Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Vis Neurosci ; 41: E002, 2024 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-38725382

RESUMO

Animal models of retinal degeneration are critical for understanding disease and testing potential therapies. Inducing degeneration commonly involves the administration of chemicals that kill photoreceptors by disrupting metabolic pathways, signaling pathways, or protein synthesis. While chemically induced degeneration has been demonstrated in a variety of animals (mice, rats, rabbits, felines, 13-lined ground squirrels (13-LGS), pigs, chicks), few studies have used noninvasive high-resolution retinal imaging to monitor the in vivo cellular effects. Here, we used longitudinal scanning light ophthalmoscopy (SLO), optical coherence tomography, and adaptive optics SLO imaging in the euthermic, cone-dominant 13-LGS (46 animals, 52 eyes) to examine retinal structure following intravitreal injections of chemicals, which were previously shown to induce photoreceptor degeneration, throughout the active season of 2019 and 2020. We found that iodoacetic acid induced severe pan-retinal damage in all but one eye, which received the lowest concentration. While sodium nitroprusside successfully induced degeneration of the outer retinal layers, the results were variable, and damage was also observed in 50% of contralateral control eyes. Adenosine triphosphate and tunicamycin induced outer retinal specific damage with varying results, while eyes injected with thapsigargin did not show signs of degeneration. Given the variability of damage we observed, follow-up studies examining the possible physiological origins of this variability are critical. These additional studies should further advance the utility of chemically induced photoreceptor degeneration models in the cone-dominant 13-LGS.


Assuntos
Células Fotorreceptoras Retinianas Cones , Degeneração Retiniana , Sciuridae , Tomografia de Coerência Óptica , Animais , Degeneração Retiniana/induzido quimicamente , Degeneração Retiniana/patologia , Células Fotorreceptoras Retinianas Cones/patologia , Células Fotorreceptoras Retinianas Cones/efeitos dos fármacos , Modelos Animais de Doenças , Injeções Intravítreas , Oftalmoscopia , Nitroprussiato/farmacologia , Feminino , Masculino
2.
Front Ophthalmol (Lausanne) ; 4: 1373549, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38984134

RESUMO

Introduction: Clinical tools have been widely used in the diagnosis, description, and monitoring the progression of retinitis pigmentosa (RP); however, many of these methods have inherently low sensitivity and specificity, and significant photoreceptor disruption can occur before RP progression has clinically manifest. Adaptive optics scanning light ophthalmoscopy (AOSLO) has shown promise as a powerful tool for assessing photoreceptor disruption both structurally and functionally due to its increased resolution. Methods: Here we assess photoreceptor structure and function at the cellular level through AOSLO by acquiring intensity based optoretinography (iORG) in 15 individuals with no reported retinal pathology and 7 individuals with a prior clinical diagnosis of RP. Photoreceptor structure was quantified by calculating cone nearest neighbor distance (NND) across different retinal eccentricities from the AOSLO images. Cone outer segment length was measured across different retinal eccentricities using optical coherence tomography (OCT) derived longitudinal reflectivity profiles (LRPs). Finally, iORG measures of photoreceptor function were compared to retinal sensitivity as measured using the macular integrity assessment (MAIA) microperimeter. Results: Broadly, participants with RP exhibited increasing cone nearest neighbor distances and decreasing cone outer segment length as a function of retinal eccentricity, consistent with prior reports for both controls and individuals with RP. Nearly all individuals with RP had reduced iORG amplitudes for all retinal eccentricities when compared to the control cohort, and the reduction was greater in eccentricities further from the fovea. Comparing iORG amplitudes to MAIA retinal sensitivity, we found that the iORG was more sensitive to early changes in photoreceptor function whereas MAIA was more sensitive to later stages of disease. Discussion: This highlights the utility of iORG as a method to detect sub-clinical deficits in cone function in all stages of disease progression and supports the future use of iORG for identifying cells that are candidates for cellular based therapies.

3.
Transl Vis Sci Technol ; 12(6): 26, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37378965

RESUMO

Translational Relevance: Quantitative assessment of OCT-A images includes evaluating circularity and roundness of the FAZ. Inconsistent or inaccurate mathematical definitions of these metrics impacts their utility as biomarkers and impairs the ability to combine and compare results across studies.


Assuntos
Fóvea Central , Macula Lutea , Fóvea Central/diagnóstico por imagem , Angiofluoresceinografia/métodos , Vasos Retinianos , Tomografia de Coerência Óptica/métodos
4.
Biomed Opt Express ; 14(1): 1-17, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36698662

RESUMO

Quantification of the rod photoreceptor mosaic using adaptive optics scanning light ophthalmoscopy (AOSLO) remains challenging. Here we demonstrate a method for deriving estimates of rod density and rod:cone ratio based on measures of rod spacing, cone numerosity, and cone inner segment area. Twenty-two AOSLO images with complete rod visualization were used to validate this spacing-derived method for estimating density. The method was then used to estimate rod metrics in an additional 105 images without complete rod visualization. The spacing-derived rod mosaic metrics were comparable to published data from histology. This method could be leveraged to develop large normative databases of rod mosaic metrics, though limitations persist with intergrader variability in assessing cone area and numerosity.

5.
Transl Vis Sci Technol ; 12(8): 2, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37531114

RESUMO

Purpose: The purpose of this study was to examine the sensitivity of quantitative metrics of the retinal vasculature derived from optical coherence tomography angiography (OCT-A) images. Methods: Full retinal vascular slab OCT-A images were obtained from 94 healthy participants. Capillary loss, at 1% increments up to 50%, was simulated by randomly removing capillary segments (1000 iterations of randomized loss for each participant at each percent loss). Thirteen quantitative metrics were calculated for each image: foveal avascular zone (FAZ) area, vessel density, vessel complexity index (VCI), vessel perimeter index (VPI), fractal dimension (FD), and parafoveal intercapillary area (PICA) measurements with and without the FAZ (mean PICA, summed PICA, PICA regularity, and PICA standard deviation [PICA SD]). The sensitivity of each metric was calculated as the percent loss at which 80% of the iterations for a participant fell outside of two standard deviations from the sample's normative mean. Results: The most used OCT-A metrics, FAZ area and vessel density, were not significantly different from normative values until 27.69% and 16.00% capillary loss, respectively. Across the remaining metrics, metric sensitivity ranged from 6.37% (PICA SD without FAZ) to 39.78% (Summed PICA without FAZ). Conclusions: The sensitivity of vasculature metrics for detecting random capillary loss varies substantially. Further efforts simulating different patterns of capillary loss are needed for comparison. Additionally, mapping the repeatability of metrics over time in a normal population is needed to further define metric sensitivity. Translational Relevance: Quantitative metrics vary in their ability to detect vascular abnormalities in OCT-A images. Metric choice in screening studies will need to balance expected capillary abnormalities and the quality of the OCT-A images being used.


Assuntos
Macula Lutea , Tomografia de Coerência Óptica , Humanos , Tomografia de Coerência Óptica/métodos , Benchmarking , Vasos Retinianos/diagnóstico por imagem , Angiofluoresceinografia/métodos
6.
Biomed Opt Express ; 13(8): 4445-4454, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36032569

RESUMO

The foveal cone mosaic can be directly visualized using adaptive optics scanning light ophthalmoscopy (AOSLO). Previous studies in individuals with normal vision report wide variability in the topography of the foveal cone mosaic, especially the value of peak cone density (PCD). While these studies often involve a human grader, there have been no studies examining intergrader reproducibility of foveal cone mosaic metrics. Here we re-analyzed published AOSLO foveal cone images from 44 individuals to assess the relationship between the cone density centroid (CDC) location and the location of PCD. Across 5 graders with variable experience, we found a measurement error of 11.7% in PCD estimates and higher intergrader reproducibility of CDC location compared to PCD location (p < 0.0001). These estimates of measurement error can be used in future studies of the foveal cone mosaic, and our results support use of the CDC location as a more reproducible anchor for cross-modality analyses.

7.
Biomed Opt Express ; 12(6): 3142-3168, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34221651

RESUMO

To mitigate the substantial post-processing burden associated with adaptive optics scanning light ophthalmoscopy (AOSLO), we have developed an open-source, automated AOSLO image processing pipeline with both "live" and "full" modes. The live mode provides feedback during acquisition, while the full mode is intended to automatically integrate the copious disparate modules currently used in generating analyzable montages. The mean (±SD) lag between initiation and montage placement for the live pipeline was 54.6 ± 32.7s. The full pipeline reduced overall human operator time by 54.9 ± 28.4%, with no significant difference in resultant cone density metrics. The reduced overhead decreases both the technical burden and operating cost of AOSLO imaging, increasing overall clinical accessibility.

8.
Transl Vis Sci Technol ; 10(8): 5, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34232271

RESUMO

Purpose: To assess the performance of two spectral-domain optical coherence tomography-angiography systems in a natural model of hypoperfusion: the hibernating thirteen-lined ground squirrel (13-LGS). Methods: Using a high-speed (130 kHz) OCT-A system (HS-OCT-A) and a commercial OCT (36 kHz; Bioptigen Envisu; BE-OCT-A), we imaged the 13-LGS retina throughout its hibernation cycle. Custom software was used to extract the superior, middle, and deep capillary plexus (SCP, MCP, and DCP, respectively). The retinal vasculature was also imaged with adaptive optics scanning light ophthalmoscopy (AOSLO) during torpor to visualize individual blood cells. Finally, correlative histology with immunolabeled or DiI-stained vasculature was performed. Results: During euthermia, vessel density was similar between devices for the SCP and MCP (P = 0.88, 0.72, respectively), with a small difference in the DCP (-1.63 ± 1.54%, P = 0.036). Apparent capillary dropout was observed during torpor, but recovered after forced arousal, and this effect was exaggerated in high-speed OCT-A imaging. Based on cell flux measurements with AOSLO, increasing OCT-A scan duration by ∼1000× would avoid the apparent capillary dropout artifact. High correspondence between OCT-A (during euthermia) and histology enabled lateral scale calibration. Conclusions: While the HS-OCT-A system provides a more efficient workflow, the shorter interscan interval may render it more susceptible to the apparent capillary dropout artifact. Disambiguation between capillary dropout and transient ischemia can have important implications in the management of retinal disease and warrants additional diagnostics. Translational Relevance: The 13-LGS provides a natural model of hypoperfusion that may prove valuable in modeling the utility of OCT-A in human pathologies associated with altered blood flow.


Assuntos
Retina , Tomografia de Coerência Óptica , Angiografia , Animais , Humanos , Oftalmoscopia , Retina/diagnóstico por imagem , Sciuridae
9.
Exp Biol Med (Maywood) ; 246(20): 2192-2201, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34308656

RESUMO

In vivo images of human cone photoreceptors have been shown to vary in their reflectance both spatially and temporally. While it is generally accepted that the unique anatomy and physiology of the photoreceptors themselves drives this behavior, the exact mechanisms have not been fully elucidated as most studies on these phenomena have been limited to the human retina. Unlike humans, animal models offer the ability to experimentally manipulate the retina and perform direct in vivo and ex vivo comparisons. The thirteen-lined ground squirrel and northern tree shrew are two emerging animal models being used in vision research. Both models feature cone-dominant retinas, overcoming a key limitation of traditional rodent models. Additionally, each possesses unique but well-documented anatomical differences in cone structure compared to human cones, which can be leveraged to further constrain theoretical models of light propagation within photoreceptors. Here we sought to characterize the spatial and temporal reflectance behavior of cones in these species. Adaptive optics scanning light ophthalmoscopy (AOSLO) was used to non-invasively image the photoreceptors of both species at 5 to 10 min intervals over the span of 18 to 25 min. The reflectance of individual cone photoreceptors was measured over time, and images at individual time points were used to assess the variability of cone reflectance across the cone mosaic. Variability in spatial and temporal photoreceptor reflectance was observed in both species, with similar behavior to that seen in human AOSLO images. Despite the unique cone structure in these animals, these data suggest a common origin of photoreceptor reflectance behavior across species. Such data may help constrain models of the cellular origins of photoreceptor reflectance signals. These animal models provide an experimental platform to further explore the morphological origins of light capture and propagation.


Assuntos
Oftalmoscopia/métodos , Retina/anatomia & histologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Sciuridae/anatomia & histologia , Tupaia/anatomia & histologia , Animais , Feminino , Masculino , Modelos Animais , Fatores de Tempo
10.
Invest Ophthalmol Vis Sci ; 61(14): 23, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33331861

RESUMO

Purpose: To test the hypothesis that foveal cone topography is symmetrical between contralateral eyes. Methods: We used adaptive optics scanning light ophthalmoscopy to acquire images of the foveal cone mosaic in each eye of 58 subjects with normal vision (35 female, 23 male). Cones were semiautomatically identified over a 300 × 300-µm foveal area. From these cone coordinates, maps of cone density were derived, and we extracted estimates of peak cone density from each map. Mosaic regularity was assessed using Voronoi cell area regularity (VCAR). Average roundness and average area of the 70%, 75%, 80%, 85%, and 90% of peak density isodensity contours were evaluated. Results: The average peak cone density for right eyes was 180,286 cones/mm2 (n = 49) and for left eyes was 182,397 cones/mm2 (n = 45), with a mean absolute difference of 6363 cones/mm2 (n = 43). Peak density, cone spacing, VCAR, and average area within the isodensity contours of fellow eyes were not significantly different (P = 0.60, P = 0.83, P = 0.30, and P = 0.39, respectively). However, the average roundness of the isodensity contours was 2% more circular in the right eyes than in the left eyes (P = 0.02). Conclusions: There is interocular symmetry of peak foveal cone density, mosaic regularity, and area encompassing the most densely packed cells in subjects with normal vision. The origin and significance of the observed interocular difference in average roundness of the isodensity contours are unclear.


Assuntos
Fóvea Central/anatomia & histologia , Células Fotorreceptoras Retinianas Cones/citologia , Adolescente , Adulto , Idoso , Contagem de Células , Criança , Feminino , Fóvea Central/citologia , Fóvea Central/diagnóstico por imagem , Humanos , Masculino , Pessoa de Meia-Idade , Oftalmoscopia , Adulto Jovem
11.
Transl Vis Sci Technol ; 8(5): 21, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31602346

RESUMO

PURPOSE: We examine the interocular symmetry of foveal outer nuclear layer (ONL) thickness measurements in subjects with achromatopsia (ACHM). METHODS: Images from 76 subjects with CNGA3- or CNGB3-associated ACHM and 42 control subjects were included in the study. Line or volume scans through the fovea of each eye were acquired using optical coherence tomography (OCT). Image quality was assessed for each image included in the analysis using a previously-described maximum tissue contrast index (mTCI) metric. Three foveal ONL thickness measurements were made by a single observer and interocular symmetry was assessed using the average of the three measurements for each eye. RESULTS: Mean (± standard deviation) foveal ONL thickness for subjects with ACHM was 79.7 ± 18.3 µm (right eye) and 79.2 ± 18.7 µm (left eye) compared to 112.9 ± 15.2 (right eye) and 112.1 ± 13.9 µm (left eye) for controls. Foveal ONL thickness did not differ between eyes for ACHM (P = 0.636) or control subjects (P = 0.434). No significant relationship between mTCI and observer repeatability was observed for either control (P = 0.140) or ACHM (P = 0.351) images. CONCLUSIONS: While foveal ONL thickness is reduced in ACHM compared to controls, the high interocular symmetry indicates that contralateral ONL measurements could be used as a negative control in early-phase monocular treatment trials. TRANSLATIONAL RELEVANCE: Foveal ONL thickness can be measured using OCT images over a wide range of image quality. The interocular symmetry of foveal ONL thickness in ACHM and control populations supports the use of the non-study eye as a control for clinical trial purposes.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa