Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Int J Mol Sci ; 18(12)2017 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-29206178

RESUMO

Within the nucleus, sub-nuclear domains define territories where specific functions occur. Nuclear bodies (NBs) are dynamic structures that concentrate nuclear factors and that can be observed microscopically. Recently, NBs containing the p53 binding protein 1 (53BP1), a key component of the DNA damage response, were defined. Interestingly, 53BP1 NBs are visualized during G1 phase, in daughter cells, while DNA damage was generated in mother cells and not properly processed. Unlike most NBs involved in transcriptional processes, replication has proven to be key for 53BP1 NBs, with replication stress leading to the formation of these large chromatin domains in daughter cells. In this review, we expose the composition and organization of 53BP1 NBs and focus on recent findings regarding their regulation and dynamics. We then concentrate on the importance of the replication stress, examine the relation of 53BP1 NBs with DNA damage and discuss their dysfunction.


Assuntos
Dano ao DNA/fisiologia , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Animais , Núcleo Celular/metabolismo , Cromatina/metabolismo , Dano ao DNA/genética , Replicação do DNA/genética , Replicação do DNA/fisiologia , Humanos , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética
2.
Proc Natl Acad Sci U S A ; 107(30): 13390-5, 2010 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-20624954

RESUMO

"Replicative stress" is one of the main factors underlying neoplasia from its early stages. Genes involved in DNA synthesis may therefore represent an underexplored source of potential prognostic markers for cancer. To this aim, we generated gene expression profiles from two independent cohorts (France, n=206; United Kingdom, n=117) of patients with previously untreated primary breast cancers. We report here that among the 13 human nuclear DNA polymerase genes, DNA Polymerase (POLQ) is the only one significantly up-regulated in breast cancer compared with normal breast tissues. Importantly, POLQ up-regulation significantly correlates with poor clinical outcome (4.3-fold increased risk of death in patients with high POLQ expression), and this correlation is independent of Cyclin E expression or the number of positive nodes, which are currently considered as markers for poor outcome. POLQ expression provides thus an additional indicator for the survival outcome of patients with high Cyclin E tumor expression or high number of positive lymph nodes. Furthermore, to decipher the molecular consequences of POLQ up-regulation in breast cancer, we generated human MRC5-SV cell lines that stably overexpress POLQ. Strong POLQ expression was directly associated with defective DNA replication fork progression and chromosomal damage. Therefore, POLQ overexpression may be a promising genetic instability and prognostic marker for breast cancer.


Assuntos
Neoplasias da Mama/genética , Replicação do DNA/efeitos dos fármacos , DNA Polimerase Dirigida por DNA/genética , Instabilidade Genômica , Neoplasias da Mama/patologia , Linhagem Celular , Linhagem Celular Tumoral , Estudos de Coortes , Ciclina E/genética , Dano ao DNA , Feminino , França , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Pessoa de Meia-Idade , Prognóstico , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Reino Unido , Regulação para Cima , DNA Polimerase teta
3.
Front Cell Dev Biol ; 9: 656795, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34026755

RESUMO

The cytolethal distending toxin (CDT) is produced by several Gram-negative pathogenic bacteria. In addition to inflammation, experimental evidences are in favor of a protumoral role of CDT-harboring bacteria such as Escherichia coli, Campylobacter jejuni, or Helicobacter hepaticus. CDT may contribute to cell transformation in vitro and carcinogenesis in mice models, through the genotoxic action of CdtB catalytic subunit. Here, we investigate the mechanism of action by which CDT leads to genetic instability in human cell lines and colorectal organoids from healthy patients' biopsies. We demonstrate that CDT holotoxin induces a replicative stress dependent on CdtB. The slowing down of DNA replication occurs mainly in late S phase, resulting in the expression of fragile sites and important chromosomic aberrations. These DNA abnormalities induced after CDT treatment are responsible for anaphase bridge formation in mitosis and interphase DNA bridge between daughter cells in G1 phase. Moreover, CDT-genotoxic potential preferentially affects human cycling cells compared to quiescent cells. Finally, the toxin induces nuclear distension associated to DNA damage in proliferating cells of human colorectal organoids, resulting in decreased growth. Our findings thus identify CDT as a bacterial virulence factor targeting proliferating cells, such as human colorectal progenitors or stem cells, inducing replicative stress and genetic instability transmitted to daughter cells that may therefore contribute to carcinogenesis. As some CDT-carrying bacterial strains were detected in patients with colorectal cancer, targeting these bacteria could be a promising therapeutic strategy.

4.
Environ Mol Mutagen ; 60(3): 286-297, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30471166

RESUMO

The classification of the fungicide captan (CAS Number: 133-06-2) as a carcinogen agent is presently under discussion. Despite the mutagenic effect detected by the Ames test and carcinogenic properties observed in mice, the genotoxicity of this pesticide in humans is still unclear. New information is needed about its mechanism of action in mammalian cells. Here, we show that Chinese Hamster Ovary (CHO) cells exposed to captan accumulate Fpg-sensitive DNA base alterations. In CHO and HeLa cells, such DNA lesions require the XRCC1-dependent pathway to be repaired. Captan also induces a replicative stress that activated the ATR signaling response and resulted in double-strand breaks and micronuclei. The replicative stress is characterized by a dramatic decrease in DNA synthesis due to a reduced replication fork progression. However, impairment of the XRCC1-related repair process did not amplify the replicative stress, suggesting that the fork progression defect is independent from the presence of base modifications. These results support the involvement of at least two independent pathways in the genotoxic effect of captan that might play a key role in carcinogenesis. Environ. Mol. Mutagen. 60:286-297, 2019. © 2018 Wiley Periodicals, Inc.


Assuntos
Captana/toxicidade , Dano ao DNA/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Fungicidas Industriais/toxicidade , Mutagênicos/toxicidade , Animais , Células CHO , Carcinogênese/induzido quimicamente , Cricetulus , DNA/biossíntese , Reparo do DNA/genética , Células HeLa , Humanos , Testes de Mutagenicidade , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/metabolismo
5.
Cancer Res ; 66(14): 7128-35, 2006 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-16854822

RESUMO

The effects of cell adhesion on leukemia cell proliferation remain poorly documented and somehow controversial. In this work, we investigated the effect of adhesion to fibronectin on the proliferation of acute myeloid leukemia (AML) cell lines (U937 and KG1a) and CD34+ normal or leukemic primary cells. We observed an increased rate of proliferation of AML cells when adhered to fibronectin, concomitant with accelerated S-phase entry and accumulation of CDC25A. Conversely, normal CD34+ cell proliferation was decreased by adhesion to fibronectin with a concomitant drop in CDC25A expression. Importantly, we showed that both small interfering RNA (siRNA)-mediated CDC25A down-regulation and a recently developed CDC25 pharmacologic inhibitor impaired this adhesion-dependent proliferation, establishing a functional link between CDC25A accumulation and adhesion-dependent proliferation in leukemic cells. CDC25A accumulation was found only slightly dependent on transcriptional regulation and essentially due to modifications of the proteasomal degradation of the protein as shown using proteasome inhibitors and reverse transcription-PCR. Interestingly, CDC25A regulation was Chk1 dependent in these cells as suggested by siRNA-mediated down-regulation of this protein. Finally, we identified activation of the phosphatidylinositol 3-kinase/Akt pathway as an adhesion-dependent regulation mechanism of CDC25A protein expression. Altogether, our data show that in leukemic cells adhesion to fibronectin increases CDC25A expression through proteasome- and Chk1-dependent mechanisms, resulting in enhanced proliferation. They also suggest that these adhesion-dependent proliferation properties of hematopoietic cells may be modified during leukemogenesis.


Assuntos
Fosfatases cdc25/biossíntese , Doença Aguda , Adesão Celular/fisiologia , Processos de Crescimento Celular/fisiologia , Quinase 1 do Ponto de Checagem , Fibronectinas/metabolismo , Células HL-60 , Humanos , Células Jurkat , Leucemia Mieloide/enzimologia , Leucemia Mieloide/genética , Leucemia Mieloide/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Quinases/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Serina-Treonina Quinases TOR , Células U937 , Regulação para Cima , Fosfatases cdc25/genética , Fosfatases cdc25/metabolismo
6.
Sci Signal ; 9(445): ra90, 2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27625304

RESUMO

The nucleoside analog cytarabine, an inhibitor of DNA replication fork progression that results in DNA damage, is currently used in the treatment of acute myeloid leukemia (AML). We explored the prognostic value of the expression of 72 genes involved in various aspects of DNA replication in a set of 198 AML patients treated by cytarabine-based chemotherapy. We unveiled that high expression of the DNA replication checkpoint gene CHEK1 is a prognostic marker associated with shorter overall, event-free, and relapse-free survivals and determined that the expression of CHEK1 can predict more frequent and earlier postremission relapse. CHEK1 encodes checkpoint kinase 1 (CHK1), which is activated by the kinase ATR when DNA replication is impaired by DNA damage. High abundance of CHK1 in AML patient cells correlated with higher clonogenic ability and more efficient DNA replication fork progression upon cytarabine treatment. Exposing the patient cells with the high abundance of CHK1 to SCH900776, an inhibitor of the kinase activity of CHK1, reduced clonogenic ability and progression of DNA replication in the presence of cytarabine. These results indicated that some AML cells rely on an efficient CHK1-mediated replication stress response for viability and that therapeutic strategies that inhibit CHK1 could extend current cytarabine-based treatments and overcome drug resistance. Furthermore, monitoring CHEK1 expression could be used both as a predictor of outcome and as a marker to select AML patients for CHK1 inhibitor treatments.


Assuntos
Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Leucemia Mieloide Aguda/tratamento farmacológico , Proteínas de Neoplasias/antagonistas & inibidores , Pirazóis/farmacologia , Pirimidinas/farmacologia , Quinase 1 do Ponto de Checagem/metabolismo , Citarabina/farmacologia , Replicação do DNA/efeitos dos fármacos , Feminino , Humanos , Leucemia Mieloide Aguda/enzimologia , Masculino , Proteínas de Neoplasias/metabolismo
7.
Oncotarget ; 6(35): 38061-78, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26515730

RESUMO

We investigated cell cycle regulation in acute myeloid leukemia cells expressing the FLT3-ITD mutated tyrosine kinase receptor, an underexplored field in this disease. Upon FLT3 inhibition, CDC25A mRNA and protein were rapidly down-regulated, while levels of other cell cycle proteins remained unchanged. This regulation was dependent on STAT5, arguing for FLT3-ITD-dependent transcriptional regulation of CDC25A. CDC25 inhibitors triggered proliferation arrest and cell death of FLT3-ITD as well as FLT3-ITD/TKD AC-220 resistant cells, but not of FLT3-wt cells. Consistently, RNA interference-mediated knock-down of CDC25A reduced the proliferation of FLT3-ITD cell lines. Finally, the clonogenic capacity of primary FLT3-ITD AML cells was reduced by the CDC25 inhibitor IRC-083864, while FLT3-wt AML and normal CD34+ myeloid cells were unaffected. In good agreement, in a cohort of 100 samples from AML patients with intermediate-risk cytogenetics, high levels of CDC25A mRNA were predictive of higher clonogenic potential in FLT3-ITD+ samples, not in FLT3-wt ones.Importantly, pharmacological inhibition as well as RNA interference-mediated knock-down of CDC25A also induced monocytic differentiation of FLT3-ITD positive cells, as judged by cell surface markers expression, morphological modifications, and C/EBPα phosphorylation. CDC25 inhibition also re-induced monocytic differentiation in primary AML blasts carrying the FLT3-ITD mutation, but not in blasts expressing wild type FLT3. Altogether, these data identify CDC25A as an early cell cycle transducer of FLT3-ITD oncogenic signaling, and as a promising target to inhibit proliferation and re-induce differentiation of FLT3-ITD AML cells.


Assuntos
Diferenciação Celular , Proliferação de Células , Leucemia Mieloide Aguda/enzimologia , Fosfatases cdc25/metabolismo , Tirosina Quinase 3 Semelhante a fms/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/farmacologia , Benzotiazóis/farmacologia , Benzoxazóis/farmacologia , Pontos de Checagem do Ciclo Celular , Morte Celular , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Criança , Técnicas de Cocultura , Inibidores Enzimáticos/farmacologia , Feminino , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Células HL-60 , Humanos , Células K562 , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Masculino , Pessoa de Meia-Idade , Mutação , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais , Sequências de Repetição em Tandem , Fatores de Tempo , Transcrição Gênica , Transfecção , Células Tumorais Cultivadas , Fosfatases cdc25/antagonistas & inibidores , Fosfatases cdc25/genética , Tirosina Quinase 3 Semelhante a fms/genética
8.
Nat Commun ; 5: 4285, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-24989122

RESUMO

Although DNA polymerase θ (Pol θ) is known to carry out translesion synthesis and has been implicated in DNA repair, its physiological function under normal growth conditions remains unclear. Here we present evidence that Pol θ plays a role in determining the timing of replication in human cells. We find that Pol θ binds to chromatin during early G1, interacts with the Orc2 and Orc4 components of the Origin recognition complex and that the association of Mcm proteins with chromatin is enhanced in G1 when Pol θ is downregulated. Pol θ-depleted cells exhibit a normal density of activated origins in S phase, but early-to-late and late-to-early shifts are observed at a number of replication domains. Pol θ overexpression, on the other hand, causes delayed replication. Our results therefore suggest that Pol θ functions during the earliest steps of DNA replication and influences the timing of replication initiation.


Assuntos
Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Fase G1 , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Cromatina/metabolismo , Humanos , Proteínas de Manutenção de Minicromossomo/metabolismo , Complexo de Reconhecimento de Origem/metabolismo , Fase S , DNA Polimerase teta
9.
Cell Cycle ; 8(9): 1373-9, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19305144

RESUMO

Here, we demonstrate that the expression of the dual specificity phosphatase CDC25A, a key regulator of cell cycle progression, is deregulated in Ba/F3 cells expressing the oncogenic protein NPM/ALK and in human cell lines derived from NPM/ALK-positive anaplastic large cell lymphomas (ALCL). Both transcriptional and post-translational mechanisms account for the constitutive expression of the protein, and the PI3K/Akt pathway is essential for this process. Importantly, pharmacological inhibition of CDC25 dramatically inhibits the proliferation of NPM/ALK-expressing cells, while moderately affecting the proliferation of control Ba/F3 cells. RNA interference-mediated downregulation of CDC25A confirmed that NPM/ALK-expressing cells are highly dependent on this protein for their proliferation. Moreover, similar PI3K/AKt-mediated constitutive expression of CDC25A takes place down-stream of other hematological oncogenes, including BCR/ABL in Chronic Myeloid Leukemia and FLT3-ITD in Acute Myeloid Leukemia. Altogether, our data point to the functional link between hematopoietic oncogenic tyrosine kinases and the G(1) cell cycle regulator CDC25A, and we propose that this protein may be a potential therapeutic target in ALCL and other hematological malignancies.


Assuntos
Linfoma Anaplásico de Células Grandes/enzimologia , Linfoma Anaplásico de Células Grandes/patologia , Oncogenes , Proteínas Tirosina Quinases/metabolismo , Regulação para Cima , Fosfatases cdc25/metabolismo , Quinase do Linfoma Anaplásico , Animais , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Camundongos , Proteínas de Fusão Oncogênica/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Proteína Tirosina Quinases , Transdução de Sinais
10.
Anticancer Agents Med Chem ; 8(8): 825-31, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19075564

RESUMO

CDC25 dual specificity phosphatases activate the cyclin-dependent kinase complexes, allowing timely ordered progression through out the different phases of the eukaryotic cell cycle. In humans, there are three genes coding for the CDC25A, B and C proteins with both different and redundant specificities and regulations. The CDC25A member of this family acts during the G1 phase and at the G1/S transition by activating the CDK2/cyclin E and CDK2/cyclin A complexes, a function apparently not shared by the other members. In consequence, CDC25A is submitted to extra-cellular signals-dependent regulations involving in particular mitogenic signal transducers, and leading to modifications of its stability, its localization or its activity. In addition, CDC25A is up-regulated in various cancers, and the molecular mechanisms leading to this up-regulation are far from being understood. In this review, we will synthesize the current knowledge about CDC25A molecular regulations, and try to integrate these data in the cell proliferation and apoptotic functions described for the protein.


Assuntos
Isoenzimas/metabolismo , Fosfatases cdc25/metabolismo , Fase G1 , Regulação Enzimológica da Expressão Gênica , Humanos , Isoenzimas/genética , Neoplasias/enzimologia , Fase S , Especificidade por Substrato , Transcrição Gênica , Fosfatases cdc25/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa