): 1115-1125, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34010605

RESUMO

Importin 8, encoded by IPO8, is a ubiquitously expressed member of the importin-ß protein family that translocates cargo molecules such as proteins, RNAs, and ribonucleoprotein complexes into the nucleus in a RanGTP-dependent manner. Current knowledge of the cargoes of importin 8 is limited, but TGF-ß signaling components such as SMAD1-4 have been suggested to be among them. Here, we report that bi-allelic loss-of-function variants in IPO8 cause a syndromic form of thoracic aortic aneurysm (TAA) with clinical overlap with Loeys-Dietz and Shprintzen-Goldberg syndromes. Seven individuals from six unrelated families showed a consistent phenotype with early-onset TAA, motor developmental delay, connective tissue findings, and craniofacial dysmorphic features. A C57BL/6N Ipo8 knockout mouse model recapitulates TAA development from 8-12 weeks onward in both sexes but most prominently shows ascending aorta dilatation with a propensity for dissection in males. Compliance assays suggest augmented passive stiffness of the ascending aorta in male Ipo8-/- mice throughout life. Immunohistological investigation of mutant aortic walls reveals elastic fiber disorganization and fragmentation along with a signature of increased TGF-ß signaling, as evidenced by nuclear pSmad2 accumulation. RT-qPCR assays of the aortic wall in male Ipo8-/- mice demonstrate decreased Smad6/7 and increased Mmp2 and Ccn2 (Ctgf) expression, reinforcing a role for dysregulation of the TGF-ß signaling pathway in TAA development. Because importin 8 is the most downstream TGF-ß-related effector implicated in TAA pathogenesis so far, it offers opportunities for future mechanistic studies and represents a candidate drug target for TAA.


Assuntos
Aneurisma da Aorta Torácica/etiologia , Mutação com Perda de Função , Perda de Heterozigosidade , Fenótipo , beta Carioferinas/genética , Adulto , Animais , Aneurisma da Aorta Torácica/metabolismo , Aneurisma da Aorta Torácica/patologia , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Linhagem , Transdução de Sinais , Síndrome , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Adulto Jovem , beta Carioferinas/metabolismo
4.
Genet Med ; 25(1): 135-142, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36399134

RESUMO

PURPOSE: Protein arginine methyltransferase 7 (PRMT7) is a member of a family of enzymes that catalyzes the methylation of arginine residues on several protein substrates. Biallelic pathogenic PRMT7 variants have previously been associated with a syndromic neurodevelopmental disorder characterized by short stature, brachydactyly, intellectual developmental disability, and seizures. To our knowledge, no comprehensive study describes the detailed clinical characteristics of this syndrome. Thus, we aim to delineate the phenotypic spectrum of PRMT7-related disorder. METHODS: We assembled a cohort of 51 affected individuals from 39 different families, gathering clinical information from 36 newly described affected individuals and reviewing data of 15 individuals from the literature. RESULTS: The main clinical characteristics of the PRMT7-related syndrome are short stature, mild to severe developmental delay/intellectual disability, hypotonia, brachydactyly, and distinct facial morphology, including bifrontal narrowing, prominent supraorbital ridges, sparse eyebrows, short nose with full/broad nasal tip, thin upper lip, full and everted lower lip, and a prominent or squared-off jaw. Additional variable findings include seizures, obesity, nonspecific magnetic resonance imaging abnormalities, eye abnormalities (i.e., strabismus or nystagmus), and hearing loss. CONCLUSION: This study further delineates and expands the molecular, phenotypic spectrum and natural history of PRMT7-related syndrome characterized by a neurodevelopmental disorder with skeletal, growth, and endocrine abnormalities.


Assuntos
Braquidactilia , Nanismo , Deficiência Intelectual , Anormalidades Musculoesqueléticas , Transtornos do Neurodesenvolvimento , Humanos , Transtornos do Neurodesenvolvimento/genética , Deficiência Intelectual/genética , Nanismo/genética , Obesidade/genética , Fenótipo , Proteína-Arginina N-Metiltransferases/genética
5.
Brain ; 145(3): 909-924, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-34605855

RESUMO

The solute carrier (SLC) superfamily encompasses >400 transmembrane transporters involved in the exchange of amino acids, nutrients, ions, metals, neurotransmitters and metabolites across biological membranes. SLCs are highly expressed in the mammalian brain; defects in nearly 100 unique SLC-encoding genes (OMIM: https://www.omim.org) are associated with rare Mendelian disorders including developmental and epileptic encephalopathy and severe neurodevelopmental disorders. Exome sequencing and family-based rare variant analyses on a cohort with neurodevelopmental disorders identified two siblings with developmental and epileptic encephalopathy and a shared deleterious homozygous splicing variant in SLC38A3. The gene encodes SNAT3, a sodium-coupled neutral amino acid transporter and a principal transporter of the amino acids asparagine, histidine, and glutamine, the latter being the precursor for the neurotransmitters GABA and glutamate. Additional subjects with a similar developmental and epileptic encephalopathy phenotype and biallelic predicted-damaging SLC38A3 variants were ascertained through GeneMatcher and collaborations with research and clinical molecular diagnostic laboratories. Untargeted metabolomic analysis was performed to identify novel metabolic biomarkers. Ten individuals from seven unrelated families from six different countries with deleterious biallelic variants in SLC38A3 were identified. Global developmental delay, intellectual disability, hypotonia, and absent speech were common features while microcephaly, epilepsy, and visual impairment were present in the majority. Epilepsy was drug-resistant in half. Metabolomic analysis revealed perturbations of glutamate, histidine, and nitrogen metabolism in plasma, urine, and CSF of selected subjects, potentially representing biomarkers of disease. Our data support the contention that SLC38A3 is a novel disease gene for developmental and epileptic encephalopathy and illuminate the likely pathophysiology of the disease as perturbations in glutamine homeostasis.


Assuntos
Epilepsia Generalizada , Trocador de Sódio e Cálcio , Epilepsia Generalizada/diagnóstico , Epilepsia Generalizada/genética , Glutamina/metabolismo , Histidina/metabolismo , Humanos , Metaboloma , Nitrogênio/metabolismo , Trocador de Sódio e Cálcio/genética
6.
J Med Genet ; 59(5): 511-516, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34183358

RESUMO

PURPOSE: Binding proteins (G-proteins) mediate signalling pathways involved in diverse cellular functions and comprise Gα and Gßγ units. Human diseases have been reported for all five Gß proteins. A de novo missense variant in GNB2 was recently reported in one individual with developmental delay/intellectual disability (DD/ID) and dysmorphism. We aim to confirm GNB2 as a neurodevelopmental disease gene, and elucidate the GNB2-associated neurodevelopmental phenotype in a patient cohort. METHODS: We discovered a GNB2 variant in the index case via exome sequencing and sought individuals with GNB2 variants via international data-sharing initiatives. In silico modelling of the variants was assessed, along with multiple lines of evidence in keeping with American College of Medical Genetics and Genomics guidelines for interpretation of sequence variants. RESULTS: We identified 12 unrelated individuals with five de novo missense variants in GNB2, four of which are recurrent: p.(Ala73Thr), p.(Gly77Arg), p.(Lys89Glu) and p.(Lys89Thr). All individuals have DD/ID with variable dysmorphism and extraneurologic features. The variants are located at the universally conserved shared interface with the Gα subunit, which modelling suggests weaken this interaction. CONCLUSION: Missense variants in GNB2 cause a congenital neurodevelopmental disorder with variable syndromic features, broadening the spectrum of multisystem phenotypes associated with variants in genes encoding G-proteins.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Proteínas de Ligação ao GTP/genética , Humanos , Deficiência Intelectual/genética , Mutação de Sentido Incorreto/genética , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Sequenciamento do Exoma
7.
Brain ; 144(12): 3597-3610, 2021 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-34415310

RESUMO

Phosphatidylinositol 4-kinase IIIα (PI4KIIIα/PI4KA/OMIM:600286) is a lipid kinase generating phosphatidylinositol 4-phosphate (PI4P), a membrane phospholipid with critical roles in the physiology of multiple cell types. PI4KIIIα's role in PI4P generation requires its assembly into a heterotetrameric complex with EFR3, TTC7 and FAM126. Sequence alterations in two of these molecular partners, TTC7 (encoded by TTC7A or TCC7B) and FAM126, have been associated with a heterogeneous group of either neurological (FAM126A) or intestinal and immunological (TTC7A) conditions. Here we show that biallelic PI4KA sequence alterations in humans are associated with neurological disease, in particular hypomyelinating leukodystrophy. In addition, affected individuals may present with inflammatory bowel disease, multiple intestinal atresia and combined immunodeficiency. Our cellular, biochemical and structural modelling studies indicate that PI4KA-associated phenotypical outcomes probably stem from impairment of PI4KIIIα-TTC7-FAM126's organ-specific functions, due to defective catalytic activity or altered intra-complex functional interactions. Together, these data define PI4KA gene alteration as a cause of a variable phenotypical spectrum and provide fundamental new insight into the combinatorial biology of the PI4KIIIα-FAM126-TTC7-EFR3 molecular complex.


Assuntos
Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Atresia Intestinal/genética , Antígenos de Histocompatibilidade Menor/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Doenças da Imunodeficiência Primária/genética , Feminino , Humanos , Masculino , Linhagem , Polimorfismo de Nucleotídeo Único
8.
Brain ; 144(2): 584-600, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33559681

RESUMO

The extracellular matrix comprises a network of macromolecules such as collagens, proteoglycans and glycoproteins. VWA1 (von Willebrand factor A domain containing 1) encodes a component of the extracellular matrix that interacts with perlecan/collagen VI, appears to be involved in stabilizing extracellular matrix structures, and demonstrates high expression levels in tibial nerve. Vwa1-deficient mice manifest with abnormal peripheral nerve structure/function; however, VWA1 variants have not previously been associated with human disease. By interrogating the genome sequences of 74 180 individuals from the 100K Genomes Project in combination with international gene-matching efforts and targeted sequencing, we identified 17 individuals from 15 families with an autosomal-recessive, non-length dependent, hereditary motor neuropathy and rare biallelic variants in VWA1. A single disease-associated allele p.(G25Rfs*74), a 10-bp repeat expansion, was observed in 14/15 families and was homozygous in 10/15. Given an allele frequency in European populations approaching 1/1000, the seven unrelated homozygote individuals ascertained from the 100K Genomes Project represents a substantial enrichment above expected. Haplotype analysis identified a shared 220 kb region suggesting that this founder mutation arose >7000 years ago. A wide age-range of patients (6-83 years) helped delineate the clinical phenotype over time. The commonest disease presentation in the cohort was an early-onset (mean 2.0 ± 1.4 years) non-length-dependent axonal hereditary motor neuropathy, confirmed on electrophysiology, which will have to be differentiated from other predominantly or pure motor neuropathies and neuronopathies. Because of slow disease progression, ambulation was largely preserved. Neurophysiology, muscle histopathology, and muscle MRI findings typically revealed clear neurogenic changes with single isolated cases displaying additional myopathic process. We speculate that a few findings of myopathic changes might be secondary to chronic denervation rather than indicating an additional myopathic disease process. Duplex reverse transcription polymerase chain reaction and immunoblotting using patient fibroblasts revealed that the founder allele results in partial nonsense mediated decay and an absence of detectable protein. CRISPR and morpholino vwa1 modelling in zebrafish demonstrated reductions in motor neuron axonal growth, synaptic formation in the skeletal muscles and locomotive behaviour. In summary, we estimate that biallelic variants in VWA1 may be responsible for up to 1% of unexplained hereditary motor neuropathy cases in Europeans. The detailed clinical characterization provided here will facilitate targeted testing on suitable patient cohorts. This novel disease gene may have previously evaded detection because of high GC content, consequential low coverage and computational difficulties associated with robustly detecting repeat-expansions. Reviewing previously unsolved exomes using lower QC filters may generate further diagnoses.


Assuntos
Proteínas da Matriz Extracelular/genética , Neuropatia Hereditária Motora e Sensorial/genética , Adulto , Idoso , Animais , Comportamento Animal/fisiologia , Criança , Feminino , Neuropatia Hereditária Motora e Sensorial/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/patologia , Mutação , Linhagem , Adulto Jovem , Peixe-Zebra
9.
Bioinformatics ; 36(10): 3268-3270, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32061125

RESUMO

MOTIVATION: The sharing of macromolecular structural information online by scientists is predominantly performed via 2D static images, since the embedding of interactive 3D structures in webpages is non-trivial. Whilst the technologies to do so exist, they are often only implementable with significant web coding experience. RESULTS: Michelaɴɢʟo is an accessible and open-source web-based application that supports the generation, customization and sharing of interactive 3D macromolecular visualizations for digital media without requiring programming skills. A PyMOL file, PDB file, PDB identifier code or protein/gene name can be provided to form the basis of visualizations using the NGL JavaScript library. Hyperlinks that control the view can be added to text within the page. Protein-coding variants can be highlighted to support interpretation of their potential functional consequences. The resulting visualizations and text can be customized and shared, as well as embedded within existing websites by following instructions and using a self-contained download. Michelaɴɢʟo allows researchers to move away from static images and instead engage, describe and explain their protein to a wider audience in a more interactive fashion. AVAILABILITY AND IMPLEMENTATION: Michelaɴɢʟo is hosted at michelanglo.sgc.ox.ac.uk. The Python code is freely available at https://github.com/thesgc/MichelaNGLo, along with documentations about its implementation.


Assuntos
Internet , Software , Documentação , Substâncias Macromoleculares , Proteínas/genética
10.
Clin Genet ; 95(6): 693-703, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30859559

RESUMO

Noonan syndrome (NS) is characterised by distinctive facial features, heart defects, variable degrees of intellectual disability and other phenotypic manifestations. Although the mode of inheritance is typically dominant, recent studies indicate LZTR1 may be associated with both dominant and recessive forms. Seeking to describe the phenotypic characteristics of LZTR1-associated NS, we searched for likely pathogenic variants using two approaches. First, scrutiny of exomes from 9624 patients recruited by the Deciphering Developmental Disorders (DDDs) study uncovered six dominantly-acting mutations (p.R97L; p.Y136C; p.Y136H, p.N145I, p.S244C; p.G248R) of which five arose de novo, and three patients with compound-heterozygous variants (p.R210*/p.V579M; p.R210*/p.D531N; c.1149+1G>T/p.R688C). One patient also had biallelic loss-of-function mutations in NEB, consistent with a composite phenotype. After removing this complex case, analysis of human phenotype ontology terms indicated significant phenotypic similarities (P = 0.0005), supporting a causal role for LZTR1. Second, targeted sequencing of eight unsolved NS-like cases identified biallelic LZTR1 variants in three further subjects (p.W469*/p.Y749C, p.W437*/c.-38T>A and p.A461D/p.I462T). Our study strengthens the association of LZTR1 with NS, with de novo mutations clustering around the KT1-4 domains. Although LZTR1 variants explain ~0.1% of cases across the DDD cohort, the gene is a relatively common cause of unsolved NS cases where recessive inheritance is suspected.


Assuntos
Exoma , Síndrome de Noonan/genética , Fatores de Transcrição/genética , Adolescente , Alelos , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Ontologia Genética , Genes Dominantes , Genes Recessivos , Heterozigoto , Humanos , Lactente , Masculino , Mutação , Síndrome de Noonan/fisiopatologia , Linhagem , Fenótipo
11.
Mol Microbiol ; 105(4): 508-524, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28640457

RESUMO

The first cells probably possessed rudimentary metabolic networks, built using a handful of multifunctional enzymes. The promiscuous activities of modern enzymes are often assumed to be relics of this primordial era; however, by definition these activities are no longer physiological. There are many fewer examples of enzymes using a single active site to catalyze multiple physiologically-relevant reactions. Previously, we characterized the promiscuous alanine racemase (ALR) activity of Escherichia coli cystathionine ß-lyase (CBL). Now we have discovered that several bacteria with reduced genomes lack alr, but contain metC (encoding CBL). We characterized the CBL enzymes from three of these: Pelagibacter ubique, the Wolbachia endosymbiont of Drosophila melanogaster (wMel) and Thermotoga maritima. Each is a multifunctional CBL/ALR. However, we also show that CBL activity is no longer required in these bacteria. Instead, the wMel and T. maritima enzymes are physiologically bi-functional alanine/glutamate racemases. They are not highly active, but they are clearly sufficient. Given the abundance of the microorganisms using them, we suggest that much of the planet's biochemistry is carried out by enzymes that are quite different from the highly-active exemplars usually found in textbooks. Instead, primordial-like enzymes may be an essential part of the adaptive strategy associated with streamlining.


Assuntos
Enzimas/genética , Liases/genética , Alanina/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Escherichia coli/genética , Genoma/genética , Genoma Bacteriano/genética , Liases/metabolismo , Redes e Vias Metabólicas , Thermotoga maritima/genética , Wolbachia/genética
13.
Angew Chem Int Ed Engl ; 56(52): 16521-16525, 2017 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-29024296

RESUMO

SpyTag is a peptide that forms a spontaneous amide bond with its protein partner SpyCatcher. This protein superglue is a broadly useful tool for molecular assembly, locking together biological building blocks efficiently and irreversibly in diverse architectures. We initially developed SpyTag and SpyCatcher by rational design, through splitting a domain from a Gram-positive bacterial adhesin. In this work, we established a phage-display platform to select for specific amidation, leading to an order of magnitude acceleration for interaction of the SpyTag002 variant with the SpyCatcher002 variant. We show that the 002 pair bonds rapidly under a wide range of conditions and at either protein terminus. SpyCatcher002 was fused to an intimin derived from enterohemorrhagic Escherichia coli. SpyTag002 reaction enabled specific and covalent decoration of intimin for live cell fluorescent imaging of the dynamics of the bacterial outer membrane as cells divide.

14.
Microbiology (Reading) ; 160(Pt 8): 1571-1584, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24939187

RESUMO

Methionine is essential in all organisms, as it is both a proteinogenic amino acid and a component of the cofactor, S-adenosyl methionine. The metabolic pathway for its biosynthesis has been extensively characterized in Escherichia coli; however, it is becoming apparent that most bacterial species do not use the E. coli pathway. Instead, studies on other organisms and genome sequencing data are uncovering significant diversity in the enzymes and metabolic intermediates that are used for methionine biosynthesis. This review summarizes the different biochemical strategies that are employed in the three key steps for methionine biosynthesis from homoserine (i.e. acylation, sulfurylation and methylation). A survey is presented of the presence and absence of the various biosynthetic enzymes in 1593 representative bacterial species, shedding light on the non-canonical nature of the E. coli pathway. This review also highlights ways in which knowledge of methionine biosynthesis can be utilized for biotechnological applications. Finally, gaps in the current understanding of bacterial methionine biosynthesis are noted. For example, the paper discusses the presence of one gene (metC) in a large number of species that appear to lack the gene encoding the enzyme for the preceding step in the pathway (metB), as it is understood in E. coli. Therefore, this review aims to move the focus away from E. coli, to better reflect the true diversity of bacterial pathways for methionine biosynthesis.


Assuntos
Bactérias/metabolismo , Metionina/biossíntese , Bactérias/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica
15.
bioRxiv ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38746305

RESUMO

Zika virus (ZIKV) infections cause microcephaly in new-borns and Guillain-Barre syndrome in adults raising a significant global public health concern, yet no vaccines or antiviral drugs have been developed to prevent or treat ZIKV infections. The viral protease NS3 and its co-factor NS2B are essential for the cleavage of the Zika polyprotein precursor into individual structural and non-structural proteins and is therefore an attractive drug target. Generation of a robust crystal system of co-expressed NS2B-NS3 protease has enabled us to perform a crystallographic fragment screening campaign with 1076 fragments. 48 binders with diverse chemical scaffolds were identified in the active site of the protease, with another 6 fragment hits observed in a potential allosteric binding site. Our work provides potential starting points for the development of potent NS2B-NS3 protease inhibitors. Furthermore, we have structurally characterized a potential allosteric binding pocket, identifying opportunities for allosteric inhibitor development.

16.
Environ Microbiol ; 14(8): 1929-40, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22225844

RESUMO

Pseudomonas proliferate in a wide spectrum of harsh and variable environments. In many of these environments, amino acids, such as histidine, are a valuable source of carbon, nitrogen and energy. Here, we demonstrate that the histidine uptake and utilization (hut) pathway of Pseudomonas aeruginosa PAO1 contains two branches from the intermediate formiminoglutamate to the product glutamate. Genetic analysis revealed that the four-step route is dispensable as long as the five-step route is present (and vice versa). Mutants with deletions of either the four-step (HutE) or five-step (HutFG) branches were competed against each other and the wild-type strain to test the hypothesis of ecological redundancy; that is, that the presence of two pathways confers no benefit beyond that delivered by the individual pathways. Fitness assays performed under several environmental conditions led us to reject this hypothesis; the four-step pathway can provide an advantage when histidine is the sole carbon source. An IclR-type regulator (HutR) was identified that regulates the four-step pathway. Comparison of sequenced genomes revealed that P.aeruginosa strains and P.fluorescens Pf-5 have branched hut pathways. Phylogenetic analyses suggests that the gene encoding formiminoglutamase (hutE) was acquired by horizontal gene transfer from a Ralstonia-like ancestor. Potential barriers to inter-species transfer of the hutRE module were explored by transferring it from P.aeruginosa PAO1 to P.fluorescens SBW25. Transfer of the operon conferred the ability to utilize histidine via the four-step pathway in a single step, but the fitness cost of acquiring this new operon was found to be environment dependent.


Assuntos
Meio Ambiente , Histidina/metabolismo , Pseudomonas aeruginosa/metabolismo , Ácido Formiminoglutâmico/metabolismo , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano/genética , Ácido Glutâmico/biossíntese , Mutação , Óperon/genética , Filogenia , Pseudomonas aeruginosa/classificação , Pseudomonas aeruginosa/genética
17.
J Mol Biol ; 434(11): 167567, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35662467

RESUMO

Exploring the functional effect of a non-synonymous coding variant at the protein level requires multiple pieces of information to be interpreted appropriately. This is particularly important when embarking on the study of a potentially pathogenic variant linked to a rare or monogenic disease. Whereas accurate protein stability predictions alone are generally informative, other effects, such as disruption of post-translational modifications or weakened ligand binding, may also contribute to the disease phenotype. Furthermore, consideration of nearby variants that are found in the healthy population may strengthen or refute a given mechanistic hypothesis. Whilst there are several bioinformatics tools available that score a genetic variant in terms of deleteriousness, there is no single tool that assembles multiple effects of a variant on the encoded protein, beyond structural stability, and presents them on the structure for inspection. Venus is a web application which, given a protein substitution, rapidly estimates the predicted effect on protein stability of the variant, flags if the variant affects a post-translational modification site, a predicted linear motif or known annotation, and determines the effect on protein stability of variants which affect nearby residues and have been identified in healthy populations. Venus is built upon Michelanglo and the results can be exported to it, allowing them to be annotated and shared with other researchers. Venus is freely accessible at https://venus.cmd.ox.ac.uk and its source code is openly available at https://github.com/CMD-Oxford/Michelanglo-and-Venus.


Assuntos
Substituição de Aminoácidos , Doença , Uso da Internet , Conformação Proteica , Proteínas , Software , Substituição de Aminoácidos/genética , Biologia Computacional/métodos , Doença/genética , Código Genético , Humanos , Proteínas/química , Proteínas/genética
18.
Cell Chem Biol ; 29(2): 339-350.e10, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-34324879

RESUMO

There are many efficient ways to connect proteins at termini. However, connecting at a loop is difficult because of lower flexibility and variable environment. Here, we have developed DogCatcher, a protein that forms a spontaneous isopeptide bond with DogTag peptide. DogTag/DogCatcher was generated initially by splitting a Streptococcus pneumoniae adhesin. We optimized DogTag/DogCatcher through rational design and evolution, increasing reaction rate by 250-fold and establishing millimolar solubility of DogCatcher. When fused to a protein terminus, DogTag/DogCatcher reacts slower than SpyTag003/SpyCatcher003. However, inserted in loops of a fluorescent protein or enzyme, DogTag reacts much faster than SpyTag003. Like many membrane proteins, the ion channel TRPC5 has no surface-exposed termini. DogTag in a TRPC5 extracellular loop allowed normal calcium flux and specific covalent labeling on cells in 1 min. DogTag/DogCatcher reacts under diverse conditions, at nanomolar concentrations, and to 98% conversion. Loop-friendly ligation should expand the toolbox for creating protein architectures.


Assuntos
Proteínas Luminescentes/química , Oxirredutases/química , Peptídeos/química , Células Cultivadas , Escherichia coli/citologia , Humanos , Proteínas Luminescentes/metabolismo , Modelos Moleculares , Oxirredutases/metabolismo , Peptídeos/metabolismo , Conformação Proteica , Solubilidade
19.
bioRxiv ; 2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35794891

RESUMO

The nonstructural protein 3 (NSP3) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contains a conserved macrodomain enzyme (Mac1) that is critical for pathogenesis and lethality. While small molecule inhibitors of Mac1 have great therapeutic potential, at the outset of the COVID-19 pandemic there were no well-validated inhibitors for this protein nor, indeed, the macrodomain enzyme family, making this target a pharmacological orphan. Here, we report the structure-based discovery and development of several different chemical scaffolds exhibiting low- to sub-micromolar affinity for Mac1 through iterations of computer-aided design, structural characterization by ultra-high resolution protein crystallography, and binding evaluation. Potent scaffolds were designed with in silico fragment linkage and by ultra-large library docking of over 450 million molecules. Both techniques leverage the computational exploration of tangible chemical space and are applicable to other pharmacological orphans. Overall, 160 ligands in 119 different scaffolds were discovered, and 152 Mac1-ligand complex crystal structures were determined, typically to 1 Å resolution or better. Our analyses discovered selective and cell-permeable molecules, unexpected ligand-mediated protein dynamics within the active site, and key inhibitor motifs that will template future drug development against Mac1.

20.
Nat Commun ; 12(1): 1621, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712579

RESUMO

Multidimensional fitness landscapes provide insights into the molecular basis of laboratory and natural evolution. To date, such efforts usually focus on limited protein families and a single enzyme trait, with little concern about the relationship between protein epistasis and conformational dynamics. Here, we report a multiparametric fitness landscape for a cytochrome P450 monooxygenase that was engineered for the regio- and stereoselective hydroxylation of a steroid. We develop a computational program to automatically quantify non-additive effects among all possible mutational pathways, finding pervasive cooperative signs and magnitude epistasis on multiple catalytic traits. By using quantum mechanics and molecular dynamics simulations, we show that these effects are modulated by long-range interactions in loops, helices and ß-strands that gate the substrate access channel allowing for optimal catalysis. Our work highlights the importance of conformational dynamics on epistasis in an enzyme involved in secondary metabolism and offers insights for engineering P450s.


Assuntos
Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , Simulação de Dinâmica Molecular , Mutação , Catálise , Domínio Catalítico/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Hidroxilação , Cinética , Ligação Proteica , Estrutura Secundária de Proteína , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa