RESUMO
PURPOSE: The functionality of many cellular proteins depends on cofactors; yet, they have only been implicated in a minority of Mendelian diseases. Here, we describe the first 2 inherited disorders of the cytosolic iron-sulfur protein assembly system. METHODS: Genetic testing via genome sequencing was applied to identify the underlying disease cause in 3 patients with microcephaly, congenital brain malformations, progressive developmental and neurologic impairments, recurrent infections, and a fatal outcome. Studies in patient-derived skin fibroblasts and zebrafish models were performed to investigate the biochemical and cellular consequences. RESULTS: Metabolic analysis showed elevated uracil and thymine levels in body fluids but no pathogenic variants in DPYD, encoding dihydropyrimidine dehydrogenase. Genome sequencing identified compound heterozygosity in 2 patients for missense variants in CIAO1, encoding cytosolic iron-sulfur assembly component 1, and homozygosity for an in-frame 3-nucleotide deletion in MMS19, encoding the MMS19 homolog, cytosolic iron-sulfur assembly component, in the third patient. Profound alterations in the proteome, metabolome, and lipidome were observed in patient-derived fibroblasts. We confirmed the detrimental effect of deficiencies in CIAO1 and MMS19 in zebrafish models. CONCLUSION: A general failure of cytosolic and nuclear iron-sulfur protein maturation caused pleiotropic effects. The critical function of the cytosolic iron-sulfur protein assembly machinery for antiviral host defense may well explain the recurrent severe infections occurring in our patients.
Assuntos
Proteínas Ferro-Enxofre , Fatores de Transcrição , Peixe-Zebra , Animais , Feminino , Humanos , Lactente , Masculino , Citosol/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Metalochaperonas , Microcefalia/genética , Microcefalia/patologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Fenótipo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
ATP5F1B is a subunit of the mitochondrial ATP synthase or complex V of the mitochondrial respiratory chain. Pathogenic variants in nuclear genes encoding assembly factors or structural subunits are associated with complex V deficiency, typically characterized by autosomal recessive inheritance and multisystem phenotypes. Movement disorders have been described in a subset of cases carrying autosomal dominant variants in structural subunits genes ATP5F1A and ATP5MC3. Here, we report the identification of two different ATP5F1B missense variants (c.1000A>C; p.Thr334Pro and c.1445T>C; p.Val482Ala) segregating with early-onset isolated dystonia in two families, both with autosomal dominant mode of inheritance and incomplete penetrance. Functional studies in mutant fibroblasts revealed no decrease of ATP5F1B protein amount but severe reduction of complex V activity and impaired mitochondrial membrane potential, suggesting a dominant-negative effect. In conclusion, our study describes a new candidate gene associated with isolated dystonia and confirms that heterozygous variants in genes encoding subunits of the mitochondrial ATP synthase may cause autosomal dominant isolated dystonia with incomplete penetrance, likely through a dominant-negative mechanism.
Assuntos
Distonia , Distúrbios Distônicos , Humanos , Distonia/genética , Distúrbios Distônicos/genética , ATPases Mitocondriais Próton-Translocadoras/genética , Mutação de Sentido Incorreto , Linhagem , Proteínas/genéticaRESUMO
This review aims to give an overview of what has been discovered so far and what still needs to be analyzed about how sex and gender affect the disease development. These two terms are often confused and indifferently used. In principle, the term "sex" refers to biological differences between males and females, specifically reproductive organs and their functions, while the term "gender" refers to the social context in which people live and which contributes to a subjective sexual identity, masculine or feminine. This dichotomy, however, is not so rigid and both sex and gender influence different aspects of human health, such as brain, health and aging and drug treatment and pharmacokinetics. In particular, we want to focus on genetic differences between men and women: indeed, the expression of the genes mapped on X chromosome or Y chromosome and all epigenetic interactions affect the diseases development. Finally, we will briefly outline sex and gender differences in clinical manifestations of three neurological diseases: Alzheimer's disease, Parkinson's disease, and obsessive compulsive disorder. In the era of personalized medicine, we must not forget the importance of gender medicine to promote personalized care for any kind of patients.
Assuntos
Envelhecimento , Identidade de Gênero , Masculino , Humanos , Feminino , Fatores Sexuais , Medicina de Precisão , Caracteres SexuaisRESUMO
BACKGROUND AND OBJECTIVE: Early-onset Parkinson's disease (EOPD) commonly recognizes a genetic basis; thus, patients with EOPD are often addressed to diagnostic testing based on next-generation sequencing (NGS) of PD-associated multigene panels. However, NGS interpretation can be challenging in a diagnostic setting, and few studies have addressed this issue so far. METHODS: We retrospectively collected data from 648 patients with PD with age at onset younger than 55 years who underwent NGS of a minimal shared panel of 15 PD-related genes, as well as PD-multiplex ligation-dependent probe amplification in eight Italian diagnostic laboratories. Data included a minimal clinical dataset, the complete list of variants included in the diagnostic report, and final interpretation (positive/negative/inconclusive). Patients were further stratified based on age at onset ≤40 years (very EOPD, n = 157). All variants were reclassified according to the latest American College of Medical Genetics and Genomics criteria. For classification purposes, PD-associated GBA1 variants were considered diagnostic. RESULTS: In 186 of 648 (29%) patients, the diagnostic report listed at least one variant, and the outcome was considered diagnostic (positive) in 105 (16%). After reanalysis, diagnosis changed in 18 of 186 (10%) patients, with 5 shifting from inconclusive to positive and 13 former positive being reclassified as inconclusive. A definite diagnosis was eventually reached in 97 (15%) patients, of whom the majority carried GBA1 variants or, less frequently, biallelic PRKN variants. In 89 (14%) cases, the genetic report was inconclusive. CONCLUSIONS: This study attempts to harmonize reporting of PD genetic testing across several diagnostic labs and highlights current difficulties in interpreting genetic variants emerging from NGS-multigene panels, with relevant implications for counseling. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Assuntos
Doença de Parkinson , Humanos , Pessoa de Meia-Idade , Adulto , Doença de Parkinson/diagnóstico , Doença de Parkinson/genética , Estudos Retrospectivos , Mutação , Testes Genéticos , Idade de InícioRESUMO
OBJECTIVE: The study was undertaken to identify a monogenic cause of early onset, generalized dystonia. METHODS: Methods consisted of genome-wide linkage analysis, exome and Sanger sequencing, clinical neurological examination, brain magnetic resonance imaging, and protein expression studies in skin fibroblasts from patients. RESULTS: We identified a heterozygous variant, c.388G>A, p.Gly130Arg, in the eukaryotic translation initiation factor 2 alpha kinase 2 (EIF2AK2) gene, segregating with early onset isolated generalized dystonia in 5 patients of a Taiwanese family. EIF2AK2 sequencing in 191 unrelated patients with unexplained dystonia yielded 2 unrelated Caucasian patients with an identical heterozygous c.388G>A, p.Gly130Arg variant, occurring de novo in one case, another patient carrying a different heterozygous variant, c.413G>C, p.Gly138Ala, and one last patient, born from consanguineous parents, carrying a third, homozygous variant c.95A>C, p.Asn32Thr. These 3 missense variants are absent from gnomAD, and are located in functional domains of the encoded protein. In 3 patients, additional neurological manifestations were present, including intellectual disability and spasticity. EIF2AK2 encodes a kinase (protein kinase R [PKR]) that phosphorylates eukaryotic translation initiation factor 2 alpha (eIF2α), which orchestrates the cellular stress response. Our expression studies showed abnormally enhanced activation of the cellular stress response, monitored by PKR-mediated phosphorylation of eIF2α, in fibroblasts from patients with EIF2AK2 variants. Intriguingly, PKR can also be regulated by PRKRA (protein interferon-inducible double-stranded RNA-dependent protein kinase activator A), the product of another gene causing monogenic dystonia. INTERPRETATION: We identified EIF2AK2 variants implicated in early onset generalized dystonia, which can be dominantly or recessively inherited, or occur de novo. Our findings provide direct evidence for a key role of a dysfunctional eIF2α pathway in the pathogenesis of dystonia. ANN NEUROL 2021;89:485-497.
Assuntos
Distúrbios Distônicos/genética , Fibroblastos/metabolismo , eIF-2 Quinase/genética , Adolescente , Adulto , Idade de Início , Povo Asiático , Encéfalo/diagnóstico por imagem , Criança , Pré-Escolar , Distúrbios Distônicos/metabolismo , Distúrbios Distônicos/fisiopatologia , Feminino , Estudo de Associação Genômica Ampla , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Linhagem , População Branca , Sequenciamento do Exoma , Adulto Jovem , eIF-2 Quinase/metabolismoRESUMO
BACKGROUND AND PURPOSE: Mutations in DNAJB2 are associated with autosomal recessive hereditary motor neuropathies/ Charcot-Marie-Tooth disease type 2 (CMT2). We describe an Italian family with CMT2 due to a homozygous DNAJB2 mutation and provide insight into the pathomechanisms. METHODS: Patients with DNAJB2 mutations were characterized clinically, electrophysiologically and by means of skin biopsy. mRNA and protein levels were studied in lymphoblastoid cells (LCLs) from patients and controls. RESULTS: Three affected siblings were found to carry a homozygous DNAJB2 null mutation segregating with the disease. The disease manifested in the second to third decade of life. Clinical examination showed severe weakness of the thigh muscles and complete loss of movement in the foot and leg muscles. Sensation was reduced in the lower limbs. All patients had severe hearing loss and the proband also had Parkinson's disease (PD). Nerve conduction studies showed an axonal motor and sensory length-dependent polyneuropathy. DNAJB2 expression studies revealed reduced mRNA levels and the absence of the protein in the homozygous subject in both LCLs and skin biopsy. Interestingly, we detected phospho-alpha-synuclein deposits in the proband, as already seen in PD patients, and demonstrated TDP-43 accumulation in patients' skin. CONCLUSIONS: Our results broaden the clinical spectrum of DNAJB2-related neuropathies and provide evidence that DNAJB2 mutations should be taken into account as another causative gene of CMT2 with hearing loss and parkinsonism. The mutation likely acts through a loss-of-function mechanism, leading to toxic protein aggregation such as TDP-43. The associated parkinsonism resembles the classic PD form with the addition of abnormal accumulation of phospho-alpha-synuclein.
Assuntos
Doença de Charcot-Marie-Tooth , Proteínas de Choque Térmico HSP40 , Chaperonas Moleculares , Doença de Charcot-Marie-Tooth/genética , Proteínas de Ligação a DNA/genética , Proteínas de Choque Térmico HSP40/genética , Homozigoto , Humanos , Chaperonas Moleculares/genética , Mutação/genética , Fenótipo , RNA Mensageiro , alfa-SinucleínaRESUMO
PLA2G6 is the causative gene for a group of autosomal recessive neurodegenerative disorders known as PLA2G6-associated neurodegeneration (PLAN). We present a case with early-onset parkinsonism, ataxia, cognitive decline, cerebellar atrophy, and brain iron accumulation. Sequencing of PLA2G6 coding regions identified only a heterozygous nonsense variant, but mRNA analysis revealed the presence of an aberrant transcript isoform due to a novel deep intronic variant (c.2035-274G > A) leading to activation of an intronic pseudo-exon. These results expand the genotypic spectrum of PLAN, showing the paramount importance of detecting possible pathogenic variants in deep intronic regions in undiagnosed patients.
Assuntos
Encéfalo/patologia , Fosfolipases A2 do Grupo VI/genética , Mutação/genética , Doença de Parkinson/genética , Adulto , Idade de Início , Atrofia/patologia , Feminino , Humanos , Malformações do Sistema Nervoso/genética , Distrofias Neuroaxonais/genética , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Doença de Parkinson/diagnóstico , Doença de Parkinson/patologia , FenótipoRESUMO
Primary familial brain calcification (PFBC) is a neurological condition characterized by the presence of intracranial calcifications, mainly involving basal ganglia, thalamus, and dentate nuclei. So far, six genes have been linked to this condition: SLC20A2, PDGFRB, PDGFB, and XPR1 inherited as autosomal-dominant trait, while MYORG and JAM2 present a recessive pattern of inheritance. Patients mainly present with movement disorders, psychiatric disturbances, and cognitive decline or are completely asymptomatic and calcifications may represent an occasional finding. Here we present three variants in SLC20A2, two exonic and one intronic, which we found in patients with PFBC associated to three different clinical phenotypes. One variant is novel and two were already described as variants of uncertain significance. We confirm the pathogenicity of these three variants and suggest a broadening of the phenotypic spectrum associated with mutations in SLC20A2.
Assuntos
Encefalopatias/genética , Mutação/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética , Idoso , Encéfalo/metabolismo , Encéfalo/patologia , Encefalopatias/diagnóstico , Encefalopatias/patologia , Éxons/genética , Feminino , Humanos , Linhagem , Fenótipo , Receptor do Retrovírus Politrópico e XenotrópicoRESUMO
OBJECTIVES: The majority of people with suspected genetic dystonia remain undiagnosed after maximal investigation, implying that a number of causative genes have not yet been recognized. We aimed to investigate this paucity of diagnoses. METHODS: We undertook weighted burden analysis of whole-exome sequencing (WES) data from 138 individuals with unresolved generalized dystonia of suspected genetic etiology, followed by additional case-finding from international databases, first for the gene implicated by the burden analysis (VPS16), and then for other functionally related genes. Electron microscopy was performed on patient-derived cells. RESULTS: Analysis revealed a significant burden for VPS16 (Fisher's exact test p value, 6.9 × 109 ). VPS16 encodes a subunit of the homotypic fusion and vacuole protein sorting (HOPS) complex, which plays a key role in autophagosome-lysosome fusion. A total of 18 individuals harboring heterozygous loss-of-function VPS16 variants, and one with a microdeletion, were identified. These individuals experienced early onset progressive dystonia with predominant cervical, bulbar, orofacial, and upper limb involvement. Some patients had a more complex phenotype with additional neuropsychiatric and/or developmental comorbidities. We also identified biallelic loss-of-function variants in VPS41, another HOPS-complex encoding gene, in an individual with infantile-onset generalized dystonia. Electron microscopy of patient-derived lymphocytes and fibroblasts from both patients with VPS16 and VPS41 showed vacuolar abnormalities suggestive of impaired lysosomal function. INTERPRETATION: Our study strongly supports a role for HOPS complex dysfunction in the pathogenesis of dystonia, although variants in different subunits display different phenotypic and inheritance characteristics. ANN NEUROL 2020;88:867-877.
Assuntos
Distonia/genética , Doenças por Armazenamento dos Lisossomos/genética , Proteínas de Transporte Vesicular/genética , Adulto , Efeitos Psicossociais da Doença , Distonia/patologia , Exoma/genética , Feminino , Fibroblastos/patologia , Predisposição Genética para Doença/genética , Variação Genética , Humanos , Doenças por Armazenamento dos Lisossomos/patologia , Masculino , Pessoa de Meia-Idade , Mutação/genética , LinhagemRESUMO
The vacuolar protein sorting 35 (VPS35) gene located on chromosome 16 has recently emerged as a cause of late-onset familial Parkinson's disease (PD) (PARK17). The gene encodes a 796-residue protein nearly ubiquitously expressed in human tissues. The protein localizes on endosomes where it assembles with other peripheral membrane proteins to form the retromer complex. How VPS35 mutations induce dopaminergic neuron degeneration in humans is still unclear. Because the retromer complex recycles the receptors that mediate the transport of hydrolase to lysosome, it has been suggested that VPS35 mutations lead to impaired lysosomal and autophagy function. Recent studies also demonstrated that VPS35 and the retromer complex influence mitochondrial homeostasis, suggesting that VPS35 mutations elicit mitochondrial dysfunction. More recent studies have identified a key role of VPS35 in neurotransmission, whilst others reported a functional interaction between VPS35 and other genes associated with familial PD, including α-SYNUCLEIN-PARKIN-LRRK2. Here, we review the biological role of VPS35 protein, the VPS35 mutations identified in human PD patients, and the potential molecular mechanism by which VPS35 mutations can induce progressive neurodegeneration in PD.
Assuntos
Doença de Parkinson/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Sequência de Aminoácidos , Animais , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Regulação da Expressão Gênica , Humanos , Doença de Parkinson/genética , Transmissão Sináptica , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genéticaRESUMO
BACKGROUND: Detection of brain-MRI T2/T2* gradient echo images (T2*GRE)-hypointensity can be compatible with iron accumulation and leads to a differential diagnosis work-up including neurodegeneration with brain iron accumulation (NBIA) and Wilson Disease. Idiopathic or secondary brain calcification can be also associated with neurological involvement and brain-MRI T2/T2*GRE-hypointensity. Hereditary hemochromatosis (HH), characterized by systemic iron loading, usually does not involve the CNS, and only sporadic cases of neurological abnormalities or brain-MRI T2/T2*GRE-hypointensity have been reported. CASE PRESENTATION: A 59-year-old man came to our observation after a diagnosis of HH carried out in another hospital 2 years before. First-level genetic test had revealed a homozygous HFE p.Cys282Tyr (C282Y) mutation compatible with the diagnosis of HFE-related HH, thus phlebotomy treatment was started. The patient had a history of metabolic syndrome, type-2 diabetes, autoimmune thyroiditis and severe chondrocalcinosis. Brain-MRI showed the presence of bilateral T2*GRE hypointensities within globus pallidus, substantia nigra, dentate nucleus and left pulvinar that were considered expression of cerebral siderosis. No neurological symptoms or family history of neurological disease were reported. Neurological examination revealed only mild right-sided hypokinetic-rigid syndrome. Vitamin D-PTH axis, measurements of serum ceruloplasmin and copper, and urinary copper were within the normal range. A brain computed tomography (CT) was performed to better characterize the suspected and unexplained brain iron accumulation. On the CT images, the hypointense regions in the brain MRI were hyperdense. DNA sequence analysis of genes associated with primary familial brain calcification and NBIA was negative. CONCLUSIONS: This report highlights the importance of brain CT-scan in ambiguous cases of suspected cerebral siderosis, and suggests that HH patients with a severe phenotype, and likely associated with chondrocalcinosis, may display also brain calcifications. Further studies are needed to confirm this hypothesis. So far, we can speculate that iron and calcium homeostasis could be reciprocally connected within the basal ganglia.
Assuntos
Encefalopatias Metabólicas/etiologia , Encefalopatias Metabólicas/patologia , Calcinose/patologia , Hemocromatose/complicações , Hemocromatose/patologia , Calcinose/etiologia , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-IdadeRESUMO
Kufs disease is the major adult form of neuronal ceroid lipofuscinosis, but is rare and difficult to diagnose. Diagnosis was traditionally dependent on the demonstration of characteristic storage material, but distinction from normal age-related accumulation of lipofuscin can be challenging. Mutation of CLN6 has emerged as the most important cause of recessive Kufs disease but, remarkably, is also responsible for variant late infantile ceroid lipofuscinosis. Here we provide a detailed description of Kufs disease due to CLN6 pathogenic variants. We studied 20 cases of Kufs disease with CLN6 pathogenic variants from 13 unrelated families. Mean age of onset was 28 years (range 12-51) with bimodal peaks in teenage and early adult life. The typical presentation was of progressive myoclonus epilepsy with debilitating myoclonic seizures and relatively infrequent tonic-clonic seizures. Patients became wheelchair-bound with a mean 12 years post-onset. Ataxia was the most prominent motor feature. Dementia appeared to be an invariable accompaniment, although it could take a number of years to manifest and occasionally cognitive impairment preceded myoclonic seizures. Patients were usually highly photosensitive on EEG. MRI showed progressive cerebral and cerebellar atrophy. The median survival time was 26 years from disease onset. Ultrastructural examination of the pathology revealed fingerprint profiles as the characteristic inclusions, but they were not reliably seen in tissues other than brain. Curvilinear profiles, which are seen in the late infantile form, were not a feature. Of the 13 unrelated families we observed homozygous CLN6 pathogenic variants in four and compound heterozygous variants in nine. Compared to the variant late infantile form, there was a lower proportion of variants that predicted protein truncation. Certain heterozygous missense variants in the same amino acid position were found in both variant late infantile and Kufs disease. There was a predominance of cases from Italy and surrounding regions; this was partially explained by the discovery of three founder pathogenic variants. Clinical distinction of type A (progressive myoclonus epilepsy) and type B (dementia with motor disturbance) Kufs disease was supported by molecular diagnoses. Type A is usually caused by recessive pathogenic variants in CLN6 or dominant variants in DNAJC5. Type B Kufs is usually associated with recessive CTSF pathogenic variants. The diagnosis of Kufs remains challenging but, with the availability of genetic diagnosis, this will largely supersede the use of diagnostic biopsies, particularly as biopsies of peripheral tissues has unsatisfactory sensitivity and specificity.
Assuntos
Proteínas de Membrana/genética , Lipofuscinoses Ceroides Neuronais/diagnóstico , Lipofuscinoses Ceroides Neuronais/genética , Adolescente , Adulto , Idade de Início , Idoso , Encéfalo/ultraestrutura , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Lipofuscinoses Ceroides Neuronais/diagnóstico por imagem , Lipofuscinoses Ceroides Neuronais/patologia , Taxa de Sobrevida , Adulto JovemRESUMO
Mitochondrial fatty acid synthesis (mtFAS) is an evolutionarily conserved pathway essential for the function of the respiratory chain and several mitochondrial enzyme complexes. We report here a unique neurometabolic human disorder caused by defective mtFAS. Seven individuals from five unrelated families presented with childhood-onset dystonia, optic atrophy, and basal ganglia signal abnormalities on MRI. All affected individuals were found to harbor recessive mutations in MECR encoding the mitochondrial trans-2-enoyl-coenzyme A-reductase involved in human mtFAS. All six mutations are extremely rare in the general population, segregate with the disease in the families, and are predicted to be deleterious. The nonsense c.855T>G (p.Tyr285∗), c.247_250del (p.Asn83Hisfs∗4), and splice site c.830+2_830+3insT mutations lead to C-terminal truncation variants of MECR. The missense c.695G>A (p.Gly232Glu), c.854A>G (p.Tyr285Cys), and c.772C>T (p.Arg258Trp) mutations involve conserved amino acid residues, are located within the cofactor binding domain, and are predicted by structural analysis to have a destabilizing effect. Yeast modeling and complementation studies validated the pathogenicity of the MECR mutations. Fibroblast cell lines from affected individuals displayed reduced levels of both MECR and lipoylated proteins as well as defective respiration. These results suggest that mutations in MECR cause a distinct human disorder of the mtFAS pathway. The observation of decreased lipoylation raises the possibility of a potential therapeutic strategy.
Assuntos
Distúrbios Distônicos/genética , Ácidos Graxos/biossíntese , Mitocôndrias/metabolismo , Mutação , Atrofia Óptica/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Gânglios da Base/metabolismo , Células Cultivadas , Criança , Pré-Escolar , Feminino , Fibroblastos , Teste de Complementação Genética , Humanos , Lactente , Masculino , Doenças Mitocondriais/genética , Modelos Moleculares , Mutação de Sentido Incorreto/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Linhagem , Sítios de Splice de RNA/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismoRESUMO
Chorea is a hyperkinetic movement disorder resulting from dysfunction of striatal medium spiny neurons (MSNs), which form the main output projections from the basal ganglia. Here, we used whole-exome sequencing to unravel the underlying genetic cause in three unrelated individuals with a very similar and unique clinical presentation of childhood-onset chorea and characteristic brain MRI showing symmetrical bilateral striatal lesions. All individuals were identified to carry a de novo heterozygous mutation in PDE10A (c.898T>C [p.Phe300Leu] in two individuals and c.1000T>C [p.Phe334Leu] in one individual), encoding a phosphodiesterase highly and selectively present in MSNs. PDE10A contributes to the regulation of the intracellular levels of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Both substitutions affect highly conserved amino acids located in the regulatory GAF-B domain, which, by binding to cAMP, stimulates the activity of the PDE10A catalytic domain. In silico modeling showed that the altered residues are located deep in the binding pocket, where they are likely to alter cAMP binding properties. In vitro functional studies showed that neither substitution affects the basal PDE10A activity, but they severely disrupt the stimulatory effect mediated by cAMP binding to the GAF-B domain. The identification of PDE10A mutations as a cause of chorea further motivates the study of cAMP signaling in MSNs and highlights the crucial role of striatal cAMP signaling in the regulation of basal ganglia circuitry. Pharmacological modulation of this pathway could offer promising etiologically targeted treatments for chorea and other hyperkinetic movement disorders.