Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cell Death Discov ; 7(1): 137, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34112754

RESUMO

Over the last 50 years, there has been a steady improvement in the treatment outcome of acute myeloid leukemia (AML). However, median survival in the elderly is still poor due to intolerance to intensive chemotherapy and higher numbers of patients with adverse cytogenetics. Fadraciclib (CYC065), a novel cyclin-dependent kinase (CDK) 2/9 inhibitor, has preclinical efficacy in AML. In AML cell lines, myeloid cell leukemia 1 (MCL-1) was downregulated following treatment with fadraciclib, resulting in a rapid induction of apoptosis. In addition, RNA polymerase II (RNAPII)-driven transcription was suppressed, rendering a global gene suppression. Rapid induction of apoptosis was observed in primary AML cells after treatment with fadraciclib for 6-8 h. Twenty-four hours continuous treatment further increased efficacy of fadraciclib. Although preliminary results showed that AML cell lines harboring KMT2A rearrangement (KMT2A-r) are more sensitive to fadraciclib, we found that the drug can induce apoptosis and decrease MCL-1 expression in primary AML cells, regardless of KMT2A status. Importantly, the diversity of genetic mutations observed in primary AML patient samples was associated with variable response to fadraciclib, confirming the need for patient stratification to enable a more effective and personalized treatment approach. Synergistic activity was demonstrated when fadraciclib was combined with the BCL-2 inhibitor venetoclax, or the conventional chemotherapy agents, cytarabine, or azacitidine, with the combination of fadraciclib and azacitidine having the most favorable therapeutic window. In summary, these results highlight the potential of fadraciclib as a novel therapeutic approach for AML.

2.
Lancet Rheumatol ; 3(5): e337-e346, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33928262

RESUMO

BACKGROUND: Current rheumatoid arthritis therapies target immune inflammation and are subject to ceiling effects. Seliciclib is an orally available cyclin-dependent kinase inhibitor that suppresses proliferation of synovial fibroblasts-cells not yet targeted in rheumatoid arthritis. Part 1 of this phase 1b/2a trial aimed to establish the maximum tolerated dose of seliciclib in patients with active rheumatoid arthritis despite ongoing treatment with TNF inhibitors, and to evaluate safety and pharmacokinetics. METHODS: Phase 1b of the TRAFIC study was a non-randomised, open-label, dose-finding trial done in rheumatology departments in five UK National Health Service hospitals. Eligible patients (aged ≥18 years) fulfilled the 1987 American College of Rheumatology (ACR) or the 2010 ACR-European League Against Rheumatism classification criteria for rheumatoid arthritis and had moderate to severe disease activity (a Disease Activity Score for 28 joints [DAS28] of ≥3·2) despite stable treatment with anti-TNF therapy for at least 3 months before enrolment. Participants were recruited sequentially to a maximum of seven cohorts of three participants each, designated to receive seliciclib 200 mg, 400 mg, 600 mg, 800 mg, or 1000 mg administered in 200 mg oral capsules. Sequential cohorts received doses determined by a restricted, one-stage Bayesian continual reassessment model, which determined the maximum tolerated dose (the primary outcome) based on a target dose-limiting toxicity rate of 35%. Seliciclib maximum concentration (Cmax) and area under the plasma concentration time curve 0-6 h (AUC0-6) were measured. This study is registered with ISRCTN, ISRCTN36667085. FINDINGS: Between Oct 8, 2015, and Aug 15, 2017, 37 patients were screened and 15 were enrolled to five cohorts and received seliciclib, after which the trial steering committee and the data monitoring committee determined that the maximum tolerated dose could be defined. In addition to a TNF inhibitor, ten (67%) enrolled patients were taking conventional synthetic disease modifying antirheumatic drugs. The maximum tolerated dose of seliciclib was 400 mg, with an estimated dose-limiting toxicity probability of 0·35 (90% posterior probability interval 0·18-0·52). Two serious adverse events occurred (one acute kidney injury in a patient receiving the 600 mg dose and one drug-induced liver injury in a patient receiving the 400 mg dose), both considered to be related to seliciclib and consistent with its known safety profile. 65 non-serious adverse events occurred during the trial, 50 of which were considered to be treatment related. Most treatment-related adverse events were mild; 20 of the treatment-related non-serious adverse events contributed to dose-limiting toxicities. There were no deaths. Average Cmax and AUC0-6 were two-times higher in participants developing dose-limiting toxicities. INTERPRETATION: The maximum tolerated dose of seliciclib has been defined for rheumatoid arthritis refractory to TNF blockade. No unexpected safety concerns were identified to preclude ongoing clinical evaluation in a formal efficacy trial. FUNDING: UK Medical Research Council, Cyclacel, Research into Inflammatory Arthritis Centre (Versus Arthritis), and the National Institute of Health Research Newcastle and Birmingham Biomedical Research Centres and Clinical Research Facilities.

3.
Clin Cancer Res ; 15(11): 3716-24, 2009 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-19470731

RESUMO

PURPOSE: Seliciclib is a small-molecule cyclin-dependent kinase inhibitor, which has been reported to induce apoptosis and cell cycle arrest in EBV-negative nasopharyngeal carcinoma cell lines. Because most nasopharyngeal carcinoma patients harbor EBV, we proceeded to evaluate the cytotoxic effects of seliciclib in EBV-positive nasopharyngeal carcinoma models. EXPERIMENTAL DESIGN: Cytotoxicity of seliciclib was investigated in the EBV-positive cell line C666-1 and the C666-1 and C15 xenograft models. Caspase activities and cell cycle analyses were measured by flow cytometry. Efficacy of combined treatment of seliciclib with radiation therapy was also evaluated. RESULTS: Seliciclib caused significant cytotoxicity in the C666-1 cells in a time- and dose-dependent manner, with accumulation of cells in both sub-G(1) and G(2)-M phases, indicative of apoptosis and cell cycle arrest, respectively. Caspase-2, -3, -8, and -9 activities were all increased, with caspase-3 being the most significantly activated at 48 h after treatment. These cells also showed a reduction of Mcl-1 mRNA and protein levels. Combined treatment of seliciclib with radiation therapy showed a synergistic interaction with enhanced cytotoxicity in C666-1 cells and delayed repair of double-strand DNA breaks. For in vivo models, significant delays in tumor growth were observed for both C666-1 and C15 tumors, which were associated with enhanced apoptosis as determined by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling and immunohistochemistry analyses. CONCLUSIONS: Seliciclib enhanced the antitumor efficacy of radiation therapy in EBV-positive nasopharyngeal carcinoma, characterized by G(2)-M arrest, and apoptosis, associated with an induction in caspase activity. This process is mediated by reduction in Mcl-1 expression and by attenuation of double-strand DNA break repair.


Assuntos
Neoplasias Nasofaríngeas/terapia , Purinas/uso terapêutico , Radiação Ionizante , Animais , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Western Blotting , Caspase 2/metabolismo , Caspase 3/metabolismo , Caspase 8/metabolismo , Caspase 9/metabolismo , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/efeitos da radiação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Terapia Combinada , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Relação Dose-Resposta a Droga , Humanos , Camundongos , Proteína de Sequência 1 de Leucemia de Células Mieloides , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Roscovitina , Fatores de Tempo , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
4.
PLoS One ; 15(7): e0234103, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32645016

RESUMO

Cyclin-dependent kinases (CDKs) contribute to the cancer hallmarks of uncontrolled proliferation and increased survival. As a result, over the last two decades substantial efforts have been directed towards identification and development of pharmaceutical CDK inhibitors. Insights into the biological consequences of CDK inhibition in specific tumor types have led to the successful development of CDK4/6 inhibitors as treatments for certain types of breast cancer. More recently, a new generation of pharmaceutical inhibitors of CDK enzymes that regulate the transcription of key oncogenic and pro-survival proteins, including CDK9, have entered clinical development. Here, we provide the first disclosure of the chemical structure of fadraciclib (CYC065), a CDK inhibitor and clinical candidate designed by further optimization from the aminopurine scaffold of seliciclib. We describe its synthesis and mechanistic characterization. Fadraciclib exhibits improved potency and selectivity for CDK2 and CDK9 compared to seliciclib, and also displays high selectivity across the kinome. We show that the mechanism of action of fadraciclib is consistent with potent inhibition of CDK9-mediated transcription, decreasing levels of RNA polymerase II C-terminal domain serine 2 phosphorylation, the pro-survival protein Myeloid Cell Leukemia 1 (MCL1) and MYC oncoprotein, and inducing rapid apoptosis in cancer cells. This cellular potency and mechanism of action translate to promising anti-cancer activity in human leukemia mouse xenograft models. Studies of leukemia cell line sensitivity identify mixed lineage leukemia (MLL) gene status and the level of B-cell lymphoma 2 (BCL2) family proteins as potential markers for selection of patients with greater sensitivity to fadraciclib. We show that the combination of fadraciclib with BCL2 inhibitors, including venetoclax, is synergistic in leukemic cell models, as predicted from simultaneous inhibition of MCL1 and BCL2 pro-survival pathways. Fadraciclib preclinical pharmacology data support its therapeutic potential in CDK9- or CDK2-dependent cancers and as a rational combination with BCL2 inhibitors in hematological malignancies. Fadraciclib is currently in Phase 1 clinical studies in patients with advanced solid tumors (NCT02552953) and also in combination with venetoclax in patients with relapsed or refractory chronic lymphocytic leukemia (CLL) (NCT03739554) and relapsed refractory acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS) (NCT04017546).


Assuntos
Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/farmacologia , Animais , Antineoplásicos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Quinase 2 Dependente de Ciclina/efeitos dos fármacos , Quinase 2 Dependente de Ciclina/metabolismo , Quinase 9 Dependente de Ciclina/efeitos dos fármacos , Quinase 9 Dependente de Ciclina/metabolismo , Quinases Ciclina-Dependentes/antagonistas & inibidores , Humanos , Camundongos , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Sulfonamidas/farmacologia
5.
Medicine (Baltimore) ; 99(26): e20458, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32590730

RESUMO

INTRODUCTION: Targeted biologic therapies demonstrate similar efficacies in rheumatoid arthritis despite distinct mechanisms of action. They also exhibit a ceiling effect, with 10% to 20% of patients achieving remission in clinical trials. None of these therapies target synovial fibroblasts, which drive and maintain synovitis. Seliciclib (R-roscovitine) is an orally available cyclin-dependent kinase inhibitor that suppresses fibroblast proliferation, and is efficacious in preclinical arthritis models. We aim to determine the toxicity and preliminary efficacy of seliciclib in combination with biologic therapies, to inform its potential as an adjunctive therapy in rheumatoid arthritis. METHODS AND ANALYSIS: TRAFIC is a non-commercial, multi-center, rolling phase Ib/IIa trial investigating the safety, tolerability, and efficacy of seliciclib in patients with moderate to severe rheumatoid arthritis receiving biologic therapies. All participants receive seliciclib with no control arm. The primary objective of part 1 (phase Ib) is to determine the maximum tolerated dose and safety of seliciclib over 4 weeks of dosing. Part 1 uses a restricted 1-stage Bayesian continual reassessment method based on a target dose-limiting toxicity probability of 35%. Part 2 (phase IIa) assesses the potential efficacy of seliciclib, and is designed as a single arm, single stage early phase trial based on a Fleming-A'Hern design using the maximum tolerated dose recommended from part 1. The primary response outcome after 12 weeks of therapy is a composite of clinical, histological and magnetic resonance imaging scores. Secondary outcomes include adverse events, pharmacodynamic and pharmacokinetic parameters, autoantibodies, and fatigue. ETHICS AND DISSEMINATION: The study has been reviewed and approved by the North East - Tyne & Wear South Research Ethics Committee (reference 14/NE/1075) and the Medicines and Healthcare Products Regulatory Agency (MHRA), United Kingdom. Results will be disseminated through publication in relevant peer-reviewed journals and presentation at national and international conferences. TRIALS REGISTRATION: ISRCTN, ISRCTN36667085. Registered on September 26, 2014; http://www.isrctn.com/ISRCTN36667085Current protocol version: Protocol version 11.0 (March 21, 2019).


Assuntos
Artrite Reumatoide/tratamento farmacológico , Inibidores de Proteínas Quinases/administração & dosagem , Roscovitina/administração & dosagem , Abatacepte/uso terapêutico , Anticorpos Monoclonais Humanizados/uso terapêutico , Ensaios Clínicos Fase II como Assunto , Ensaios Clínicos Fase III como Assunto , Quimioterapia Combinada , Humanos , Dose Máxima Tolerável , Estudos Multicêntricos como Assunto , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Reino Unido
6.
Clin Cancer Res ; 14(13): 4326-35, 2008 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-18594016

RESUMO

PURPOSE: The aims of this study were to investigate whether the cyclin-dependent kinase inhibitor seliciclib could synergize with agents that target ErbB receptors and to elucidate the molecular mechanism of the observed synergy. EXPERIMENTAL DESIGN: Synergy between seliciclib and ErbB receptor targeted agents was investigated in various cell lines using the Calcusyn median effect model. The molecular mechanism of the observed synergy was studied in cultured cells, and the combination of seliciclib and the epidermal growth factor receptor (EGFR) inhibitor erlotinib was evaluated in an H358 xenograft model. RESULTS: Seliciclib synergized with the anti-HER2 antibody trastuzumab in a breast cancer cell line, which overexpresses the HER2 receptor, and with the erlotinib analogue AG1478 in non-small cell lung cancer cell lines. In the H358 non-small cell lung cancer cell line, synergy involved decreased signaling from the EGFR, with AG1478 directly inhibiting kinase activity while seliciclib decreased the levels of key components of the receptor signaling pathway, resulting in enhanced loss of phosphorylated extracellular signal-regulated kinase and cyclin D1. The combination of seliciclib and erlotinib was evaluated further in an H358 xenograft and shown to be significantly more active than either agent alone. An enhanced loss of cyclin D1 was also seen in vivo. CONCLUSIONS: This is the first report that investigates combining seliciclib with an EGFR inhibitor. The combination decreased signaling from the EGFR in vitro and in vivo and was effective in cell lines containing either wild-type or mutant EGFR, suggesting that it may expand the range of tumors that respond to erlotinib, and therefore, such combinations are worth exploring in the clinic.


Assuntos
Antineoplásicos/farmacologia , Regulação Neoplásica da Expressão Gênica , Purinas/farmacologia , Receptor ErbB-2/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Ciclina D1/metabolismo , Sinergismo Farmacológico , Feminino , Humanos , Concentração Inibidora 50 , Camundongos , Modelos Biológicos , Mutação , Transplante de Neoplasias , Receptor ErbB-2/metabolismo , Roscovitina
7.
Cancer Res ; 65(12): 5399-407, 2005 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-15958589

RESUMO

Seliciclib (CYC202, R-roscovitine) is a cyclin-dependent kinase (CDK) inhibitor that competes for the ATP binding site on the kinase. It has greatest activity against CDK2/cyclin E, CDK7/cyclin H, and CDK9/cyclin T. Seliciclib induces apoptosis from all phases of the cell cycle in tumor cell lines, reduces tumor growth in xenografts in nude mice and is currently in phase II clinical trials. This study investigated the mechanism of cell death in multiple myeloma cells treated with seliciclib. In myeloma cells treated in vitro, seliciclib induced rapid dephosphorylation of the carboxyl-terminal domain of the large subunit of RNA polymerase II. Phosphorylation at these sites is crucial for RNA polymerase II-dependent transcription. Inhibition of transcription would be predicted to exert its greatest effect on gene products where both mRNA and protein have short half-lives, resulting in rapid decline of the protein levels. One such gene product is the antiapoptotic factor Mcl-1, crucial for the survival of a range of cell types including multiple myeloma. As hypothesized, following the inhibition of RNA polymerase II phosphorylation, seliciclib caused rapid Mcl-1 down-regulation, which preceded the induction of apoptosis. The importance of Mcl-1 was confirmed by short interfering RNA, demonstrating that reducing Mcl-1 levels alone was sufficient to induce apoptosis. These results suggest that seliciclib causes myeloma cell death by disrupting the balance between cell survival and apoptosis through the inhibition of transcription and down-regulation of Mcl-1. This study provides the scientific rationale for the clinical development of seliciclib for the treatment of multiple myeloma.


Assuntos
Apoptose/efeitos dos fármacos , Mieloma Múltiplo/tratamento farmacológico , Proteínas de Neoplasias/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Purinas/farmacologia , RNA Polimerase II/antagonistas & inibidores , Linhagem Celular Tumoral , Diclororribofuranosilbenzimidazol/farmacologia , Regulação para Baixo/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Humanos , Concentração Inibidora 50 , Mieloma Múltiplo/enzimologia , Mieloma Múltiplo/patologia , Proteína de Sequência 1 de Leucemia de Células Mieloides , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/biossíntese , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , RNA Mensageiro/antagonistas & inibidores , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Roscovitina , Transcrição Gênica/efeitos dos fármacos
9.
Biochem J ; 377(Pt 1): 249-55, 2004 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-14570592

RESUMO

Phosphorylation of the endogenous GSK3alpha (glycogen synthase kinase-3alpha) at Tyr279 and GSK3beta at Tyr216 was suppressed in HEK-293 or SH-SY5Y cells by incubation with pharmacological inhibitors of GSK3, but not by an Src-family inhibitor, 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4- d ]pyrimidine (PP2), or a general protein tyrosine kinase inhibitor (genistein). GSK3beta transfected into HEK-293 cells or Escherichia coli became phosphorylated at Tyr216, but catalytically inactive mutants did not. GSK3beta expressed in insect Sf 21 cells or E. coli was extensively phosphorylated at Tyr216, but the few molecules lacking phosphate at this position could autophosphorylate at Tyr216 in vitro after incubation with MgATP. The rate of autophosphorylation was unaffected by dilution and was suppressed by the GSK3 inhibitor kenpaullone. Wild-type GSK3beta was unable to catalyse the tyrosine phosphorylation of catalytically inactive GSK3beta lacking phosphate at Tyr216. Our results indicate that the tyrosine phosphorylation of GSK3 is an intramolecular autophosphorylation event in the cells that we have studied and that this modification enhances the stability of the enzyme.


Assuntos
Quinase 3 da Glicogênio Sintase/metabolismo , Tirosina/metabolismo , Linhagem Celular , Inibidores Enzimáticos/farmacologia , Quinase 3 da Glicogênio Sintase/química , Quinase 3 da Glicogênio Sintase/genética , Glicogênio Sintase Quinase 3 beta , Humanos , Mutação , Fator de Crescimento Neural/fisiologia , Fosforilação , Estaurosporina/farmacologia
10.
FEBS Lett ; 527(1-3): 101-4, 2002 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-12220642

RESUMO

Rho kinase is known to control smooth muscle contractility by phosphorylating the 110 kDa myosin-targetting subunit (MYPT1) of the myosin-associated form of protein phosphatase 1 (PP1M). Phosphorylation of MYPT1 at Thr695 has previously been reported to inhibit the catalytic activity of PP1. Here, we show that the phosphorylation of Thr850 by Rho kinase dissociates PP1M from myosin, providing a second mechanism by which myosin phosphatase activity is inhibited.


Assuntos
Músculo Liso/metabolismo , Miosinas/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Animais , Sequência de Bases , Domínio Catalítico , Peptídeos e Proteínas de Sinalização Intracelular , Dados de Sequência Molecular , Fosfatase de Miosina-de-Cadeia-Leve , Fosfoproteínas Fosfatases/genética , Fosforilação , Proteína Fosfatase 1 , Proteínas Serina-Treonina Quinases/metabolismo , Subunidades Proteicas , Treonina/metabolismo , Quinases Associadas a rho
11.
PLoS One ; 9(6): e99845, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24927173

RESUMO

This study presents the results of a major data integration project bringing together primary archaeozoological data for over 200,000 faunal specimens excavated from seventeen sites in Turkey spanning the Epipaleolithic through Chalcolithic periods, c. 18,000-4,000 cal BC, in order to document the initial westward spread of domestic livestock across Neolithic central and western Turkey. From these shared datasets we demonstrate that the westward expansion of Neolithic subsistence technologies combined multiple routes and pulses but did not involve a set 'package' comprising all four livestock species including sheep, goat, cattle and pig. Instead, Neolithic animal economies in the study regions are shown to be more diverse than deduced previously using quantitatively more limited datasets. Moreover, during the transition to agro-pastoral economies interactions between domestic stock and local wild fauna continued. Through publication of datasets with Open Context (opencontext.org), this project emphasizes the benefits of data sharing and web-based dissemination of large primary data sets for exploring major questions in archaeology (Alternative Language Abstract S1).


Assuntos
Arqueologia/métodos , Animais , Animais Domésticos , Bovinos , Geografia , Disseminação de Informação , Gado , Ovinos , Suínos , Turquia
12.
Eur J Cancer ; 46(18): 3243-50, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20822897

RESUMO

AIM: Phase I study of seliciclib (CYC202, R-roscovitine), an inhibitor of cyclin-dependent kinases 2, 7 and 9, causing cell cycle changes and apoptosis in cancer cells. PATIENTS AND METHODS: This phase I trial aimed at defining the toxicity profile, the maximum tolerated dose (MTD), the recommended phase II dose (RD) and the main pharmacokinetic and pharmacodynamic parameters of oral seliciclib. Three schedules were evaluated: seliciclib given twice daily for 5 consecutive days every 3 weeks (schedule A), for 10 consecutive days followed by 2 weeks off (schedule B) and for 3d every 2 weeks (schedule C). RESULTS: Fifty-six patients received a total of 218 cycles of seliciclib. Dose-Limiting Toxicities (DLT) consisting of nausea, vomiting, asthenia and hypokalaemia occurred at 1600 mg bid for schedule A and in schedule C, DLT of hypokalaemia and asthenia occurred at 1800 mg bid. The evaluation of longer treatment duration in schedule B was discontinued because of unacceptable toxicity at lower doses. Other adverse events included transient serum creatinine increases and liver dysfunctions. Pharmacokinetic data showed that exposure to seliciclib and its carboxylate metabolite increased with increasing dose. Soluble cytokeratin 18 fragments allowed monitoring of seliciclib-induced cell death in the blood of patients treated with seliciclib at doses above 800 mg/d. One partial response in a patient with hepatocellular carcinoma and sustained tumour stabilisations were observed. CONCLUSIONS: The MTD and RD for seliciclib are 1250 mg bid for 5d every 3 weeks and 1600 mg bid for 3d every 2 weeks, respectively.


Assuntos
Antineoplásicos/efeitos adversos , Neoplasias/tratamento farmacológico , Purinas/efeitos adversos , Administração Oral , Adulto , Idoso , Antineoplásicos/administração & dosagem , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Feminino , Humanos , Masculino , Dose Máxima Tolerável , Doenças Metabólicas/induzido quimicamente , Pessoa de Meia-Idade , Náusea/induzido quimicamente , Purinas/administração & dosagem , Roscovitina , Vômito/induzido quimicamente
13.
Expert Opin Ther Targets ; 10(3): 429-44, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16706683

RESUMO

The renewed interest in an enzyme first discovered over 25 years ago stems from the potential of inhibitors of this enzyme to treat conditions as diverse as diabetes, Alzheimer's disease, stroke and bipolar disorder, and even to enhance the repopulating capacity of transplanted haematopoietic stem cells. The emergence of the first few potent and specific glycogen synthase kinase-3 (GSK-3) inhibitors will end years of speculation on their potential and finally allow the impact of GSK-3 inhibitors to be evaluated clinically. The next few years are likely to be particularly exciting ones for fans of this old enzyme. This review focuses on the role of GSK-3 in the insulin signalling pathway and highlights the evidence implicating the enzyme in insulin resistance. Pharmacological in vitro and in vivo proof-of-concept studies are also discussed, which establish the therapeutic potential of GSK-3 inhibitors as agents for the treatment of Type 2 diabetes.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Quinase 3 da Glicogênio Sintase/metabolismo , Insulina/fisiologia , Transdução de Sinais/fisiologia , Sequência de Aminoácidos , Animais , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Humanos , Insulina/genética , Dados de Sequência Molecular , Transdução de Sinais/efeitos dos fármacos
14.
J Biol Chem ; 281(46): 35021-9, 2006 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-16982607

RESUMO

FRAT1, like its Xenopus homolog glycogen synthase kinase-3 (GSK-3)-binding protein, is known to inhibit GSK-3-mediated phosphorylation of beta-catenin. It is currently unknown how FRAT-GSK-3-binding protein activity toward GSK-3 is regulated. FRAT1 has recently been shown to be a phosphoprotein in vivo; however, the responsible kinase(s) have not been determined. In this study, we identified Ser188 as a phosphorylated residue in FRAT1. The identity of the kinase that catalyzes Ser188 phosphorylation and the significance of this phosphorylation to FRAT1 function were investigated. Protein kinase A (PKA) was found to phosphorylate Ser188 in vitro as well as in intact cells. Importantly, activation of endogenous cAMP-coupled beta-adrenergic receptors with norepinephrine stimulated the phosphorylation of FRAT1 at Ser188. GSK-3 was also able to phosphorylate FRAT1 at Ser188 and other residues in vitro or when overexpressed in intact cells. In contrast, endogenous GSK-3 did not lead to significant FRAT1 phosphorylation in cells, suggesting that GSK-3 is not a major FRAT1 kinase in vivo. Phosphorylation of Ser188 by PKA inhibited the ability of FRAT1 to activate beta-catenin-dependent transcription. In conclusion, PKA phosphorylates FRAT1 in vitro as well as in intact cells and may play a role in regulating the inhibitory activity of FRAT1 toward GSK-3.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Linhagem Celular , Humanos , Fosforilação , Proteína Quinase C/metabolismo , Especificidade por Substrato , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa