Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(23): e202404802, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38501442

RESUMO

The modification of polymer surfaces using laser light is important for many applications in the nano-, bio- and chemical sciences. Such capabilities have supported advances in biomedical devices, electronics, information storage, microfluidics, and other applications. In most cases, these modifications require high power lasers that are expensive and require specialized equipment and facilities to minimize risk of hazardous radiation. Additionally, polymer systems that can be easily modified by lasers are often complex and costly to prepare. In this report, these challenges are addressed with the discovery of low-cost sulfur copolymers that can be rapidly modified with lasers emitting low-power infrared and visible light. The featured copolymers are made from elemental sulfur and either cyclopentadiene or dicyclopentadiene. Using a suite of lasers with discreet wavelengths (532, 638 and 786 nm) and powers, a variety of surface modifications could be made on the polymers such as controlled swelling or etching via ablation. The facile synthesis and laser modification of these polymer systems were exploited in applications such as direct laser lithography and erasable information storage.

2.
J Am Chem Soc ; 145(21): 11798-11810, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37196214

RESUMO

With increasing interest in high sulfur content polymers, there is a need to develop new methods for their synthesis that feature improved safety and control of structure. In this report, electrochemically initiated ring-opening polymerization of norbornene-based cyclic trisulfide monomers delivered well-defined, linear poly(trisulfides), which were solution processable. Electrochemistry provided a controlled initiation step that obviates the need for hazardous chemical initiators. The high temperatures required for inverse vulcanization are also avoided resulting in an improved safety profile. Density functional theory calculations revealed a reversible "self-correcting" mechanism that ensures trisulfide linkages between monomer units. This control over sulfur rank is a new benchmark for high sulfur content polymers and creates opportunities to better understand the effects of sulfur rank on polymer properties. Thermogravimetric analysis coupled with mass spectrometry revealed the ability to recycle the polymer to the cyclic trisulfide monomer by thermal depolymerization. The featured poly(trisulfide) is an effective gold sorbent, with potential applications in mining and electronic waste recycling. A water-soluble poly(trisulfide) containing a carboxylic acid group was also produced and found to be effective in the binding and recovery of copper from aqueous media.

3.
Phys Chem Chem Phys ; 24(20): 12363-12373, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35552571

RESUMO

A polymer made from sulfur and limonene was used to coat silica gel and then evaluated as a mercury sorbent. A kinetic model of mercury uptake was established for a range of pH values and concentrations of sodium chloride. Mercury uptake was generally rapid from pH = 3 to pH = 11. At neutral pH, the sorbent (500 mg with a 10 : 1 ratio of silica to polymer) could remove 90% of mercury within one minute from a 100 mL solution containing 5 ppm HgCl2 and 99% over 5 minutes. It was found that sodium chloride, at concentrations comparable to seawater, dramatically reduced mercury uptake rates and capacity. It was also found that the spent sorbent was stable in acidic and neutral media, but degraded at pH 11 which led to mercury leaching. These results help define the conditions under which the sorbent could be used, which is an important advance for using this material in remediation processes.


Assuntos
Mercúrio , Adsorção , Limoneno , Polímeros , Cloreto de Sódio , Sulfetos , Enxofre
4.
Environ Sci Technol ; 55(4): 2369-2380, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33507750

RESUMO

Chalcopyrite, galena, and sphalerite commonly coexist with pyrite in sulfidic waste rocks. The aim of this work was to investigate their impact, potentially by galvanic interaction, on pyrite oxidation and acid generation rates under simulated acid and metalliferous drainage conditions. Kinetic leach column experiments using single-minerals and pyrite with one or two of the other sulfide minerals were carried out at realistic sulfide contents (total sulfide <5.2 wt % for mixed sulfide experiments), mimicking sulfidic waste rock conditions. Chalcopyrite was found to be most effective in limiting pyrite oxidation and acid generation with 77-95% reduction in pyrite oxidation over 72 weeks, delaying decrease in leachate pH. Sphalerite had the least impact with reduction of pyrite dissolution by 26% over 72 weeks, likely because of the large band gap and poor conductivity of sphalerite. Galena had a smaller impact than chalcopyrite on pyrite oxidation, despite their similar band gaps, possibly because of the greater extent of oxidation and the significantly reduced surface areas of galena (area reductions of >47% for galena vs <1.5% for chalcopyrite) over 72 weeks. The results are directly relevant to mine waste storage and confirm that the galvanic interaction plays a role in controlling acid generation in multisulfide waste even at low sulfide contents (several wt %) with small probabilities (≤0.23%) of direct contact between sulfide minerals in mixed sulfide experiments.


Assuntos
Minerais , Sulfetos , Ácidos , Estresse Oxidativo , Solubilidade
5.
Chemistry ; 26(44): 10035-10044, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32428387

RESUMO

Inverse vulcanization provides dynamic and responsive materials made from elemental sulfur and unsaturated cross-linkers. These polymers have been used in a variety of applications such as energy storage, infrared optics, repairable materials, environmental remediation, and precision fertilizers. In spite of these advances, there is a need for methods to recycle and reprocess these polymers. In this study, polymers prepared by inverse vulcanization are shown to undergo reactive compression molding. In this process, the reactive interfaces of sulfur polymers are brought into contact by mechanical compression. Upon heating these molds at relatively low temperatures (≈100 °C), chemical bonding occurs at the polymer interfaces by S-S metathesis. This method of processing is distinct from previous studies on inverse vulcanization because the polymers examined in this study do not form a liquid phase when heated. Neither compression nor heating alone was sufficient to mold these polymers into new architectures, so this is a new concept in the manipulation of sulfur polymers. Additionally, high-level ab initio calculations revealed that the weakest S-S bond in organic polysulfides decreases linearly in strength from a sulfur rank of 2 to 4, but then remains constant at about 100 kJ mol-1 for higher sulfur rank. This is critical information in engineering these polymers for S-S metathesis. Guided by this insight, polymer repair, recycling, and repurposing into new composites was demonstrated.

6.
Chemistry ; 25(44): 10433-10440, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31136036

RESUMO

Sulfur is an underused by-product of the petrochemicals industry. Recent research into inverse vulcanization has shown how this excess sulfur can be transformed into functional polymers, by stabilization with organic crosslinkers. For these interesting new materials to realize their potential for applications, more understanding and control of their physical properties is needed. Here we report four new terpolymers prepared from sulfur and two distinct alkene monomers that can be predictively tuned in glass transition, molecular weight, solubility, mechanical properties, and color.

7.
Small ; 14(16): e1800247, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29575578

RESUMO

Dip pen nanolithography (DPN) is used to pattern single-walled carbon nanotube (SWCNT) lines between the n-type Si and SWCNT film in SWCNT/Si solar cells. The SWCNT ink composition, loading, and DPN pretreatment are optimized to improve patterning. This improved DPN technique is then used to successfully pattern >1 mm long SWCNT lines consistently. This is a 20-fold increase in the previously reported direct-patterning of SWCNT lines using the DPN technique, and demonstrates the scalability of the technique to pattern larger areas. The degree of the uniformity of SWCNTs in these lines is further characterized by Raman spectroscopy and scanning electron microscopy. The patterned SWCNT lines are used as thin conductive pathways in SWCNT/Si solar cells, similar to front contact electrodes. The critical parameters of these solar cells are measured and compared to control cells without SWCNT lines. The addition of SWCNT lines increases power conversion efficiency by 40% (relative). Importantly, the SWCNT lines reduce average series resistance by 44%, and consequently increase average fill factor by 24%.

8.
Angew Chem Int Ed Engl ; 57(10): 2644-2647, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29345038

RESUMO

Research into efficient synthesis, fundamental properties, and potential applications of phosphorene is currently the subject of intense investigation. Herein, solution-processed phosphorene or few-layer black phosphorus (FL-BP) sheets are prepared using a microwave exfoliation method and used in photoelectrochemical cells. Based on experimental and theoretical (DFT) studies, the FL-BP sheets are found to act as catalytically active sites and show excellent electrocatalytic activity for triiodide reduction in dye-sensitized solar cells. Importantly, the device fabricated based on the newly designed cobalt sulfide (CoSx ) decorated nitrogen and sulfur co-doped carbon nanotube heteroelectrocatalyst coated with FL-BP (FL-BP@N,S-doped CNTs-CoSx ) displayed an impressive photovoltaic efficiency of 8.31 %, outperforming expensive platinum based cells. This work paves the way for using phosphorene-based electrocatalysts for next-generation energy-storage systems.

9.
Chemistry ; 23(64): 16219-16230, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-28763123

RESUMO

Mercury pollution threatens the environment and human health across the globe. This neurotoxic substance is encountered in artisanal gold mining, coal combustion, oil and gas refining, waste incineration, chloralkali plant operation, metallurgy, and areas of agriculture in which mercury-rich fungicides are used. Thousands of tonnes of mercury are emitted annually through these activities. With the Minamata Convention on Mercury entering force this year, increasing regulation of mercury pollution is imminent. It is therefore critical to provide inexpensive and scalable mercury sorbents. The research herein addresses this need by introducing low-cost mercury sorbents made solely from sulfur and unsaturated cooking oils. A porous version of the polymer was prepared by simply synthesising the polymer in the presence of a sodium chloride porogen. The resulting material is a rubber that captures liquid mercury metal, mercury vapour, inorganic mercury bound to organic matter, and highly toxic alkylmercury compounds. Mercury removal from air, water and soil was demonstrated. Because sulfur is a by-product of petroleum refining and spent cooking oils from the food industry are suitable starting materials, these mercury-capturing polymers can be synthesised entirely from waste and supplied on multi-kilogram scales. This study is therefore an advance in waste valorisation and environmental chemistry.


Assuntos
Mercúrio/química , Óleos de Plantas/química , Enxofre/química , Adsorção , Poluentes Atmosféricos/química , Varredura Diferencial de Calorimetria , Polímeros/síntese química , Polímeros/química , Reciclagem , Poluentes do Solo/química , Propriedades de Superfície , Termogravimetria , Poluentes Químicos da Água/química
10.
Nanotechnology ; 27(12): 125704, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-26894444

RESUMO

Graphene has emerged as a material with a vast variety of applications. The electronic, optical and mechanical properties of graphene are strongly influenced by the number of layers present in a sample. As a result, the dimensional characterization of graphene films is crucial, especially with the continued development of new synthesis methods and applications. A number of techniques exist to determine the thickness of graphene films including optical contrast, Raman scattering and scanning probe microscopy techniques. Atomic force microscopy (AFM), in particular, is used extensively since it provides three-dimensional images that enable the measurement of the lateral dimensions of graphene films as well as the thickness, and by extension the number of layers present. However, in the literature AFM has proven to be inaccurate with a wide range of measured values for single layer graphene thickness reported (between 0.4 and 1.7 nm). This discrepancy has been attributed to tip-surface interactions, image feedback settings and surface chemistry. In this work, we use standard and carbon nanotube modified AFM probes and a relatively new AFM imaging mode known as PeakForce tapping mode to establish a protocol that will allow users to accurately determine the thickness of graphene films. In particular, the error in measuring the first layer is reduced from 0.1-1.3 nm to 0.1-0.3 nm. Furthermore, in the process we establish that the graphene-substrate adsorbate layer and imaging force, in particular the pressure the tip exerts on the surface, are crucial components in the accurate measurement of graphene using AFM. These findings can be applied to other 2D materials.

11.
Nanotechnology ; 27(47): 475708, 2016 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-27782008

RESUMO

Conductive atomic force microscopy (C-AFM) is used to characterise the nanoscale electrical properties of many conducting and semiconducting materials. We investigate the effect of single walled carbon nanotube (SWCNT) modification of commercial Pt/Ir cantilevers on the sensitivity and image stability during C-AFM imaging. Pt/Ir cantilevers were modified with small bundles of SWCNTs via a manual attachment procedure and secured with a conductive platinum pad. AFM images of topography and current were collected from heterogeneous polymer and nanomaterial samples using both standard and SWCNT modified cantilevers. Typically, achieving a good current image comes at the cost of reduced feedback stability. In part, this is due to electrostatic interaction and increased tip wear upon applying a bias between the tip and the sample. The SWCNT modified tips displayed superior current sensitivity and feedback stability which, combined with superior wear resistance of SWCNTs, is a significant advancement for C-AFM.

12.
Angew Chem Int Ed Engl ; 55(5): 1714-8, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26481099

RESUMO

A polysulfide material was synthesized by the direct reaction of sulfur and d-limonene, by-products of the petroleum and citrus industries, respectively. The resulting material was processed into functional coatings or molded into solid devices for the removal of palladium and mercury salts from water and soil. The binding of mercury(II) to the sulfur-limonene polysulfide resulted in a color change. These properties motivate application in next-generation environmental remediation and mercury sensing.


Assuntos
Cicloexenos/química , Metais/isolamento & purificação , Poluentes do Solo/isolamento & purificação , Sulfetos/química , Enxofre/química , Terpenos/química , Poluentes Químicos da Água/isolamento & purificação , Cromatografia em Gel , Limoneno , Microscopia Eletrônica de Varredura
13.
Langmuir ; 31(21): 5868-74, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-25950498

RESUMO

Silver nanoparticles are well-known for their antibacterial properties. However, the detailed mechanism describing the interaction between the nanoparticles and a cell membrane is not fully understood, which can impede the use of the particles in biomedical applications. Here, a tethered bilayer lipid membrane has been used as a model system to mimic a natural membrane and to study the effect of exposure to small silver nanoparticles with diameters of about 2 nm. The solid supported membrane architecture allowed for the application of surface analytical techniques such as electrochemical impedance spectroscopy and atomic force microscopy. Exposure of the membrane to solutions of the silver nanoparticles led to a small but completely reversible perturbation of the lipid bilayer.


Assuntos
Bicamadas Lipídicas/química , Nanopartículas Metálicas/química , Prata/química , Espectroscopia Dielétrica , Microscopia de Força Atômica
14.
Nanotechnology ; 25(33): 335705, 2014 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-25074581

RESUMO

As a recent technological development, high-speed atomic force microscopy (AFM) has provided unprecedented insights into dynamic processes on the nanoscale, and is capable of measuring material property variation over short timescales. Miniaturized cantilevers developed specifically for high-speed AFM differ greatly from standard cantilevers both in size and dynamic properties, and calibration of the cantilever spring constant is critical for accurate, quantitative measurement. This work investigates specifically, the calibration of these new-generation cantilevers for the first time. Existing techniques are tested and the challenges encountered are reported and the most effective approaches for calibrating fast-scanning cantilevers with high accuracy are identified, providing a resource for microscopists in this rapidly developing field. Not only do these cantilevers offer faster acquisition of images and force data but due to their high resonant frequencies (up to 2 MHz) they are also excellent mass sensors. Accurate measurement of deposited mass requires accurate calibration of the cantilever spring constant, therefore the results of this work will also be useful for mass-sensing applications.

15.
Nanotechnology ; 24(23): 235705, 2013 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-23669234

RESUMO

Carbon nanotubes are considered to be an ideal imaging tip for atomic force microscopy (AFM) applications, and a number of methods for fabricating these types of probe have been developed in recent years. This work reports the attachment of carbon nanotubes to AFM probes using a micromanipulator within a scanning electron microscope. Electron beam induced deposition and etching are used to enhance the quality and attachment of the carbon nanotube tip and improve the fabrication rate of the CNT AFM probes compared to existing techniques. The attachment process is also improved by using a mat of SWCNTs (buckypaper) as a CNT source, which simultaneously improves the ease of fabrication and rate of nanotube probe production. The aim of these improvements is to simplify and improve the attachment process such that these probes can be better and more widely used in applications that benefit from their unique properties. This improved process is then used to attach CNTs to the new generation of low-mass, high-frequency probes, which are designed for rapid AFM imaging. The ability of these probes to operate with CNT tips is demonstrated, and their wear-resistance properties were found to be significantly enhanced compared to unmodified probes. These wear-resistant probes imaging at high scan rates are proposed to be effective tools for increasing throughput in metrological analysis, particularly for imaging high-modulus surfaces with high roughness and high-aspect-ratio features.

16.
Nanotechnology ; 24(1): 015710, 2013 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-23220746

RESUMO

Static methods to determine the spring constant of AFM cantilevers have been widely used in the scientific community since the importance of such calibration techniques was established nearly 20 years ago. The most commonly used static techniques involve loading a trial cantilever with a known force by pressing it against a pre-calibrated standard or reference cantilever. These reference cantilever methods have a number of sources of uncertainty, which include the uncertainty in the measured spring constant of the standard cantilever, the exact position of the loading point on the reference cantilever and how closely the spring constant of the trial and reference cantilever match. We present a technique that enables users to minimize these uncertainties by creating spatial markers on reference cantilevers using a focused ion beam (FIB). We demonstrate that by combining FIB spatial markers with an inverted reference cantilever method, AFM cantilevers can be accurately calibrated without the tip of the test cantilever contacting a surface. This work also demonstrates that for V-shaped cantilevers it is possible to determine the precise loading position by AFM imaging the section of the cantilever where the two arms join. Removing tip-to-surface contact in both the reference cantilever method and sensitivity calibration is a significant improvement, since this is an important consideration for AFM users that require the imaging tip to remain in pristine condition before commencing measurements. Uncertainties of between 5 and 10% are routinely achievable with these methods.

17.
Int J Biol Macromol ; 253(Pt 7): 127076, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37769780

RESUMO

Biodegradable, biomass derived kombucha cellulose films with increased mechanical strength from 9.98 MPa to 18.18 MPa were prepared by vortex fluidic device (VFD) processing. VFD processing not only reduced the particle size of kombucha cellulose from approximate 2 µm to 1 µm, but also reshaped its structure from irregular to round. The increased mechanical strength of these polysaccharide-derived films is the result of intensive micromixing and high shear stress of a liquid thin film in a VFD. This arises from the incorporation at the micro-structural level of uniform, unidirectional strings of kombucha cellulose hydrolysates, which resulted from the topological fluid flow in the VFD. The biodegradability of the VFD generated polymer films was not compromised relative to traditionally generated films. Both films were biodegraded within 5 days.


Assuntos
Alginatos , Celulose , Ágar/química , Celulose/química , Biomassa , Fenômenos Físicos
18.
Nanotechnology ; 23(28): 285704, 2012 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-22728463

RESUMO

A calibration method is presented for determining the spring constant of atomic force microscope (AFM) cantilevers, which is a modification of the established Cleveland added mass technique. A focused ion beam (FIB) is used to remove a well-defined volume from a cantilever with known density, substantially reducing the uncertainty usually present in the added mass method. The technique can be applied to any type of AFM cantilever; but for the lowest uncertainty it is best applied to silicon cantilevers with spring constants above 0.7 N m(-1), where uncertainty is demonstrated to be typically between 7 and 10%. Despite the removal of mass from the cantilever, the calibration method presented does not impair the probes' ability to acquire data. The technique has been extensively tested in order to verify the underlying assumptions in the method. This method was compared to a number of other calibration methods and practical improvements to some of these techniques were developed, as well as important insights into the behavior of FIB modified cantilevers. These results will prove useful to research groups concerned with the application of microcantilevers to nanoscience, in particular for cases where maintaining pristine AFM tip condition is critical.


Assuntos
Microscopia de Força Atômica/instrumentação , Calibragem , Desenho de Equipamento , Íons/química , Microscopia de Força Atômica/métodos , Silício/química
19.
Sci Total Environ ; 824: 153963, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35183629

RESUMO

Microplastics can be found almost everywhere, including in our kitchens. The challenge is how to characterise them, particularly for the small ones (<1 µm), referred to as nanoplastics, when they are mixed with larger particles and other components. Herewith we advance Raman imaging to characterise microplastics and nanoplastics released from a dish sponge that we use every day to clean our cookware and eating utensils. The scanning electron microscopy result shows significantly different structures of the soft and hard layers of the sponge, with the hard layer being more likely to shed particles. By scanning the sample surface to generate a spectrum matrix, Raman imaging can significantly improve signal-noise-ratio, compared with individual Raman spectra. Through mapping the characteristic peaks from the matrix that contains hundreds, even thousands of Raman spectra, it is confirmed that the particles released from the soft and hard layers of the sponge are mainly Nylon PA6 and polyethylene terephthalate, respectively. Using principal component analysis (PCA) to decode the spectrum matrix further enhances the signal-noise ratio, which enables mapping the whole set of the spectrum, rather than the selected peaks. By optimising the Raman scanning parameters, the PCA-Raman imaging is able to reliably capture and visualise microplastics and nanoplastics released from both sides of the dish sponge, including a plastic-surrounding-sand composite structure. Overall, PCA-Raman imaging is a holistic and effective approach to characterising miniature plastic particles.


Assuntos
Microplásticos , Poluentes Químicos da Água , Análise Multivariada , Plásticos , Análise de Componente Principal , Análise Espectral Raman , Poluentes Químicos da Água/análise
20.
Sci Total Environ ; 811: 152409, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-34923349

RESUMO

Microplastics can potentially be released in our daily activities, such as via our showers, as our clothes are made of plastic fibres, and/or cotton fibres. The challenge is how to characterise these microplastics in shower debris. Herewith we employ Raman imaging to directly visualise the microplastics collected from shower wastewater. Raman can map an image from the scanning array that contains a matrix of thousands of spectra, featuring a considerably higher signal-noise ratio than that from a single spectrum. The increased signal-noise ratio reduces the complexity of sample preparation. Consequently, after the shower debris was sampled and washed, Raman imaging allowed us to distinguish the microplastic fibres from the background including cotton fibres and dirt aggregates. Interestingly, by adjusting the laser power intensity, the scanning process enabled simultaneous in-situ bleaching of the colorants formulated in the textile fibres and collection of signals. The disadvantage of Raman imaging such as the short focusing/working distance is also presented and discussed. Overall, the Raman imaging can extract meaningful information from the complex shower debris samples to enable analysis of microplastics.


Assuntos
Microplásticos , Poluentes Químicos da Água , Monitoramento Ambiental , Produtos Domésticos , Plásticos , Análise Espectral Raman , Têxteis , Águas Residuárias , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa