Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 142(36): 15505-15512, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32786742

RESUMO

Photocages are light-sensitive chemical protecting groups that give investigators control over activation of biomolecules using targeted light irradiation. A compelling application of far-red/near-IR absorbing photocages is their potential for deep tissue activation of biomolecules and phototherapeutics. Toward this goal, we recently reported BODIPY photocages that absorb near-IR light. However, these photocages have reduced photorelease efficiencies compared to shorter-wavelength absorbing photocages, which has hindered their application. Because photochemistry is a zero-sum competition of rates, improvement of the quantum yield of a photoreaction can be achieved either by making the desired photoreaction more efficient or by hobbling competitive decay channels. This latter strategy of inhibiting unproductive decay channels was pursued to improve the release efficiency of long-wavelength absorbing BODIPY photocages by synthesizing structures that block access to unproductive singlet internal conversion conical intersections, which have recently been located for simple BODIPY structures from excited state dynamic simulations. This strategy led to the synthesis of new conformationally restrained boron-methylated BODIPY photocages that absorb light strongly around 700 nm. In the best case, a photocage was identified with an extinction coefficient of 124000 M-1 cm-1, a quantum yield of photorelease of 3.8%, and an overall quantum efficiency of 4650 M-1 cm-1 at 680 nm. This derivative has a quantum efficiency that is 50-fold higher than the best known BODIPY photocages absorbing >600 nm, validating the effectiveness of a strategy for designing efficient photoreactions by thwarting competitive excited state decay channels. Furthermore, 1,7-diaryl substitutions were found to improve the quantum yields of photorelease by excited state participation and blocking ion pair recombination by internal nucleophilic trapping. No cellular toxicity (trypan blue exclusion) was observed at 20 µM, and photoactivation was demonstrated in HeLa cells using red light.

2.
J Org Chem ; 85(8): 5712-5717, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32216269

RESUMO

BODIPY photocages allow the release of substrates using visible light irradiation. They have the drawback of requiring reasonably good leaving groups for photorelease. Photorelease of alcohols is often accomplished by attachment with carbonate linkages, which upon photorelease liberate CO2 and generate the alcohol. Here, we show that boron-alkylated BODIPY photocages are capable of directly photoreleasing both aliphatic alcohols and phenols upon irradiation via photocleavage of ether linkages. Direct photorelease of a hydroxycoumarin dye was demonstrated in living HeLa cells.


Assuntos
Álcoois , Boro , Compostos de Boro , Células HeLa , Humanos
3.
J Am Chem Soc ; 140(23): 7343-7346, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29775298

RESUMO

Photocages are light-sensitive chemical protecting groups that provide external control over when, where, and how much of a biological substrate is activated in cells using targeted light irradiation. Regrettably, most popular photocages (e.g., o-nitrobenzyl groups) absorb cell-damaging ultraviolet wavelengths. A challenge with achieving longer wavelength bond-breaking photochemistry is that long-wavelength-absorbing chromophores have shorter excited-state lifetimes and diminished excited-state energies. However, here we report the synthesis of a family of BODIPY-derived photocages with tunable absorptions across the visible/near-infrared that release chemical cargo under irradiation. Derivatives with appended styryl groups feature absorptions above 700 nm, yielding photocages cleaved with the highest known wavelengths of light via a direct single-photon-release mechanism. Photorelease with red light is demonstrated in living HeLa cells, Drosophila S2 cells, and bovine GM07373 cells upon ∼5 min irradiation. No cytotoxicity is observed at 20 µM photocage concentration using the trypan blue exclusion assay. Improved B-alkylated derivatives feature improved quantum efficiencies of photorelease ∼20-fold larger, on par with the popular o-nitrobenzyl photocages (ÎµΦ = 50-100 M-1 cm-1), but absorbing red/near-IR light in the biological window instead of UV light.

4.
J Pharmacol Exp Ther ; 365(2): 227-236, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29453198

RESUMO

Fibroblast-like synoviocytes (FLSs) are a key cell type involved in rheumatoid arthritis (RA) progression. We previously identified the KCa1.1 potassium channel (Maxi-K, BK, Slo 1, KCNMA1) as a regulator of FLSs and found that KCa1.1 inhibition reduces disease severity in RA animal models. However, systemic KCa1.1 block causes multiple side effects. In this study, we aimed to determine whether the KCa1.1 ß1-3-specific venom peptide blocker iberiotoxin (IbTX) reduces disease severity in animal models of RA without inducing major side effects. We used immunohistochemistry to identify IbTX-sensitive KCa1.1 subunits in joints of rats with a model of RA. Patch-clamp and functional assays were used to determine whether IbTX can regulate FLSs through targeting KCa1.1. We then tested the efficacy of IbTX in ameliorating disease in two rat models of RA. Finally, we determined whether IbTX causes side effects including incontinence or tremors in rats, compared with those treated with the small-molecule KCa1.1 blocker paxilline. IbTX-sensitive subunits of KCa1.1 were expressed by FLSs in joints of rats with experimental arthritis. IbTX inhibited KCa1.1 channels expressed by FLSs from patients with RA and by FLSs from rat models of RA and reduced FLS invasiveness. IbTX significantly reduced disease severity in two rat models of RA. Unlike paxilline, IbTX did not induce tremors or incontinence in rats. Overall, IbTX inhibited KCa1.1 channels on FLSs and treated rat models of RA without inducing side effects associated with nonspecific KCa1.1 blockade and could become the basis for the development of a new treatment of RA.


Assuntos
Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Terapia de Alvo Molecular , Peptídeos/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Venenos de Escorpião/química , Animais , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/antagonistas & inibidores , Peptídeos/uso terapêutico , Bloqueadores dos Canais de Potássio/uso terapêutico , Ratos , Sinoviócitos/efeitos dos fármacos , Sinoviócitos/metabolismo
5.
Angew Chem Int Ed Engl ; 57(39): 12685-12689, 2018 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-30247796

RESUMO

The synthesis and application of a photoactivatable boron-alkylated BODIPY probe for localization-based super-resolution microscopy is reported. Photoactivation and excitation of the probe is achieved by a previously unknown boron-photodealkylation reaction with a single low-power visible laser and without requiring the addition of reducing agents or oxygen scavengers in the imaging buffer. These features lead to a versatile probe for localization-based microscopy of biological systems. The probe can be easily linked to nucleophile-containing molecules to target specific cellular organelles. By attaching paclitaxel to the photoactivatable BODIPY, in vitro and in vivo super-resolution imaging of microtubules is demonstrated. This is the first example of single-molecule localization-based super-resolution microscopy using a visible-light-activated BODIPY compound as a fluorescent probe.


Assuntos
Compostos de Boro/química , Luz , Corantes Fluorescentes/química , Células HeLa , Humanos , Microscopia de Fluorescência , Microtúbulos/metabolismo
6.
Clin Immunol ; 180: 45-57, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28389388

RESUMO

Effector memory T lymphocytes (TEM cells) that lack expression of CCR7 are major drivers of inflammation in a number of autoimmune diseases, including multiple sclerosis and rheumatoid arthritis. The Kv1.3 potassium channel is a key regulator of CCR7- TEM cell activation. Blocking Kv1.3 inhibits TEM cell activation and attenuates inflammation in autoimmunity, and as such, Kv1.3 has emerged as a promising target for the treatment of TEM cell-mediated autoimmune diseases. The scorpion venom-derived peptide HsTX1 and its analog HsTX1[R14A] are potent Kv1.3 blockers and HsTX1[R14A] is selective for Kv1.3 over closely-related Kv1 channels. PEGylation of HsTX1[R14A] to create a Kv1.3 blocker with a long circulating half-life reduced its affinity but not its selectivity for Kv1.3, dramatically reduced its adsorption to inert surfaces, and enhanced its circulating half-life in rats. PEG-HsTX1[R14A] is equipotent to HsTX1[R14A] in preferential inhibition of human and rat CCR7- TEM cell proliferation, leaving CCR7+ naïve and central memory T cells able to proliferate. It reduced inflammation in an active delayed-type hypersensitivity model and in the pristane-induced arthritis (PIA) model of rheumatoid arthritis (RA). Importantly, a single subcutaneous dose of PEG-HsTX1[R14A] reduced inflammation in PIA for a longer period of time than the non-PEGylated HsTX1[R14A]. Together, these data indicate that HsTX1[R14A] and PEG-HsTX1[R14A] are effective in a model of RA and are therefore potential therapeutics for TEM cell-mediated autoimmune diseases. PEG-HsTX1[R14A] has the additional advantages of reduced non-specific adsorption to inert surfaces and enhanced circulating half-life.


Assuntos
Canal de Potássio Kv1.3/antagonistas & inibidores , Peptídeos/farmacologia , Polietilenoglicóis/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Venenos de Escorpião/farmacologia , Adulto , Alérgenos/imunologia , Animais , Artrite Experimental/induzido quimicamente , Artrite Experimental/patologia , Artrite Reumatoide/induzido quimicamente , Artrite Reumatoide/patologia , Linhagem Celular , Células Cultivadas , Feminino , Humanos , Hipersensibilidade Tardia/imunologia , Imunomodulação/efeitos dos fármacos , Leucócitos Mononucleares , Camundongos , Pessoa de Meia-Idade , Ovalbumina/imunologia , Peptídeos/química , Peptídeos/farmacocinética , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética , Bloqueadores dos Canais de Potássio/química , Bloqueadores dos Canais de Potássio/farmacocinética , Ratos , Ratos Endogâmicos Lew , Venenos de Escorpião/química , Venenos de Escorpião/farmacocinética , Baço/citologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Terpenos , Adulto Jovem
7.
J Med Chem ; 65(24): 16679-16694, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36480920

RESUMO

Photodynamic therapy (PDT) is a clinically approved cancer treatment that requires a photosensitizer (PS), light, and molecular oxygen─a combination which produces reactive oxygen species (ROS) that can induce cancer cell death. To enhance the efficacy of PDT, dual-targeted strategies have been explored where two photosensitizers are administered and localize to different subcellular organelles. To date, a single small-molecule conjugate for dual-targeted PDT with light-controlled nuclear localization has not been achieved. We designed a probe composed of a DNA-binding PS (Br-DAPI) and a photosensitizing photocage (WinterGreen). Illumination with 480 nm light removes WinterGreen from the conjugate and produces singlet oxygen mainly in the cytosol, while Br-DAPI localizes to nuclei, binds DNA, and produces ROS using one- or two-photon illumination. We observe synergistic photocytotoxicity in MCF7 breast cancer cells, and a reduction in size of three-dimensional (3D) tumor spheroids, demonstrating that nuclear/cytosolic photosensitization using a single agent can enhance PDT efficacy.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/química , Fotoquimioterapia/métodos , Espécies Reativas de Oxigênio/metabolismo , Neoplasias/tratamento farmacológico , DNA , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa