Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Soc Rev ; 52(5): 1650-1671, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36744507

RESUMO

The fabrication of wafer-scale two-dimensional (2D) materials is a prerequisite and important step for their industrial applications. Chemical vapor deposition (CVD) is the most promising approach to produce high-quality films in a scalable way. Recent breakthroughs in the epitaxy of wafer-scale single-crystalline graphene, hexagonal boron nitride, and transition-metal dichalcogenides highlight the pivotal roles of substrate engineering by lattice orientation, surface steps, and energy considerations. This review focuses on the existing strategies and underlying mechanisms, and discusses future directions in epitaxial substrate engineering to deliver wafer-scale 2D materials for integrated electronics and photonics.

2.
Molecules ; 27(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36558025

RESUMO

Facing the explosive growth of data, a number of new micro-nano devices with simple structure, low power consumption, and size scalability have emerged in recent years, such as neuromorphic computing based on memristor. The selection of resistive switching layer materials is extremely important for fabricating of high performance memristors. As an organic-inorganic hybrid material, metal-organic frameworks (MOFs) have the advantages of both inorganic and organic materials, which makes the memristors using it as a resistive switching layer show the characteristics of fast erasing speed, outstanding cycling stability, conspicuous mechanical flexibility, good biocompatibility, etc. Herein, the recent advances of MOFs-based memristors in materials, devices, and applications are summarized, especially the potential applications of MOFs-based memristors in data storage and neuromorphic computing. There also are discussions and analyses of the challenges of the current research to provide valuable insights for the development of MOFs-based memristors.

3.
Small ; 16(50): e2005246, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33230955

RESUMO

Cesium lead iodide (CsPbI3 ) perovskite has gained great attention due to its potential thermal stability and appropriate bandgap (≈1.73 eV) for tandem cells. However, the moisture-induced thermodynamically unstable phase and large open-circuit voltage (VOC ) deficit and also the low efficiency seriously limit its further development. Herein, long chain phenylethylammonium (PEA) is utilized into CsPbI3 perovskite to stabilize the orthorhombic black perovskite phase (γ-CsPbI3 ) under ambient condition. Furthermore, the moderate lead acetate (Pb(OAc)2 ) is controlled to combine with phenylethylammonium iodide to form the 2D perovskite, which can dramatically suppress the charge recombination in CsPbI3 . Unprecedentedly, the resulted CsPbI3 solar cells achieve a 17% power conversion efficiency with a record VOC of 1.33 V, the VOC deficit is only 0.38 V, which is close to those in organic-inorganic perovskite solar cells (PSCs). Meanwhile, the PEA modified device maintains 94% of its initial efficiency after exceeding 2000 h of storage in the low-humidity controlled environment without encapsulation.

4.
Opt Express ; 28(26): 38592-38602, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33379426

RESUMO

Monolayer two-dimensional materials (2DMs) have excellent optical and electrical properties and show great application potential in photodetectors. However, the thickness at the atomic scale leads to weak light absorption, which greatly limits the responsivity of corresponding photodetectors. Here we propose an all-dielectric sub-wavelength zero-contrast grating structure that enables a monolayer of MoS2 with ultra-narrow bandwidth perfect light absorption. The absorption enhancement can be attributed to the critical coupling of guided mode resonances from two specific order diffractions in the structure, as confirmed by the planar waveguide theory and coupled mode theory. Such absorption enhancement can be generalized to any other absorptive atomically thin films, and the wavelength of perfect absorption can be tuned by scaling the dimension of the photonic structure. Our results offer a promising photonic approach to realize ultra-highly sensitive narrow-band photodetectors by using atomically thin materials.

5.
Nanotechnology ; 30(19): 195401, 2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-30673648

RESUMO

PEDOT: PSS/silicon heterojunction solar cell has recently attracted much attention due to the fact that it can be simply and cost-effectively fabricated. It is crucial to suppress the interfacial recombination rate between silicon (Si) and organic film for improving device efficiency. In this study, we demonstrated a thickness-dependent passivation effect, i.e. the passivation quality over Si substrate was promoted dramatically with increasing the thickness of PEDOT:PSS layer. The effective minority carrier lifetime increased from 32 µs for 50 nm to 360 µs for 200 nm, which corresponds to a change in implied open circuit voltage (V oc-implied) from 545 to 635 mV. Back-junction hybrid solar cells featuring PEDOT:PSS films at rear side were designed to enable adoption of thick PEDOT:PSS layers without having to worry about parasitic absorption, showing a power conversion efficiency (PCE) of 16.3%. Combined with a proper pre-condition on the Si substrate, the back-junction hybrid solar cell with 200 nm PEDOT:PSS layer received an enhanced PCE of 16.8%. In addition, the improved long-term stability for the back-junction device was also observed. The PCE remained 90% (unsealed) after being stored in ambient atmosphere for 30 days and over 80% (sealed) after 150 days.

6.
Small ; 14(15): e1704493, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29488322

RESUMO

Surface nanotexturing with excellent light-trapping property is expected to significantly increase the conversion efficiency of solar cells. However, limited by the serious surface recombination arising from the greatly enlarged surface area, the silicon (Si) nanotexturing-based solar cells cannot yet achieve satisfactory high efficiency, which is more prominent in organic/Si hybrid solar cells (HSCs) where a uniform polymer layer can rarely be conformably coated on nanotextured substrate. Here, the HSCs featuring advanced surface texture of periodic upright nanopyramid (UNP) arrays and hole-conductive conjugated polymers, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), are investigated. The tetramethylammonium hydroxide etching is used to smooth the surface morphologies of the Si-UNPs, leading to reduced surface defect states. The uniform Si-UNPs together with silane chemical-incorporated PEDOT:PSS solution enable the simultaneous realization of excellent broadband light absorption as well as enhanced electrical contact between the textured Si and the conducting polymer. The resulting PEDOT:PSS/Si HSCs textured with UNP arrays show a promising power conversion efficiency of 13.8%, significantly higher than 12.1% of the cells based on the-state-of-the-art surface texture with random pyramids. These results provide a viable route toward shape-controlled nanotexturing-based high-performance organic/Si HSCs.

7.
Opt Express ; 25(9): 10464-10472, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28468418

RESUMO

Surface-texture with silicon (Si) nanopyramid arrays has been considered as a promising choice for extremely high performance solar cells due to their excellent anti-reflective effects and inherent low parasitic surface areas. However, the current techniques of fabricating Si nanopyramid arrays are always complicated and cost-ineffective. Here, a high throughput nanosphere patterning method is developed to form periodic upright nanopyramid (UNP) arrays in wafer-scale. A direct comparison with the state-of-the-art texture of random pyramids is demonstrated in optical and electronic properties. In combination with the antireflection effect of a SiNx coating layer, the periodic UNP arrays help to provide a remarkable improvement in short-wavelength response over the random pyramids, attributing to a short-current density gain of 1.35 mA/cm2. The advanced texture of periodic UNP arrays provided in this work shows a huge potential to be integrated into the mass production of high-efficiency Si solar cells.

8.
Opt Lett ; 42(10): 1891-1894, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28504752

RESUMO

A large-scale nanostructured low-temperature solar selective absorber is demonstrated experimentally. It consists of a silicon dioxide thin film coating on a rough refractory tantalum substrate, fabricated based simply on self-assembled, closely packed polystyrene nanospheres. Because of the strong light harvesting of the surface nanopatterns and constructive interference within the top silicon dioxide coating, our absorber has a much higher solar absorption (0.84) than its planar counterpart (0.78). Though its absorption is lower than that of commercial black paint with ultra-broad absorption, the greatly suppressed absorption/emission in the long range still enables a superior heat accumulation. The working temperature is as high as 196.3°C under 7-sun solar illumination in ambient conditions-much higher than those achieved by the two comparables.

9.
Nanotechnology ; 28(47): 474001, 2017 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-29098987

RESUMO

2D metallic arrays with binary nanostructures derived from a nanosphere lithography (NSL) method have been rarely reported. Here, we demonstrate a novel NSL strategy to fabricate highly ordered 2D gold arrays with disc-in-hole binary (DIHB) nanostructures in large scale by employing a sacrificing layer combined with a three-step lift-off process. The structural parameters of the resultant DIHB arrays, such as periodicity, hole diameter, disc diameter and thicknesses can be facilely controlled by tuning the nanospheres size, etching condition, deposition angle and duration, respectively. Due to the intimate interactions between two subcomponents, the DIHB arrays exhibit both an extraordinary high surface-enhanced Raman scattering enhancement factor up to 5 × 108 and a low sheet resistance down to 1.7 Ω/sq. Moreover, the DIHB array can also be used as a metal catalyzed chemical etching catalytic pattern to create vertically-aligned Si nano-tube arrays for anti-reflectance application. This strategy provides a universal route for synthesizing other diverse binary nanostructures with controlled morphology, and thus expands the applications of the NSL to prepare ordered nanostructures with multi-function.

10.
Opt Lett ; 41(7): 1329-32, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27192228

RESUMO

We propose a design of crystalline silicon thin-film solar cells (c-Si TFSCs, 2 µm-thick) configured with partially embedded dielectric spheres on the light-injecting side. The intrinsic light trapping and photoconversion are simulated by the complete optoelectronic simulation. It shows that the embedding depth of the spheres provides an effective way to modulate and significantly enhance the optical absorption. Compared to the conventional planar and front sphere systems, the optimized partially embedded sphere design enables a broadband, wide-angle, and strong optical absorption and efficient carrier transportation. Optoelectronic simulation predicts that a 2 µm-thick c-Si TFSC with half-embedded spheres shows an increment of more than 10 mA/cm2 in short-circuit current density and an enhancement ratio of more than 56% in light-conversion efficiency, compared to the conventional planar counterparts.

11.
Nano Lett ; 15(7): 4591-8, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26039258

RESUMO

A high throughput surface texturing process for optical and optoelectric devices based on a large-area self-assembly of nanospheres via a low-cost micropropulsive injection (MPI) method is presented. The novel MPI process enables the formation of a well-organized monolayer of hexagonally arranged nanosphere arrays (NAs) with tunable periodicity directly on the water surface, which is then transferred onto the preset substrates. This process can readily reach a throughput of 3000 wafers/h, which is compatible with the high volume photovoltaic manufacturing, thereby presenting a highly versatile platform for the fabrication of periodic nanotexturing on device surfaces. Specifically, a double-sided grating texturing with top-sided nanopencils and bottom-sided inverted-nanopyramids is realized in a thin film of crystalline silicon (28 µm in thickness) using chemical etching on the mask of NAs to significantly enhance antireflection and light trapping, resulting in absorptions nearly approaching the Lambertian limit over a broad wavelength range of 375-1000 nm and even surpassing this limit beyond 1000 nm. In addition, it is demonstrated that the NAs can serve as templates for replicas of three-dimensional conformal amorphous silicon films with significantly enhanced light harvesting. The MPI induced self-assembly process may provide a universal and cost-effective solution for boosting light utilization, a problem of crucial importance for ultrathin solar cells.

12.
Opt Lett ; 40(6): 1077-80, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25768186

RESUMO

We present a crystalline siliconthin-film (5 µm) solar cell decorated by a front nanobowled texture and a rear truncated-nanopyramid silver reflector. This design substantially suppresses the overall light reflection and enhances the optical resonances inside the silicon film leading to the photon-capturing performance comparable to the Yablonovitch limit. We show that optical absorption can be greatly improved by adjusting the ratio of the periods between the rear and front nanostructures with an optimal ultimate photocurrent density around 35.3 mA/cm2 and an enhancement of 42.6% relative to the planar counterpart. A thorough optoelectronic simulation predicts the light-conversion efficiency of around 15.5%, i.e., 67.3% higher than that of the planar system.

13.
Nanotechnology ; 25(6): 065301, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24441981

RESUMO

Fabrication of single-walled carbon nanotube thin film (SWNT-TF) based integrated circuits (ICs) on soft substrates has been challenging due to several processing-related obstacles, such as printed/transferred SWNT-TF pattern and electrode alignment, electrical pad/channel material/dielectric layer flatness, adherence of the circuits onto the soft substrates etc. Here, we report a new approach that circumvents these challenges by encapsulating pre-formed SWNT-TF-ICs on hard substrates into polyimide (PI) and peeling them off to form flexible ICs on a large scale. The flexible SWNT-TF-ICs show promising performance comparable to those circuits formed on hard substrates. The flexible p- and n-type SWNT-TF transistors have an average mobility of around 60 cm(2) V(-1) s(-1), a subthreshold slope as low as 150 mV dec(-1), operating gate voltages less than 2 V, on/off ratios larger than 10(4) and a switching speed of several kilohertz. The post-transfer technique described here is not only a simple and cost-effective pathway to realize scalable flexible ICs, but also a feasible method to fabricate flexible displays, sensors and solar cells etc.

14.
Nat Commun ; 15(1): 3843, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714695

RESUMO

Crystalline silicon solar cells with regular rigidity characteristics dominate the photovoltaic market, while lightweight and flexible thin crystalline silicon solar cells with significant market potential have not yet been widely developed. This is mainly caused by the brittleness of silicon wafers and the lack of a solution that can well address the high breakage rate during thin solar cells fabrication. Here, we present a thin silicon with reinforced ring (TSRR) structure, which is successfully used to prepare free-standing 4.7-µm 4-inch silicon wafers. Experiments and simulations of mechanical properties for both TSRR and conventional thin silicon structures confirm the supporting role of reinforced ring, which can share stress throughout the solar cell preparation and thus suppressing breakage rate. Furthermore, with the help of TSRR structure, an efficiency of 20.33% (certified 20.05%) is achieved on 28-µm silicon solar cell with a breakage rate of ~0%. Combining the simulations of optoelectrical properties for TSRR solar cell, the results indicate high efficiency can be realized by TSRR structure with a suitable width of the ring. Finally, we prepare 50 ~ 60-µm textured 182 × 182 mm2 TSRR wafers and perform key manufacturing processes, confirming the industrial compatibility of the TSRR method.

15.
J Phys Chem Lett ; 15(21): 5689-5695, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38767955

RESUMO

Lead-chloride perovskites are promising candidates for optoelectronic applications, such as visible-blind UV photodetection. It remains unclear how the deep defects in this wide-bandgap material impact the carrier recombination dynamics. In this work, we study the defect properties of MAPbCl3 (MA = CH3NH3) based on photoluminescence (PL) measurements. Our investigations show that apart from the intrinsic emission, four sub-bandgap emissions emerge, which are very likely to originate from the radiative recombination of excitons bound to several intrinsic vacancy and interstitial defects. The intensity of various emission features can be tuned by adjusting the type and ratio of precursors used during synthesis. Our study not only provides important insights into the defect property and carrier recombination mechanism in this class of material but also demonstrates efficient strategies for defect passivation and engineering, paving the way for further development of lead-chloride perovskite-based optoelectronic devices.

16.
Mater Horiz ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953878

RESUMO

Affective computing, representing the forefront of human-machine interaction, is confronted with the pressing challenges of the execution speed and power consumption brought by the transmission of massive data. Herein, we introduce a bionic organic memristor inspired by the ligand-gated ion channels (LGICs) to facilitate near-sensor affective computing based on electroencephalography (EEG). It is constructed from a coordination polymer comprising Co ions and benzothiadiazole (Co-BTA), featuring multiple switching sites for redox reactions. Through advanced characterizations and theoretical calculations, we demonstrate that when subjected to a bias voltage, only the site where Co ions bind with N atoms from four BTA molecules becomes activated, while others remain inert. This remarkable phenomenon resembles the selective in situ activation of LGICs on the postsynaptic membrane for neural signal regulation. Consequently, the bionic organic memristor network exhibits outstanding reliability (200 000 cycles), exceptional integration level (210 pixels), ultra-low energy consumption (4.05 pJ), and fast switching speed (94 ns). Moreover, the built near-sensor system based on it achieves emotion recognition with an accuracy exceeding 95%. This research substantively adds to the ambition of realizing empathetic interaction and presents an appealing bionic approach for the development of novel electronic devices.

17.
Small ; 9(6): 813-9, 2013 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-23208943

RESUMO

An efficient technique of fabricating high performance n- and p- type single-walled carbon nanotube (SWNT) network field-effect transistors (NET-FETs) is successfully demonstrated. Complementary inverters, NOR, NAND, OR, AND logic gates have been achieved from integrating these p- and n-type SWNT-NET-FETs. The processing technique described here is fully compatible with conventional silicon microelectronic technologies and it is readily suitable for scalable integration.

18.
Mater Horiz ; 10(10): 3948-3999, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37466487

RESUMO

Electrochemical energy conversion and storage driven by renewable energy sources is drawing ever-increasing interest owing to the needs of sustainable development. Progress in the related electrochemical reactions relies on highly active and cost-effective catalysts to accelerate the sluggish kinetics. A substantial number of catalysts have been exploited recently, thanks to the advances in materials science and engineering. In particular, molybdenum sulfide (MoSx) furnishes a classic platform for studying catalytic mechanisms, improving catalytic performance and developing novel catalytic reactions. Herein, the recent theoretical and experimental progress of defective MoSx for catalytic applications is reviewed. This article begins with a brief description of the structure and basic catalytic applications of MoS2. The employment of defective two-dimensional and non-two-dimensional MoSx catalysts in the hydrogen evolution reaction (HER) is then reviewed, with a focus on the combination of theoretical and experimental tools for the rational design of defects and understanding of the reaction mechanisms. Afterward, the applications of defective MoSx as catalysts for the N2 reduction reaction, the CO2 reduction reaction, metal-sulfur batteries, metal-oxygen/air batteries, and the industrial hydrodesulfurization reaction are discussed, with a special emphasis on the synergy of multiple defects in achieving performance breakthroughs. Finally, the perspectives on the challenges and opportunities of defective MoSx for catalysis are presented.

19.
Nanoscale ; 15(6): 2924-2931, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36692099

RESUMO

Creating semiconductor thin films from sintering of colloidal nanocrystals (NCs) represents a very important technology for high throughput and low cost thin-film photovoltaics. Here we report the creation of all-inorganic cesium lead bromide (CsPbBr3) polycrystalline films with grain size exceeding 1 µm from the bottom up by sintering of CsPbBr3 NCs terminated with short and low-boiling-point alky ligands that are ideal for use in sintered photovoltaics. The grain growth behavior during the sintering process was carefully investigated and correlated to the solar cell performance. To achieve precise control over the microstructural development we propose a facile two-step sintering process involving the grain growth via coarsening at a relative low temperature followed by densification at a high temperature. Compared with the one-step sintering, the two-step process yields a more uniform CsPbBr3 bulk film with larger grain size, higher density and lower trap density. Consequently, the photovoltaic device based on the two-step sintering process demonstrates a significant enhancement of efficiency with reduced hysteresis that approaches the best reported CsPbBr3 solar cells using a similar configuration. Our study specifies a rarely addressed perspective concerning the sintering mechanism of perovskite NCs and should contribute to the development of high-performance bulk perovskite devices based on the building blocks of perovskite NCs.

20.
Nat Commun ; 14(1): 6125, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37777546

RESUMO

Defects passivation is widely devoted to improving the performance of formamidinium lead triiodide perovskite solar cells; however, the effect of various defects on the α-phase stability is still unclear. Here, using density functional theory, we first reveal the degradation pathway of the formamidinium lead triiodide perovskite from α to δ phase and investigate the effect of various defects on the energy barrier of phase transition. The simulation results predict that iodine vacancies are most likely to trigger the degradation, since they obviously reduce the energy barrier of α-to-δ phase transition and have the lowest formation energies at the perovskite surface. A water-insoluble lead oxalate compact layer is introduced on the perovskite surface to largely suppress the α-phase collapse through hindering the iodine migration and volatilization. Furthermore, this strategy largely reduces the interfacial nonradiative recombination and boosts the efficiency of the solar cells to 25.39% (certified 24.92%). Unpackaged device can maintain 92% of its initial efficiency after operation at maximum power point under simulated air mass 1.5 G irradiation for 550 h.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa