Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 172(4): 638-640, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29425483

RESUMO

Many processes controlling cell growth and death are well characterized for individual cell lineages, but how ensembles of different cell types in a tissue regulate collective size and composition remains unclear. In this issue of Cell, Zhou et al. employ experiments and theory to uncover design principles of tissue homeostasis arising from cross-talk between fibroblasts and macrophages.


Assuntos
Homeostase , Macrófagos , Linhagem da Célula , Fenômenos Fisiológicos Celulares , Fibroblastos
2.
Mol Syst Biol ; 12(12): 895, 2016 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-27994041

RESUMO

Biological functions are typically performed by groups of cells that express predominantly the same genes, yet display a continuum of phenotypes. While it is known how one genotype can generate such non-genetic diversity, it remains unclear how different phenotypes contribute to the performance of biological function at the population level. We developed a microfluidic device to simultaneously measure the phenotype and chemotactic performance of tens of thousands of individual, freely swimming Escherichia coli as they climbed a gradient of attractant. We discovered that spatial structure spontaneously emerged from initially well-mixed wild-type populations due to non-genetic diversity. By manipulating the expression of key chemotaxis proteins, we established a causal relationship between protein expression, non-genetic diversity, and performance that was theoretically predicted. This approach generated a complete phenotype-to-performance map, in which we found a nonlinear regime. We used this map to demonstrate how changing the shape of a phenotypic distribution can have as large of an effect on collective performance as changing the mean phenotype, suggesting that selection could act on both during the process of adaptation.


Assuntos
Quimiotaxia , Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiologia , Técnicas Analíticas Microfluídicas/instrumentação , Adaptação Fisiológica , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Modelos Biológicos , Fenótipo
3.
PLoS Comput Biol ; 12(9): e1005041, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27599206

RESUMO

Understanding how stochastic molecular fluctuations affect cell behavior requires the quantification of both behavior and protein numbers in the same cells. Here, we combine automated microscopy with in situ hydrogel polymerization to measure single-cell protein expression after tracking swimming behavior. We characterized the distribution of non-genetic phenotypic diversity in Escherichia coli motility, which affects single-cell exploration. By expressing fluorescently tagged chemotaxis proteins (CheR and CheB) at different levels, we quantitatively mapped motile phenotype (tumble bias) to protein numbers using thousands of single-cell measurements. Our results disagreed with established models until we incorporated the role of CheB in receptor deamidation and the slow fluctuations in receptor methylation. Beyond refining models, our central finding is that changes in numbers of CheR and CheB affect the population mean tumble bias and its variance independently. Therefore, it is possible to adjust the degree of phenotypic diversity of a population by adjusting the global level of expression of CheR and CheB while keeping their ratio constant, which, as shown in previous studies, confers functional robustness to the system. Since genetic control of protein expression is heritable, our results suggest that non-genetic diversity in motile behavior is selectable, supporting earlier hypotheses that such diversity confers a selective advantage.


Assuntos
Quimiotaxia/fisiologia , Proteínas de Escherichia coli/análise , Escherichia coli/metabolismo , Escherichia coli/fisiologia , Biologia Computacional , Proteínas de Escherichia coli/metabolismo , Metiltransferases/análise , Metiltransferases/metabolismo , Análise de Célula Única
5.
Cell Rep ; 43(5): 114145, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38669141

RESUMO

Acute myeloid leukemia (AML) is an aggressive disease with a poor prognosis (5-year survival rate of 30.5% in the United States). Designing cell therapies to target AML is challenging because no single tumor-associated antigen (TAA) is highly expressed on all cancer subpopulations. Furthermore, TAAs are also expressed on healthy cells, leading to toxicity risk. To address these targeting challenges, we engineer natural killer (NK) cells with a multi-input gene circuit consisting of chimeric antigen receptors (CARs) controlled by OR and NOT logic gates. The OR gate kills a range of AML cells from leukemic stem cells to blasts using a bivalent CAR targeting FLT3 and/or CD33. The NOT gate protects healthy hematopoietic stem cells (HSCs) using an inhibitory CAR targeting endomucin, a protective antigen unique to healthy HSCs. NK cells with the combined OR-NOT gene circuit kill multiple AML subtypes and protect primary HSCs, and the circuit also works in vivo.


Assuntos
Células Matadoras Naturais , Leucemia Mieloide Aguda , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Humanos , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/imunologia , Animais , Camundongos , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Antígenos Quiméricos/imunologia , Redes Reguladoras de Genes , Células-Tronco Hematopoéticas/metabolismo , Linhagem Celular Tumoral , Medicina de Precisão/métodos , Terapia Baseada em Transplante de Células e Tecidos/métodos
6.
Science ; 378(6625): eaba1624, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36520915

RESUMO

Chimeric antigen receptor (CAR) T cells are ineffective against solid tumors with immunosuppressive microenvironments. To overcome suppression, we engineered circuits in which tumor-specific synNotch receptors locally induce production of the cytokine IL-2. These circuits potently enhance CAR T cell infiltration and clearance of immune-excluded tumors, without systemic toxicity. The most effective IL-2 induction circuit acts in an autocrine and T cell receptor (TCR)- or CAR-independent manner, bypassing suppression mechanisms including consumption of IL-2 or inhibition of TCR signaling. These engineered cells establish a foothold in the target tumors, with synthetic Notch-induced IL-2 production enabling initiation of CAR-mediated T cell expansion and cell killing. Thus, it is possible to reconstitute synthetic T cell circuits that activate the outputs ultimately required for an antitumor response, but in a manner that evades key points of tumor suppression.


Assuntos
Terapia de Imunossupressão , Imunoterapia Adotiva , Interleucina-2 , Neoplasias , Receptores de Antígenos Quiméricos , Linfócitos T , Humanos , Imunoterapia Adotiva/métodos , Interleucina-2/genética , Interleucina-2/metabolismo , Neoplasias/imunologia , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T/imunologia , Linfócitos T/transplante , Microambiente Tumoral , Animais , Camundongos , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Engenharia Celular , Receptores Notch/metabolismo , Terapia de Imunossupressão/métodos
7.
Curr Opin Chem Biol ; 52: 31-38, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31150899

RESUMO

Cell-cell communication governs the biological behaviors of multicellular populations such as developmental and immunological systems. Thanks to intense genetic analytical studies, the molecular components of cell-cell communication pathways have been well identified. We also have been developing synthetic biology tools to control cellular sensing and response systems that enable engineering of new cell-cell communication with design-based regulatory features. Recently, using these molecular backgrounds, synthetic cellular networks have been built and tested to understand the basic principles of multicellular biological behaviors. These approaches will provide new capabilities to control and program desired biological behaviors with engineered cell-cell communication to apply them toward cell-based therapeutics.


Assuntos
Comunicação Celular , Engenharia Celular , Biologia Sintética , Morfogênese
8.
Bioconjug Chem ; 19(12): 2304-7, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19053307

RESUMO

A new method for protein surface functionalization was developed that utilizes DNA-conjugated artificial polypeptides to capture recombinant target proteins from the solution phase and direct their deposition onto DNA-functionalized matrices. Protein capture is accomplished through the coiled-coil association of an engineered pair of heterodimeric leucine zippers. Incorporating half of the zipper complex directly into the polypeptides and labeling these polymers with ssDNA enables the polypeptide conjugates to form intermediate linkages that connect the target proteins securely to DNA-functionalized supports. This synthetic route provides an important alternative to conventional DNA-conjugation techniques by allowing proteins to be outfitted site-specifically with ssDNA while minimizing the need for postexpression processing. We demonstrate these attributes by (i) using the capture probes to prepare protein microarrays, (ii) demonstrating control over enzyme activity via deposition of DNA, and, (iii) synthesizing finite-sized, multiprotein complexes that are templated on designed DNA scaffolds in near quantitative yield.


Assuntos
DNA/metabolismo , Proteínas Imobilizadas/metabolismo , Peptídeos/metabolismo , Sequência de Aminoácidos , DNA/química , DNA de Cadeia Simples/metabolismo , Proteínas Imobilizadas/genética , Dados de Sequência Molecular , Peptídeos/química , Engenharia de Proteínas
9.
Annu Rev Biophys ; 47: 595-616, 2018 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-29618219

RESUMO

Living cells detect and process external signals using signaling pathways that are affected by random fluctuations. These variations cause the behavior of individual cells to fluctuate over time (behavioral variability) and generate phenotypic differences between genetically identical individuals (phenotypic diversity). These two noise sources reduce our ability to predict biological behavior because they diversify cellular responses to identical signals. Here, we review recent experimental and theoretical advances in understanding the mechanistic origin and functional consequences of such variation in Escherichia coli chemotaxis-a well-understood model of signal transduction and behavior. After briefly summarizing the architecture and logic of the chemotaxis system, we discuss determinants of behavior and chemotactic performance of individual cells. Then, we review how cell-to-cell differences in protein abundance map onto differences in individual chemotactic abilities and how phenotypic variability affects the performance of the population. We conclude with open questions to be addressed by future research.


Assuntos
Bactérias/química , Quimiotaxia/genética , Fenótipo , Transdução de Sinais
10.
Elife ; 32014 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-25279698

RESUMO

Bacterial chemotaxis systems are as diverse as the environments that bacteria inhabit, but how much environmental variation can cells tolerate with a single system? Diversification of a single chemotaxis system could serve as an alternative, or even evolutionary stepping-stone, to switching between multiple systems. We hypothesized that mutations in gene regulation could lead to heritable control of chemotactic diversity. By simulating foraging and colonization of E. coli using a single-cell chemotaxis model, we found that different environments selected for different behaviors. The resulting trade-offs show that populations facing diverse environments would ideally diversify behaviors when time for navigation is limited. We show that advantageous diversity can arise from changes in the distribution of protein levels among individuals, which could occur through mutations in gene regulation. We propose experiments to test our prediction that chemotactic diversity in a clonal population could be a selectable trait that enables adaptation to environmental variability.


Assuntos
Adaptação Fisiológica/genética , Proteínas de Bactérias/genética , Quimiotaxia/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Modelos Estatísticos , Proteínas de Bactérias/metabolismo , Evolução Biológica , Células Clonais , Escherichia coli/metabolismo , Fenótipo , Seleção Genética , Análise de Célula Única , Processos Estocásticos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa