Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Cell ; 179(1): 59-73.e13, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31539500

RESUMO

Development of microbiota-directed foods (MDFs) that selectively increase the abundance of beneficial human gut microbes, and their expressed functions, requires knowledge of both the bioactive components of MDFs and the mechanisms underlying microbe-microbe interactions. Here, gnotobiotic mice were colonized with a defined consortium of human-gut-derived bacterial strains and fed different combinations of 34 food-grade fibers added to a representative low-fiber diet consumed in the United States. Bioactive carbohydrates in fiber preparations targeting particular Bacteroides species were identified using community-wide quantitative proteomic analyses of bacterial gene expression coupled with forward genetic screens. Deliberate manipulation of community membership combined with administration of retrievable artificial food particles, consisting of paramagnetic microscopic beads coated with dietary polysaccharides, disclosed the contributions of targeted species to fiber degradation. Our approach, including the use of bead-based biosensors, defines nutrient-harvesting strategies that underlie, as well as alleviate, competition between Bacteroides and control the selectivity of MDF components.


Assuntos
Bacteroides/genética , Fibras na Dieta/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Vida Livre de Germes/fisiologia , Interações Microbianas/efeitos dos fármacos , Polissacarídeos/farmacologia , Proteômica/métodos , Animais , Dieta/métodos , Fibras na Dieta/metabolismo , Fezes/microbiologia , Microbioma Gastrointestinal/fisiologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Polissacarídeos/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34016748

RESUMO

Fungi produce a wealth of pharmacologically bioactive secondary metabolites (SMs) from biosynthetic gene clusters (BGCs). It is common practice for drug discovery efforts to treat species' secondary metabolomes as being well represented by a single or a small number of representative genomes. However, this approach misses the possibility that intraspecific population dynamics, such as adaptation to environmental conditions or local microbiomes, may harbor novel BGCs that contribute to the overall niche breadth of species. Using 94 isolates of Aspergillus flavus, a cosmopolitan model fungus, sampled from seven states in the United States, we dereplicate 7,821 BGCs into 92 unique BGCs. We find that more than 25% of pangenomic BGCs show population-specific patterns of presence/absence or protein divergence. Population-specific BGCs make up most of the accessory-genome BGCs, suggesting that different ecological forces that maintain accessory genomes may be partially mediated by population-specific differences in secondary metabolism. We use ultra-high-performance high-resolution mass spectrometry to confirm that these genetic differences in BGCs also result in chemotypic differences in SM production in different populations, which could mediate ecological interactions and be acted on by selection. Thus, our results suggest a paradigm shift that previously unrealized population-level reservoirs of SM diversity may be of significant evolutionary, ecological, and pharmacological importance. Last, we find that several population-specific BGCs from A. flavus are present in Aspergillus parasiticus and Aspergillus minisclerotigenes and discuss how the microevolutionary patterns we uncover inform macroevolutionary inferences and help to align fungal secondary metabolism with existing evolutionary theory.


Assuntos
Aspergillus flavus/metabolismo , Aspergillus/metabolismo , Genoma Fúngico , Metaboloma , Metabolismo Secundário/genética , Aspergillus/classificação , Aspergillus/genética , Aspergillus flavus/classificação , Aspergillus flavus/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Especiação Genética , Genômica , Metagenômica , Família Multigênica , Filogenia , Estados Unidos
3.
Appl Environ Microbiol ; 89(4): e0040623, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37039651

RESUMO

Clostridium thermocellum, a promising candidate for consolidated bioprocessing, has been subjected to numerous engineering strategies for enhanced bioethanol production. Measurements of intracellular metabolites at substrate concentrations high enough (>50 g/L) to allow the production of industrially relevant titers of ethanol would inform efforts toward this end but have been difficult due to the production of a viscous substance that interferes with the filtration and quenching steps during metabolite extraction. To determine whether this problem is unique to C. thermocellum, we performed filtration experiments with other organisms that have been engineered for high-titer ethanol production, including Escherichia coli and Thermoanaerobacterium saccharolyticum. We addressed the problem through a series of improvements, including active pH control (to reduce problems with viscosity), investigation of different filter materials and pore sizes (to increase the filtration capacity), and correction for extracellular metabolite concentrations, and we developed a technique for more accurate intracellular metabolite measurements at elevated substrate concentrations. IMPORTANCE The accurate measurement of intracellular metabolites (metabolomics) is an integral part of metabolic engineering for the enhanced production of industrially important compounds and a useful technique to understand microbial physiology. Previous work tended to focus on model organisms under laboratory conditions. As we try to perform metabolomic studies with a wider range of organisms under conditions that more closely represent those found in nature or industry, we have found limitations in existing techniques. For example, fast filtration is an important step in quenching metabolism in preparation for metabolite extraction; however, it does not work for cultures of C. thermocellum at high substrate concentrations. In this work, we characterize the extent of the problem and develop techniques to overcome it.


Assuntos
Clostridium thermocellum , Açúcares , Açúcares/metabolismo , Clostridium thermocellum/metabolismo , Engenharia Metabólica , Etanol/metabolismo
4.
Proc Natl Acad Sci U S A ; 117(17): 9302-9310, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32245809

RESUMO

Lignin is an abundant and recalcitrant component of plant cell walls. While lignin degradation in nature is typically attributed to fungi, growing evidence suggests that bacteria also catabolize this complex biopolymer. However, the spatiotemporal mechanisms for lignin catabolism remain unclear. Improved understanding of this biological process would aid in our collective knowledge of both carbon cycling and microbial strategies to valorize lignin to value-added compounds. Here, we examine lignin modifications and the exoproteome of three aromatic-catabolic bacteria: Pseudomonas putida KT2440, Rhodoccocus jostii RHA1, and Amycolatopsis sp. ATCC 39116. P. putida cultivation in lignin-rich media is characterized by an abundant exoproteome that is dynamically and selectively packaged into outer membrane vesicles (OMVs). Interestingly, many enzymes known to exhibit activity toward lignin-derived aromatic compounds are enriched in OMVs from early to late stationary phase, corresponding to the shift from bioavailable carbon to oligomeric lignin as a carbon source. In vivo and in vitro experiments demonstrate that enzymes contained in the OMVs are active and catabolize aromatic compounds. Taken together, this work supports OMV-mediated catabolism of lignin-derived aromatic compounds as an extracellular strategy for nutrient acquisition by soil bacteria and suggests that OMVs could potentially be useful tools for synthetic biology and biotechnological applications.


Assuntos
Lignina/metabolismo , Pseudomonas putida/enzimologia , Vesículas Secretórias/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Pseudomonas putida/metabolismo
5.
Mol Plant Microbe Interact ; 35(8): 639-649, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35349304

RESUMO

Plant-microbe interactions in the rhizosphere play a vital role in plant health and productivity. The composition and function of root-associated microbiomes is strongly influenced by their surrounding environment, which is often customized by their host. How microbiomes change with respect to space and time across plant roots remains poorly understood, and methodologies that facilitate spatiotemporal metaproteomic studies of root-associated microbiomes are yet to be realized. Here, we developed a method that provides spatially resolved metaproteome measurements along plant roots embedded in agar-plate culture systems, which have long been used to study plants. Spatially defined agar "plugs" of interest were excised and subsequently processed using a novel peptide extraction method prior to metaproteomics, which was used to infer both microbial community composition and function. As a proof-of-principle, a previously studied 10-member community constructed from a Populus root system was grown in an agar plate with a 3-week-old Populus trichocarpa plant. Metaproteomics was performed across two time points (24 and 48 h) for three distinct locations (root base, root tip, and a region distant from the root). The spatial resolution of these measurements provides evidence that microbiome composition and expression changes across the plant root interface. Interrogation of the individual microbial proteomes revealed functional profiles related to their behavioral associations with the plant root, in which chemotaxis and augmented metabolism likely supported predominance of the most abundant member. This study demonstrated a novel peptide extraction method for studying plant agar-plate culture systems, which was previously unsuitable for (meta)proteomic measurements.


Assuntos
Populus , Microbiologia do Solo , Ágar/metabolismo , Bactérias/metabolismo , Raízes de Plantas , Plantas , Proteômica , Rizosfera
6.
Metab Eng ; 73: 38-49, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35561848

RESUMO

The one-carbon recursive ketoacid elongation pathway is responsible for making various branched-chain amino acids, aldehydes, alcohols, ketoacids, and acetate esters in living cells. Controlling selective microbial biosynthesis of these target molecules at high efficiency is challenging due to enzyme promiscuity, regulation, and metabolic burden. In this study, we present a systematic modular design approach to control proteome reallocation for selective microbial biosynthesis of branched-chain acetate esters. Through pathway modularization, we partitioned the branched-chain ester pathways into four submodules including ketoisovalerate submodule for converting pyruvate to ketoisovalerate, ketoacid elongation submodule for producing longer carbon-chain ketoacids, ketoacid decarboxylase submodule for converting ketoacids to alcohols, and alcohol acyltransferase submodule for producing branched-chain acetate esters by condensing alcohols and acetyl-CoA. By systematic manipulation of pathway gene replication and transcription, enzyme specificity of the first committed steps of these submodules, and downstream competing pathways, we demonstrated selective microbial production of isoamyl acetate over isobutyl acetate. We found that the optimized isoamyl acetate pathway globally redistributed the amino acid fractions in the proteomes and required up to 23-31% proteome reallocation at the expense of other cellular resources, such as those required to generate precursor metabolites and energy for growth and amino acid biosynthesis. From glucose fed-batch fermentation, the engineered strains produced isoamyl acetate up to a titer of 8.8 g/L (>0.25 g/L toxicity limit), a yield of 0.22 g/g (61% of maximal theoretical value), and 86% selectivity, achieving the highest titers, yields and selectivity of isoamyl acetate reported to date.


Assuntos
Ésteres , Proteoma , Acetatos/metabolismo , Álcoois/metabolismo , Aminoácidos/genética , Carbono , Ésteres/metabolismo , Cetoácidos/metabolismo , Proteoma/genética
7.
Metab Eng ; 70: 31-42, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34982998

RESUMO

The transformation of 4-hydroxybenzoate (4-HBA) to protocatechuate (PCA) is catalyzed by flavoprotein oxygenases known as para-hydroxybenzoate-3-hydroxylases (PHBHs). In Pseudomonas putida KT2440 (P. putida) strains engineered to convert lignin-related aromatic compounds to muconic acid (MA), PHBH activity is rate-limiting, as indicated by the accumulation of 4-HBA, which ultimately limits MA productivity. Here, we hypothesized that replacement of PobA, the native P. putida PHBH, with PraI, a PHBH from Paenibacillus sp. JJ-1b with a broader nicotinamide cofactor preference, could alleviate this bottleneck. Biochemical assays confirmed the strict preference of NADPH for PobA, while PraI can utilize either NADH or NADPH. Kinetic assays demonstrated that both PobA and PraI can utilize NADPH with comparable catalytic efficiency and that PraI also efficiently utilizes NADH at roughly half the catalytic efficiency. The X-ray crystal structure of PraI was solved and revealed absolute conservation of the active site architecture to other PHBH structures despite their differing cofactor preferences. To understand the effect in vivo, we compared three P. putida strains engineered to produce MA from p-coumarate (pCA), showing that expression of praI leads to lower 4-HBA accumulation and decreased NADP+/NADPH ratios relative to strains harboring pobA, indicative of a relieved 4-HBA bottleneck due to increased NADPH availability. In bioreactor cultivations, a strain exclusively expressing praI achieved a titer of 40 g/L MA at 100% molar yield and a productivity of 0.5 g/L/h. Overall, this study demonstrates the benefit of sampling readily available natural enzyme diversity for debottlenecking metabolic flux in an engineered strain for microbial conversion of lignin-derived compounds to value-added products.


Assuntos
Pseudomonas putida , Hidroxibenzoatos/metabolismo , Hidroxilação , Parabenos , Pseudomonas putida/genética , Pseudomonas putida/metabolismo
8.
Appl Environ Microbiol ; 88(22): e0125822, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36286488

RESUMO

Glycolysis is an ancient, widespread, and highly conserved metabolic pathway that converts glucose into pyruvate. In the canonical pathway, the phosphofructokinase (PFK) reaction plays an important role in controlling flux through the pathway. Clostridium thermocellum has an atypical glycolysis and uses pyrophosphate (PPi) instead of ATP as the phosphate donor for the PFK reaction. The reduced thermodynamic driving force of the PPi-PFK reaction shifts the entire pathway closer to thermodynamic equilibrium, which has been predicted to limit product titers. Here, we replace the PPi-PFK reaction with an ATP-PFK reaction. We demonstrate that the local changes are consistent with thermodynamic predictions: the ratio of fructose 1,6-bisphosphate to fructose-6-phosphate increases, and the reverse flux through the reaction (determined by 13C labeling) decreases. The final titer and distribution of fermentation products, however, do not change, demonstrating that the thermodynamic constraints of the PPi-PFK reaction are not the sole factor limiting product titer. IMPORTANCE The ability to control the distribution of thermodynamic driving force throughout a metabolic pathway is likely to be an important tool for metabolic engineering. The phosphofructokinase reaction is a key enzyme in Embden-Mayerhof-Parnas glycolysis and therefore improving the thermodynamic driving force of this reaction in C. thermocellum is believed to enable higher product titers. Here, we demonstrate switching from pyrophosphate to ATP does in fact increases the thermodynamic driving force of the phosphofructokinase reaction in vivo. This study also identifies and overcomes a physiological hurdle toward expressing an ATP-dependent phosphofructokinase in an organism that utilizes an atypical glycolytic pathway. As such, the method described here to enable expression of ATP-dependent phosphofructokinase in an organism with an atypical glycolytic pathway will be informative toward engineering the glycolytic pathways of other industrial organism candidates with atypical glycolytic pathways.


Assuntos
Clostridium thermocellum , Clostridium thermocellum/metabolismo , Difosfatos/metabolismo , Fosfofrutoquinases/genética , Fosfofrutoquinase-1/genética , Fosfofrutoquinase-1/metabolismo , Glicólise , Termodinâmica , Trifosfato de Adenosina/metabolismo
9.
Metab Eng ; 66: 179-190, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33872779

RESUMO

Robust and efficient enzymes are essential modules for metabolic engineering and synthetic biology strategies across biological systems to engineer whole-cell biocatalysts. By condensing an acyl-CoA and an alcohol, alcohol acyltransferases (AATs) can serve as interchangeable metabolic modules for microbial biosynthesis of a diverse class of ester molecules with broad applications as flavors, fragrances, solvents, and drop-in biofuels. However, the current lack of robust and efficient AATs significantly limits their compatibility with heterologous precursor pathways and microbial hosts. Through bioprospecting and rational protein engineering, we identified and engineered promiscuity of chloramphenicol acetyltransferases (CATs) from mesophilic prokaryotes to function as robust and efficient AATs compatible with at least 21 alcohol and 8 acyl-CoA substrates for microbial biosynthesis of linear, branched, saturated, unsaturated and/or aromatic esters. By plugging the best engineered CAT (CATec3 Y20F) into the gram-negative mesophilic bacterium Escherichia coli, we demonstrated that the recombinant strain could effectively convert various alcohols into desirable esters, for instance, achieving a titer of 13.9 g/L isoamyl acetate with 95% conversion by fed-batch fermentation. The recombinant E. coli was also capable of simulating the ester profile of roses with high conversion (>97%) and titer (>1 g/L) from fermentable sugars at 37 °C. Likewise, a recombinant gram-positive, cellulolytic, thermophilic bacterium Clostridium thermocellum harboring CATec3 Y20F could produce many of these esters from recalcitrant cellulosic biomass at elevated temperatures (>50 °C) due to the engineered enzyme's remarkable thermostability. Overall, the engineered CATs can serve as a robust and efficient platform for designer ester biosynthesis from renewable and sustainable feedstocks.


Assuntos
Escherichia coli , Ésteres , Biocombustíveis , Cloranfenicol O-Acetiltransferase , Escherichia coli/genética , Engenharia Metabólica
10.
Metab Eng ; 65: 1-10, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33636323

RESUMO

Lignin biosynthesis typically results in a polymer with several inter-monomer bond linkages, and the heterogeneity of linkages presents a challenge for depolymerization processes. While several enzyme classes have been shown to cleave common dimer linkages in lignin, the pathway of bacterial ß-1 spirodienone linkage cleavage has not been elucidated. Here, we identified a pathway for cleavage of 1,2-diguaiacylpropane-1,3-diol (DGPD), a ß-1 linked biaryl representative of a ring-opened spirodienone linkage, in Novosphingobium aromaticivorans DSM12444. In vitro assays using cell lysates demonstrated that RS14230 (LsdE) converts DGPD to a lignostilbene intermediate, which the carotenoid oxygenase, LsdA, then converts to vanillin. A Pseudomonas putida KT2440 strain engineered with lsdEA expression catabolizes erythro-DGPD, but not threo-DGPD. We further engineered P. putida to convert DGPD to a product, cis,cis-muconic acid. Overall, this work demonstrates the potential to identify new enzymatic reactions in N. aromaticivorans and expands the biological funnel of P. putida for microbial lignin valorization.


Assuntos
Pseudomonas putida , Sphingomonadaceae , Lignina , Pseudomonas putida/genética
11.
Metab Eng ; 65: 111-122, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33741529

RESUMO

Valorization of lignin, an abundant component of plant cell walls, is critical to enabling the lignocellulosic bioeconomy. Biological funneling using microbial biocatalysts has emerged as an attractive approach to convert complex mixtures of lignin depolymerization products to value-added compounds. Ideally, biocatalysts would convert aromatic compounds derived from the three canonical types of lignin: syringyl (S), guaiacyl (G), and p-hydroxyphenyl (H). Pseudomonas putida KT2440 (hereafter KT2440) has been developed as a biocatalyst owing in part to its native catabolic capabilities but is not known to catabolize S-type lignin-derived compounds. Here, we demonstrate that syringate, a common S-type lignin-derived compound, is utilized by KT2440 only in the presence of another energy source or when vanAB was overexpressed, as syringate was found to be O-demethylated to gallate by VanAB, a two-component monooxygenase, and further catabolized via extradiol cleavage. Unexpectedly, the specificity (kcat/KM) of VanAB for syringate was within 25% that for vanillate and O-demethylation of both substrates was well-coupled to O2 consumption. However, the native KT2440 gallate-cleaving dioxygenase, GalA, was potently inactivated by 3-O-methylgallate. To engineer a biocatalyst to simultaneously convert S-, G-, and H-type monomers, we therefore employed VanAB from Pseudomonas sp. HR199, which has lower activity for 3MGA, and LigAB, an extradiol dioxygenase able to cleave protocatechuate and 3-O-methylgallate. This strain converted 93% of a mixture of lignin monomers to 2-pyrone-4,6-dicarboxylate, a promising bio-based chemical. Overall, this study elucidates a native pathway in KT2440 for catabolizing S-type lignin-derived compounds and demonstrates the potential of this robust chassis for lignin valorization.


Assuntos
Pseudomonas putida , Lignina , Pseudomonas putida/genética , Pironas
12.
Mol Microbiol ; 112(6): 1784-1797, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31532038

RESUMO

A microbe's ecological niche and biotechnological utility are determined by its specific set of co-evolved metabolic pathways. The acquisition of new pathways, through horizontal gene transfer or genetic engineering, can have unpredictable consequences. Here we show that two different pathways for coumarate catabolism failed to function when initially transferred into Escherichia coli. Using laboratory evolution, we elucidated the factors limiting activity of the newly acquired pathways and the modifications required to overcome these limitations. Both pathways required host mutations to enable effective growth with coumarate, but the necessary mutations differed. In one case, a pathway intermediate inhibited purine nucleotide biosynthesis, and this inhibition was relieved by single amino acid replacements in IMP dehydrogenase. A strain that natively contains this coumarate catabolism pathway, Acinetobacter baumannii, is resistant to inhibition by the relevant intermediate, suggesting that natural pathway transfers have faced and overcome similar challenges. Molecular dynamics simulation of the wild type and a representative single-residue mutant provide insight into the structural and dynamic changes that relieve inhibition. These results demonstrate how deleterious interactions can limit pathway transfer, that these interactions can be traced to specific molecular interactions between host and pathway, and how evolution or engineering can alleviate these limitations.


Assuntos
Ácidos Cumáricos/metabolismo , Nucleotídeos de Purina/biossíntese , Acinetobacter baumannii/metabolismo , Escherichia coli/genética , Evolução Molecular , Técnicas de Transferência de Genes , Transferência Genética Horizontal , IMP Desidrogenase/genética , IMP Desidrogenase/metabolismo , Redes e Vias Metabólicas/genética , Simulação de Dinâmica Molecular , Mutação , Nucleotídeos de Purina/antagonistas & inibidores , Nucleotídeos de Purina/genética
13.
Appl Environ Microbiol ; 86(3)2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31704686

RESUMO

Thiamine is a vitamin that functions as a cofactor for key enzymes in carbon and energy metabolism in all living cells. While most plants, fungi, and bacteria can synthesize thiamine de novo, the oleaginous yeast Yarrowia lipolytica cannot. In this study, we used proteomics together with physiological characterization to elucidate key metabolic processes influenced and regulated by thiamine availability and to identify the genetic basis of thiamine auxotrophy in Y. lipolytica Specifically, we found that thiamine depletion results in decreased protein abundance for the lipid biosynthesis pathway and energy metabolism (i.e., ATP synthase), leading to the negligible growth and poor sugar assimilation observed in our study. Using comparative genomics, we identified the missing 4-amino-5-hydroxymethyl-2-methylpyrimidine phosphate synthase (THI13) gene for the de novo thiamine biosynthesis in Y. lipolytica and discovered an exceptional promoter, P3, that exhibits strong activation and tight repression by low and high thiamine concentrations, respectively. Capitalizing on the strength of our thiamine-regulated promoter (P3) to express the missing gene from Saccharomyces cerevisiae (scTHI13), we engineered a thiamine-prototrophic Y. lipolytica strain. By comparing this engineered strain to the wild-type strain, we revealed the tight relationship between thiamine availability and lipid biosynthesis and demonstrated enhanced lipid production with thiamine supplementation in the engineered thiamine-prototrophic Y. lipolytica strain.IMPORTANCE Thiamine plays a crucial role as an essential cofactor for enzymes involved in carbon and energy metabolism in all living cells. Thiamine deficiency has detrimental consequences for cellular health. Yarrowia lipolytica, a nonconventional oleaginous yeast with broad biotechnological applications, is a native thiamine auxotroph whose affected cellular metabolism is not well understood. Therefore, Y. lipolytica is an ideal eukaryotic host for the study of thiamine metabolism, especially because mammalian cells are also thiamine auxotrophic and thiamine deficiency is implicated in several human diseases. This study elucidates the fundamental effects of thiamine deficiency on cellular metabolism in Y. lipolytica and identifies genes and novel thiamine-regulated elements that eliminate thiamine auxotrophy in Y. lipolytica Furthermore, the discovery of thiamine-regulated elements enables the development of thiamine biosensors with useful applications in synthetic biology and metabolic engineering.


Assuntos
Proteínas Fúngicas/metabolismo , Proteoma , Deficiência de Tiamina/metabolismo , Tiamina/metabolismo , Yarrowia/metabolismo
14.
Anal Chem ; 91(11): 7273-7279, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31075198

RESUMO

Peptide cofragmentation leads to chimeric MS/MS spectra that negatively impact traditional single-peptide match-per-spectrum (sPSM) search strategies in proteomics. The collection of chimeric spectra is influenced by peptide coelution and the width of precursor isolation windows. Although peptide cofragmentation can be reduced by advanced chromatography, such as UHPLC and 2D-HPLC separation schemes, and narrower isolation windows, chimeric spectra can still be as high as 30-50% of the total MS/MS spectra collected. Alternatively, cofragmented peptides in chimeric spectra and the use of wider isolation windows benefit multiple-peptide matches-per-spectrum (mPSM) algorithms, such as CharmeRT, which facilitate the identification of several cofragmented peptides. Considering recent advancements in LC and mPSM methodologies, we present a comprehensive examination of the levels of chimeric spectra collected in the analysis of a HeLa digest measured using different LC modes of separation and isolation windows and compare the depth of identifications obtained when these data are annotated using a sPSM or a mPSM approach. Our results demonstrate that MS/MS data derived from 1D-HPLC strategies under different gradient schemes and searched with CharmeRT yielded higher average numbers of PSMs (11%-49%), peptide analytes (10%-16%), and peptide sequences (3%-10%) compared to data derived from 1D-UHPLC runs but searched with a sPSM strategy. Interestingly, data from a 2D-HPLC separation strategy benefits more from the application of CharmeRT results when compared to a 50 cm 1D-UHPLC column employing a 500 min gradient. Overall, these results provide new insights into how to better configure LC-MS/MS measurements for improved throughput and peptide identification in complex proteomes.


Assuntos
Peptídeos/isolamento & purificação , Proteômica , Algoritmos , Cromatografia Líquida de Alta Pressão , Células HeLa , Humanos , Peptídeos/química , Espectrometria de Massas em Tandem
15.
Appl Environ Microbiol ; 84(22)2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30217841

RESUMO

Transposon mutagenesis is a powerful technique in microbial genetics for the identification of genes in uncharacterized pathways. Recently, the throughput of transposon mutagenesis techniques has been dramatically increased through the combination of DNA barcoding and high-throughput sequencing. Here, we show that when applied to catabolic pathways, barcoded transposon libraries can be used to distinguish redundant pathways, decompose complex pathways into substituent modules, discriminate between enzyme homologs, and rapidly identify previously hypothetical enzymes in an unbiased genome-scale search. We used this technique to identify two genes, desC and desD, which are involved in the degradation of the lignin-derived aromatic compound sinapic acid in the nonmodel bacterium Novosphingobium aromaticivorans We show that DesC is a methyl esterase acting on an intermediate formed during sinapic acid catabolism, providing the last enzyme in a proposed catabolic pathway. This approach will be particularly useful in the identification of complete pathways suitable for heterologous expression in metabolic engineering.IMPORTANCE The identification of the genes involved in specific biochemical transformations is a key step in predicting microbial function from nucleic acid sequences and in engineering microbes to endow them with new functions. We have shown that new techniques for transposon mutagenesis can dramatically simplify this process and enable the rapid identification of genes in uncharacterized pathways. These techniques provide the necessary scale to fully elucidate complex biological networks such as those used to degrade mixtures of lignin-derived aromatic compounds.


Assuntos
Ácidos Cumáricos/metabolismo , Lignina/metabolismo , Redes e Vias Metabólicas , Mutagênese Insercional/métodos , Sphingomonadaceae/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Elementos de DNA Transponíveis , Esterases/genética , Esterases/metabolismo , Engenharia Metabólica , Sphingomonadaceae/genética
16.
J Ind Microbiol Biotechnol ; 45(11): 1007-1015, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30187243

RESUMO

Clostridium thermocellum is a potentially useful organism for the production of lignocellulosic biofuels because of its ability to directly deconstruct cellulose and convert it into ethanol. Previously engineered C. thermocellum strains have achieved higher yields and titers of ethanol. These strains often initially grow more poorly than the wild type. Adaptive laboratory evolution and medium supplementation have been used to improve growth, but the mechanism(s) by which growth improves remain(s) unclear. Here, we studied (1) wild-type C. thermocellum, (2) the slow-growing and high-ethanol-yielding mutant AG553, and (3) the faster-growing evolved mutant AG601, each grown with and without added formate. We used a combination of transcriptomics and proteomics to understand the physiological impact of the metabolic engineering, evolution, and medium supplementation. Medium supplementation with formate improved growth in both AG553 and AG601. Expression of C1 metabolism genes varied with formate addition, supporting the hypothesis that the primary benefit of added formate is the supply of C1 units for biosynthesis. Expression of stress response genes such as those involved in the sporulation cascade was dramatically over-represented in AG553, even after the addition of formate, suggesting that the source of the stress may be other issues such as redox imbalances. The sporulation response is absent in evolved strain AG601, suggesting that sporulation limits the growth of engineered strain AG553. A better understanding of the stress response and mechanisms of improved growth hold promise for informing rational improvement of C. thermocellum for lignocellulosic biofuel production.


Assuntos
Biocombustíveis , Clostridium thermocellum/genética , Meios de Cultura , Engenharia Metabólica , Proteoma , Transcriptoma , Celulose/metabolismo , Etanol/metabolismo , Formiatos/química , Perfilação da Expressão Gênica , Microbiologia Industrial , Mutação
17.
Appl Environ Microbiol ; 83(18)2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28733280

RESUMO

The production of biofuels from lignocellulose yields a substantial lignin by-product stream that currently has few applications. Biological conversion of lignin-derived compounds into chemicals and fuels has the potential to improve the economics of lignocellulose-derived biofuels, but few microbes are able both to catabolize lignin-derived aromatic compounds and to generate valuable products. While Escherichia coli has been engineered to produce a variety of fuels and chemicals, it is incapable of catabolizing most aromatic compounds. Therefore, we engineered E. coli to catabolize protocatechuate, a common intermediate in lignin degradation, as the sole source of carbon and energy via heterologous expression of a nine-gene pathway from Pseudomonas putida KT2440. We next used experimental evolution to select for mutations that increased growth with protocatechuate more than 2-fold. Increasing the strength of a single ribosome binding site in the heterologous pathway was sufficient to recapitulate the increased growth. After optimization of the core pathway, we extended the pathway to enable catabolism of a second model compound, 4-hydroxybenzoate. These engineered strains will be useful platforms to discover, characterize, and optimize pathways for conversions of lignin-derived aromatics.IMPORTANCE Lignin is a challenging substrate for microbial catabolism due to its polymeric and heterogeneous chemical structure. Therefore, engineering microbes for improved catabolism of lignin-derived aromatic compounds will require the assembly of an entire network of catabolic reactions, including pathways from genetically intractable strains. Constructing defined pathways for aromatic compound degradation in a model host would allow rapid identification, characterization, and optimization of novel pathways. We constructed and optimized one such pathway in E. coli to enable catabolism of a model aromatic compound, protocatechuate, and then extended the pathway to a related compound, 4-hydroxybenzoate. This optimized strain can now be used as the basis for the characterization of novel pathways.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Hidrocarbonetos Aromáticos/metabolismo , Engenharia Metabólica , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Lignina/metabolismo , Parabenos/metabolismo , Pseudomonas putida/genética
18.
Appl Environ Microbiol ; 83(24)2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-28986379

RESUMO

The ability to hydrolyze microcrystalline cellulose is an uncommon feature in the microbial world, but it can be exploited for conversion of lignocellulosic feedstocks into biobased fuels and chemicals. Understanding the physiological and biochemical mechanisms by which microorganisms deconstruct cellulosic material is key to achieving this objective. The glucan degradation locus (GDL) in the genomes of extremely thermophilic Caldicellulosiruptor species encodes polysaccharide lyases (PLs), unique cellulose binding proteins (tapirins), and putative posttranslational modifying enzymes, in addition to multidomain, multifunctional glycoside hydrolases (GHs), thereby representing an alternative paradigm for plant biomass degradation compared to fungal or cellulosomal systems. To examine the individual and collective in vivo roles of the glycolytic enzymes, the six GH genes in the GDL of Caldicellulosiruptor bescii were systematically deleted, and the extents to which the resulting mutant strains could solubilize microcrystalline cellulose (Avicel) and plant biomass (switchgrass or poplar) were examined. Three of the GDL enzymes, Athe_1867 (CelA) (GH9-CBM3-CBM3-CBM3-GH48), Athe_1859 (GH5-CBM3-CBM3-GH44), and Athe_1857 (GH10-CBM3-CBM3-GH48), acted synergistically in vivo and accounted for 92% of naked microcrystalline cellulose (Avicel) degradation. However, the relative importance of the GDL GHs varied for the plant biomass substrates tested. Furthermore, mixed cultures of mutant strains showed that switchgrass solubilization depended on the secretome-bound enzymes collectively produced by the culture, not on the specific strain from which they came. These results demonstrate that certain GDL GHs are primarily responsible for the degradation of microcrystalline cellulose-containing substrates by C. bescii and provide new insights into the workings of a novel microbial mechanism for lignocellulose utilization.IMPORTANCE The efficient and extensive degradation of complex polysaccharides in lignocellulosic biomass, particularly microcrystalline cellulose, remains a major barrier to its use as a renewable feedstock for the production of fuels and chemicals. Extremely thermophilic bacteria from the genus Caldicellulosiruptor rapidly degrade plant biomass to fermentable sugars at temperatures of 70 to 78°C, although the specific mechanism by which this occurs is not clear. Previous comparative genomic studies identified a genomic locus found only in certain Caldicellulosiruptor species that was hypothesized to be mainly responsible for microcrystalline cellulose degradation. By systematically deleting genes in this locus in Caldicellulosiruptor bescii, the nuanced, substrate-specific in vivo roles of glycolytic enzymes in deconstructing crystalline cellulose and plant biomasses could be discerned. The results here point to synergism of three multidomain cellulases in C. bescii, working in conjunction with the aggregate secreted enzyme inventory, as the key to the plant biomass degradation ability of this extreme thermophile.


Assuntos
Proteínas de Bactérias/metabolismo , Celulose/química , Firmicutes/genética , Glucanos/metabolismo , Glicosídeo Hidrolases/metabolismo , Panicum/química , Populus/química , Firmicutes/metabolismo
19.
Biochim Biophys Acta Gen Subj ; 1861(9): 2218-2227, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28591626

RESUMO

BACKGROUND: Studies of interspecies interactions are inherently difficult due to the complex mechanisms which enable these relationships. A model system for studying interspecies interactions is the marine hyperthermophiles Ignicoccus hospitalis and Nanoarchaeum equitans. Recent independently-conducted 'omics' analyses have generated insights into the molecular factors modulating this association. However, significant questions remain about the nature of the interactions between these archaea. METHODS: We jointly analyzed multiple levels of omics datasets obtained from published, independent transcriptomics, proteomics, and metabolomics analyses. DAVID identified functionally-related groups enriched when I. hospitalis is grown alone or in co-culture with N. equitans. Enriched molecular pathways were subsequently visualized using interaction maps generated using STRING. RESULTS: Key findings of our multi-level omics analysis indicated that I. hospitalis provides precursors to N. equitans for energy metabolism. Analysis indicated an overall reduction in diversity of metabolic precursors in the I. hospitalis-N. equitans co-culture, which has been connected to the differential use of ribosomal subunits and was previously unnoticed. We also identified differences in precursors linked to amino acid metabolism, NADH metabolism, and carbon fixation, providing new insights into the metabolic adaptions of I. hospitalis enabling the growth of N. equitans. CONCLUSIONS: This multi-omics analysis builds upon previously identified cellular patterns while offering new insights into mechanisms that enable the I. hospitalis-N. equitans association. GENERAL SIGNIFICANCE: Our study applies statistical and visualization techniques to a mixed-source omics dataset to yield a more global insight into a complex system, that was not readily discernable from separate omics studies.


Assuntos
Desulfurococcaceae/metabolismo , Nanoarchaeota/metabolismo , Aminoácidos/metabolismo , Metabolismo Energético , Metabolômica , NAD/metabolismo , Proteômica , Proteínas Ribossômicas/metabolismo , Transcriptoma
20.
J Biol Chem ; 290(17): 10645-56, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25720489

RESUMO

A variety of catalytic and noncatalytic protein domains are deployed by select microorganisms to deconstruct lignocellulose. These extracellular proteins are used to attach to, modify, and hydrolyze the complex polysaccharides present in plant cell walls. Cellulolytic enzymes, often containing carbohydrate-binding modules, are key to this process; however, these enzymes are not solely responsible for attachment. Few mechanisms of attachment have been discovered among bacteria that do not form large polypeptide structures, called cellulosomes, to deconstruct biomass. In this study, bioinformatics and proteomics analyses identified unique, discrete, hypothetical proteins ("tapirins," origin from Maori: to join), not directly associated with cellulases, that mediate attachment to cellulose by species in the noncellulosomal, extremely thermophilic bacterial genus Caldicellulosiruptor. Two tapirin genes are located directly downstream of a type IV pilus operon in strongly cellulolytic members of the genus, whereas homologs are absent from the weakly cellulolytic Caldicellulosiruptor species. Based on their amino acid sequence, tapirins are specific to these extreme thermophiles. Tapirins are also unusual in that they share no detectable protein domain signatures with known polysaccharide-binding proteins. Adsorption isotherm and trans vivo analyses demonstrated the carbohydrate-binding module-like affinity of the tapirins for cellulose. Crystallization of a cellulose-binding truncation from one tapirin indicated that these proteins form a long ß-helix core with a shielded hydrophobic face. Furthermore, they are structurally unique and define a new class of polysaccharide adhesins. Strongly cellulolytic Caldicellulosiruptor species employ tapirins to complement substrate-binding proteins from the ATP-binding cassette transporters and multidomain extracellular and S-layer-associated glycoside hydrolases to process the carbohydrate content of lignocellulose.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Celulose/metabolismo , Adsorção , Bactérias/genética , Bactérias/ultraestrutura , Aderência Bacteriana/fisiologia , Proteínas de Bactérias/genética , Sítios de Ligação , Fímbrias Bacterianas/metabolismo , Genes Bacterianos , Modelos Moleculares , Filogenia , Plantas/microbiologia , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa