Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38760457
2.
Nature ; 620(7975): 890-897, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37558881

RESUMO

Alveolar epithelial type 1 (AT1) cells are necessary to transfer oxygen and carbon dioxide between the blood and air. Alveolar epithelial type 2 (AT2) cells serve as a partially committed stem cell population, producing AT1 cells during postnatal alveolar development and repair after influenza A and SARS-CoV-2 pneumonia1-6. Little is known about the metabolic regulation of the fate of lung epithelial cells. Here we report that deleting the mitochondrial electron transport chain complex I subunit Ndufs2 in lung epithelial cells during mouse gestation led to death during postnatal alveolar development. Affected mice displayed hypertrophic cells with AT2 and AT1 cell features, known as transitional cells. Mammalian mitochondrial complex I, comprising 45 subunits, regenerates NAD+ and pumps protons. Conditional expression of yeast NADH dehydrogenase (NDI1) protein that regenerates NAD+ without proton pumping7,8 was sufficient to correct abnormal alveolar development and avert lethality. Single-cell RNA sequencing revealed enrichment of integrated stress response (ISR) genes in transitional cells. Administering an ISR inhibitor9,10 or NAD+ precursor reduced ISR gene signatures in epithelial cells and partially rescued lethality in the absence of mitochondrial complex I function. Notably, lung epithelial-specific loss of mitochondrial electron transport chain complex II subunit Sdhd, which maintains NAD+ regeneration, did not trigger high ISR activation or lethality. These findings highlight an unanticipated requirement for mitochondrial complex I-dependent NAD+ regeneration in directing cell fate during postnatal alveolar development by preventing pathological ISR induction.


Assuntos
Células Epiteliais Alveolares , Diferenciação Celular , Linhagem da Célula , Pulmão , Mitocôndrias , Estresse Fisiológico , Animais , Camundongos , Células Epiteliais Alveolares/citologia , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Pulmão/citologia , Pulmão/metabolismo , Pulmão/patologia , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , NAD/metabolismo , NADH Desidrogenase/metabolismo , Prótons , RNA-Seq , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Análise da Expressão Gênica de Célula Única
3.
Nat Rev Mol Cell Biol ; 17(1): 55-64, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26580716

RESUMO

ß-catenin is widely regarded as the primary transducer of canonical WNT signals to the nucleus. In most vertebrates, there are eight additional catenins that are structurally related to ß-catenin, and three α-catenin genes encoding actin-binding proteins that are structurally related to vinculin. Although these catenins were initially identified in association with cadherins at cell-cell junctions, more recent evidence suggests that the majority of catenins also localize to the nucleus and regulate gene expression. Moreover, the number of catenins reported to be responsive to canonical WNT signals is increasing. Here, we posit that multiple catenins form a functional network in the nucleus, possibly engaging in conserved protein-protein interactions that are currently better characterized in the context of actin-based cell junctions.


Assuntos
Núcleo Celular/metabolismo , beta Catenina/metabolismo , Animais , Proteínas do Domínio Armadillo/química , Proteínas do Domínio Armadillo/metabolismo , Humanos , Modelos Biológicos , Transdução de Sinais , Proteínas Wnt/metabolismo , beta Catenina/química
4.
Nature ; 590(7847): 635-641, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33429418

RESUMO

Some patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) develop severe pneumonia and acute respiratory distress syndrome1 (ARDS). Distinct clinical features in these patients have led to speculation that the immune response to virus in the SARS-CoV-2-infected alveolus differs from that in other types of pneumonia2. Here we investigate SARS-CoV-2 pathobiology by characterizing the immune response in the alveoli of patients infected with the virus. We collected bronchoalveolar lavage fluid samples from 88 patients with SARS-CoV-2-induced respiratory failure and 211 patients with known or suspected pneumonia from other pathogens, and analysed them using flow cytometry and bulk transcriptomic profiling. We performed single-cell RNA sequencing on 10 bronchoalveolar lavage fluid samples collected from patients with severe coronavirus disease 2019 (COVID-19) within 48 h of intubation. In the majority of patients with SARS-CoV-2 infection, the alveolar space was persistently enriched in T cells and monocytes. Bulk and single-cell transcriptomic profiling suggested that SARS-CoV-2 infects alveolar macrophages, which in turn respond by producing T cell chemoattractants. These T cells produce interferon-γ to induce inflammatory cytokine release from alveolar macrophages and further promote T cell activation. Collectively, our results suggest that SARS-CoV-2 causes a slowly unfolding, spatially limited alveolitis in which alveolar macrophages containing SARS-CoV-2 and T cells form a positive feedback loop that drives persistent alveolar inflammation.


Assuntos
COVID-19/imunologia , COVID-19/virologia , Macrófagos Alveolares/imunologia , Pneumonia Viral/imunologia , Pneumonia Viral/virologia , SARS-CoV-2/patogenicidade , Linfócitos T/imunologia , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/imunologia , COVID-19/genética , Estudos de Coortes , Humanos , Interferon gama/imunologia , Interferons/imunologia , Interferons/metabolismo , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/virologia , Pneumonia Viral/genética , RNA-Seq , SARS-CoV-2/imunologia , Transdução de Sinais/imunologia , Análise de Célula Única , Linfócitos T/metabolismo , Fatores de Tempo
5.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33972447

RESUMO

Pulmonary fibrosis is a relentlessly progressive and often fatal disease with a paucity of available therapies. Genetic evidence implicates disordered epithelial repair, which is normally achieved by the differentiation of small cuboidal alveolar type 2 (AT2) cells into large, flattened alveolar type 1 (AT1) cells as an initiating event in pulmonary fibrosis pathogenesis. Using models of pulmonary fibrosis in young adult and old mice and a model of adult alveologenesis after pneumonectomy, we show that administration of ISRIB, a small molecule that restores protein translation by EIF2B during activation of the integrated stress response (ISR), accelerated the differentiation of AT2 into AT1 cells. Accelerated epithelial repair reduced the recruitment of profibrotic monocyte-derived alveolar macrophages and ameliorated lung fibrosis. These findings suggest a dysfunctional role for the ISR in regeneration of the alveolar epithelium after injury with implications for therapy.


Assuntos
Acetamidas/farmacologia , Células Epiteliais Alveolares/efeitos dos fármacos , Cicloexilaminas/farmacologia , Proteostase/efeitos dos fármacos , Fibrose Pulmonar/tratamento farmacológico , Acetamidas/uso terapêutico , Fatores Etários , Células Epiteliais Alveolares/citologia , Animais , Amianto , Bleomicina , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Cicloexilaminas/uso terapêutico , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Proteostase/fisiologia , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/patologia , Estresse Fisiológico/efeitos dos fármacos
6.
Am J Respir Cell Mol Biol ; 68(2): 176-185, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36174229

RESUMO

Tissue availability remains an important limitation of single-cell genomic technologies for investigating cellular heterogeneity in human health and disease. BAL represents a minimally invasive approach to assessing an individual's lung cellular environment for diagnosis and research. However, the lack of high-quality, healthy lung reference data is a major obstacle to using single-cell approaches to study a plethora of lung diseases. Here, we performed single-cell RNA sequencing on over 40,000 cells isolated from the BAL of four healthy volunteers. Of the six cell types or lineages we identified, macrophages were consistently the most numerous across individuals. Our analysis confirmed the expression of marker genes defining cell types despite background signals because of the ambient RNA found in many single-cell studies. We assessed the variability of gene expression across macrophages and defined a distinct subpopulation of cells expressing a set of genes associated with Macrophage Inflammatory Protein 1 (MIP-1). RNA in situ hybridization and reanalysis of published lung single-cell data validated the presence of this macrophage subpopulation. Thus, our study characterizes lung macrophage heterogeneity in healthy individuals and provides a valuable resource for future studies to understand the lung environment in health and disease.


Assuntos
Proteínas Inflamatórias de Macrófagos , Macrófagos , Humanos , Proteínas Inflamatórias de Macrófagos/genética , Líquido da Lavagem Broncoalveolar , Voluntários Saudáveis , RNA
7.
Am J Respir Cell Mol Biol ; 66(5): 564-576, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35202558

RESUMO

Epithelial polyploidization after injury is a conserved phenomenon recently shown to improve barrier restoration during wound healing. Whether lung injury can induce alveolar epithelial polyploidy is not known. We show that bleomycin injury induces alveolar type 2 cell (AT2) hypertrophy and polyploidy. AT2 polyploidization is also seen in short term ex vivo cultures, where AT2-to-AT1 transdifferentiation is associated with substantial binucleation due to failed cytokinesis. Both hypertrophic and polyploid features of AT2 cells can be attenuated by inhibiting the integrated stress response using the small molecule ISRIB. These data suggest that AT2 hypertrophic growth and polyploidization may be a feature of alveolar epithelial injury. Because AT2 cells serve as facultative progenitors for the distal lung epithelium, a propensity for injury-induced binucleation has implications for AT2 self-renewal and regenerative potential upon reinjury, which may benefit from targeting the integrated stress response.


Assuntos
Lesão Pulmonar , Células Epiteliais Alveolares/metabolismo , Diferenciação Celular , Humanos , Hipertrofia/metabolismo , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/genética , Lesão Pulmonar/metabolismo , Poliploidia
8.
EMBO J ; 35(6): 668-84, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26912724

RESUMO

A key step of Wnt signaling activation is the recruitment of ß-catenin to the Wnt target-gene promoter in the nucleus, but its mechanisms are largely unknown. Here, we identified FoxM1 as a novel target of Wnt signaling, which is essential for ß-catenin/TCF4 transactivation. GSK3 phosphorylates FoxM1 on serine 474 which induces FoxM1 ubiquitination mediated by FBXW7. Wnt signaling activation inhibits FoxM1 phosphorylation by GSK3-Axin complex and leads to interaction between FoxM1 and deubiquitinating enzyme USP5, thereby deubiquitination and stabilization of FoxM1. FoxM1 accumulation in the nucleus promotes recruitment of ß-catenin to Wnt target-gene promoter and activates the Wnt signaling pathway by protecting the ß-catenin/TCF4 complex from ICAT inhibition. Subsequently, the USP5-FoxM1 axis abolishes the inhibitory effect of ICAT and is required for Wnt-mediated tumor cell proliferation. Therefore, Wnt-induced deubiquitination of FoxM1 represents a novel and critical mechanism for controlling canonical Wnt signaling and cell proliferation.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Linhagem Celular , Endopeptidases/metabolismo , Proteína Forkhead Box M1 , Humanos , Ativação Transcricional , Ubiquitinação , Via de Sinalização Wnt
9.
Eur Respir J ; 55(1)2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31601718

RESUMO

Ontologically distinct populations of macrophages differentially contribute to organ fibrosis through unknown mechanisms.We applied lineage tracing, single-cell RNA sequencing and single-molecule fluorescence in situ hybridisation to a spatially restricted model of asbestos-induced pulmonary fibrosis.We demonstrate that tissue-resident alveolar macrophages, tissue-resident peribronchial and perivascular interstitial macrophages, and monocyte-derived alveolar macrophages are present in the fibrotic niche. Deletion of monocyte-derived alveolar macrophages but not tissue-resident alveolar macrophages ameliorated asbestos-induced lung fibrosis. Monocyte-derived alveolar macrophages were specifically localised to fibrotic regions in the proximity of fibroblasts where they expressed molecules known to drive fibroblast proliferation, including platelet-derived growth factor subunit A. Using single-cell RNA sequencing and spatial transcriptomics in both humans and mice, we identified macrophage colony-stimulating factor receptor (M-CSFR) signalling as one of the novel druggable targets controlling self-maintenance and persistence of these pathogenic monocyte-derived alveolar macrophages. Pharmacological blockade of M-CSFR signalling led to the disappearance of monocyte-derived alveolar macrophages and ameliorated fibrosis.Our findings suggest that inhibition of M-CSFR signalling during fibrosis disrupts an essential fibrotic niche that includes monocyte-derived alveolar macrophages and fibroblasts during asbestos-induced fibrosis.


Assuntos
Fator Estimulador de Colônias de Macrófagos , Fibrose Pulmonar , Animais , Fibrose , Humanos , Macrófagos/patologia , Macrófagos Alveolares , Camundongos , Monócitos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/patologia , Receptor de Fator Estimulador de Colônias de Macrófagos
10.
Am J Respir Crit Care Med ; 199(12): 1517-1536, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-30554520

RESUMO

Rationale: The contributions of diverse cell populations in the human lung to pulmonary fibrosis pathogenesis are poorly understood. Single-cell RNA sequencing can reveal changes within individual cell populations during pulmonary fibrosis that are important for disease pathogenesis. Objectives: To determine whether single-cell RNA sequencing can reveal disease-related heterogeneity within alveolar macrophages, epithelial cells, or other cell types in lung tissue from subjects with pulmonary fibrosis compared with control subjects. Methods: We performed single-cell RNA sequencing on lung tissue obtained from eight transplant donors and eight recipients with pulmonary fibrosis and on one bronchoscopic cryobiospy sample from a patient with idiopathic pulmonary fibrosis. We validated these data using in situ RNA hybridization, immunohistochemistry, and bulk RNA-sequencing on flow-sorted cells from 22 additional subjects. Measurements and Main Results: We identified a distinct, novel population of profibrotic alveolar macrophages exclusively in patients with fibrosis. Within epithelial cells, the expression of genes involved in Wnt secretion and response was restricted to nonoverlapping cells. We identified rare cell populations including airway stem cells and senescent cells emerging during pulmonary fibrosis. We developed a web-based tool to explore these data. Conclusions: We generated a single-cell atlas of pulmonary fibrosis. Using this atlas, we demonstrated heterogeneity within alveolar macrophages and epithelial cells from subjects with pulmonary fibrosis. These results support the feasibility of discovery-based approaches using next-generation sequencing technologies to identify signaling pathways for targeting in the development of personalized therapies for patients with pulmonary fibrosis.


Assuntos
Células Cultivadas/patologia , Células Epiteliais/patologia , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/patologia , Análise de Sequência de RNA , Células-Tronco/patologia , Transcriptoma , Animais , Modelos Animais de Doenças , Feminino , Humanos , Masculino
11.
J Cell Sci ; 130(10): 1717-1729, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28348105

RESUMO

α-Catenin is an F-actin-binding protein widely recognized for its role in cell-cell adhesion. However, a growing body of literature indicates that α-catenin is also a nuclear protein. In this study, we show that α-catenin is able to modulate the sensitivity of cells to DNA damage and toxicity. Furthermore, nuclear α-catenin is actively recruited to sites of DNA damage. This recruitment occurs in a ß-catenin-dependent manner and requires nuclear actin polymerization. These findings provide mechanistic insight into the WNT-mediated regulation of the DNA damage response and suggest a novel role for the α-catenin-ß-catenin complex in the nucleus.


Assuntos
Actinas/metabolismo , Núcleo Celular/metabolismo , Dano ao DNA , alfa Catenina/metabolismo , beta Catenina/metabolismo , Animais , Linhagem Celular , Reparo do DNA , Cães , Humanos , Polimerização , Domínios Proteicos , Proteínas Wnt/metabolismo , Via de Sinalização Wnt , alfa Catenina/química
12.
J Cell Sci ; 129(18): 3412-25, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27505898

RESUMO

Actin is abundant in the nucleus and it is clear that nuclear actin has important functions. However, mystery surrounds the absence of classical actin filaments in the nucleus. To address this question, we investigated how polymerizing nuclear actin into persistent nuclear actin filaments affected transcription by RNA polymerase II. Nuclear filaments impaired nuclear actin dynamics by polymerizing and sequestering nuclear actin. Polymerizing actin into stable nuclear filaments disrupted the interaction of actin with RNA polymerase II and correlated with impaired RNA polymerase II localization, dynamics, gene recruitment, and reduced global transcription and cell proliferation. Polymerizing and crosslinking nuclear actin in vitro similarly disrupted the actin-RNA-polymerase-II interaction and inhibited transcription. These data rationalize the general absence of stable actin filaments in mammalian somatic nuclei. They also suggest a dynamic pool of nuclear actin is required for the proper localization and activity of RNA polymerase II.


Assuntos
Citoesqueleto de Actina/metabolismo , Núcleo Celular/metabolismo , RNA Polimerase II/metabolismo , Transcrição Gênica , Actinas/metabolismo , Animais , Células COS , Proliferação de Células , Chlorocebus aethiops , Reagentes de Ligações Cruzadas/metabolismo , Células HeLa , Humanos , Polimerização , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
13.
Am J Respir Cell Mol Biol ; 57(5): 512-518, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28481622

RESUMO

Recent genome-wide association studies have implicated both cardiac and pulmonary vein-related genes in the pathogenesis of asthma. Since cardiac cells are not present in lung airways or viewed to affect the immune system, interpretation of these findings in the context of more well-established contributors to asthma has remained challenging. However, cardiomyocytes are present in the lung, specifically along pulmonary veins, and recent murine models suggest that cardiac cells lining the pulmonary veins may contribute to allergic airway disease. Notably, the cardiac cell-junction protein αT-catenin (αT-cat, CTNNA3), which is implicated in occupational and steroid-resistant asthma by clinical genetic data, appears to play an important role in regulating inflammation around the cardiac cells of pulmonary veins. Beyond the potential contribution of pulmonary veins, clinical data directly examining cardiac function through echocardiography have found strong associations between asthmatic phenotypes and the mechanical properties of the heart. Together, these data suggest that targeting the function of cardiac cells in the pulmonary veins and/or heart may allow for novel and potentially efficacious therapies for asthma, particularly in challenging cases of steroid-resistant asthma.


Assuntos
Asma/metabolismo , Hipersensibilidade/metabolismo , Pulmão/metabolismo , Miócitos Cardíacos/metabolismo , Veias Pulmonares/metabolismo , Animais , Humanos , Junções Intercelulares/metabolismo , Pulmão/fisiopatologia
14.
Am J Respir Cell Mol Biol ; 56(2): 191-201, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27668462

RESUMO

Previous studies established that attenuating Wnt/ß-catenin signaling limits lung fibrosis in the bleomycin mouse model of this disease, but the contribution of this pathway to distinct lung cell phenotypes relevant to tissue repair and fibrosis remains incompletely understood. Using microarray analysis, we found that bleomycin-injured lungs from mice that lack the Wnt coreceptor low density lipoprotein receptor-related protein 5 (Lrp5) and exhibit reduced fibrosis showed enrichment for pathways related to extracellular matrix processing, immunity, and lymphocyte proliferation, suggesting the contribution of an immune-matrix remodeling axis relevant to fibrosis. Activation of ß-catenin signaling was seen in lung macrophages using the ß-catenin reporter mouse, Axin2+/LacZ. Analysis of lung immune cells by flow cytometry after bleomycin administration revealed that Lrp5-/- lungs contained significantly fewer Siglec Flow alveolar macrophages, a cell type previously implicated as positive effectors of fibrosis. Macrophage-specific deletion of ß-catenin in CD11ccre;ß-cateninflox mice did not prevent development of bleomycin-induced fibrosis but facilitated its resolution by 8 weeks. In a nonresolving model of fibrosis, intratracheal administration of asbestos in Lrp5-/- mice also did not prevent the development of fibrosis but hindered the progression of fibrosis in asbestos-treated Lrp5-/- lungs, phenocopying the findings in bleomycin-treated CD11ccre;ß-cateninflox mice. Activation of ß-catenin signaling using lithium chloride resulted in worsened fibrosis in wild-type mice, further supporting that the effects of loss of Lrp5 are directly mediated by Wnt/ß-catenin signaling. Together, these data suggest that lung myeloid cells are responsive to Lrp5/ß-catenin signaling, leading to differentiation of an alveolar macrophage subtype that antagonizes the resolution of lung fibrosis.


Assuntos
Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Pulmão/patologia , Macrófagos/metabolismo , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Via de Sinalização Wnt , beta Catenina/metabolismo , Animais , Bleomicina , Diferenciação Celular , Matriz Extracelular/metabolismo , Imunidade , Ativação de Macrófagos , Macrófagos/patologia , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patologia , Camundongos Endogâmicos C57BL , Células Mieloides/metabolismo , Células Mieloides/patologia , Fibrose Pulmonar/imunologia , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo
15.
J Cell Sci ; 128(6): 1150-65, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25653389

RESUMO

The cadherin-catenin adhesion complex is a key contributor to epithelial tissue stability and dynamic cell movements during development and tissue renewal. How this complex is regulated to accomplish these functions is not fully understood. We identified several phosphorylation sites in mammalian αE-catenin (also known as catenin α-1) and Drosophila α-Catenin within a flexible linker located between the middle (M)-region and the carboxy-terminal actin-binding domain. We show that this phospho-linker (P-linker) is the main phosphorylated region of α-catenin in cells and is sequentially modified at casein kinase 2 and 1 consensus sites. In Drosophila, the P-linker is required for normal α-catenin function during development and collective cell migration, although no obvious defects were found in cadherin-catenin complex assembly or adherens junction formation. In mammalian cells, non-phosphorylatable forms of α-catenin showed defects in intercellular adhesion using a mechanical dispersion assay. Epithelial sheets expressing phosphomimetic forms of α-catenin showed faster and more coordinated migrations after scratch wounding. These findings suggest that phosphorylation and dephosphorylation of the α-catenin P-linker are required for normal cadherin-catenin complex function in Drosophila and mammalian cells.


Assuntos
Caderinas/metabolismo , Caseína Quinase II/metabolismo , Caseína Quinase I/metabolismo , Adesão Celular , Drosophila melanogaster/metabolismo , alfa Catenina/metabolismo , Actinas/metabolismo , Sequência de Aminoácidos , Animais , Apoptose , Western Blotting , Caderinas/genética , Caseína Quinase I/genética , Caseína Quinase II/genética , Membrana Celular/metabolismo , Movimento Celular , Proliferação de Células , Células Cultivadas , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Cães , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Feminino , Imunofluorescência , Humanos , Imunoprecipitação , Células Madin Darby de Rim Canino , Dados de Sequência Molecular , Ovário/citologia , Ovário/metabolismo , Fosforilação , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , alfa Catenina/química , alfa Catenina/genética
16.
Proc Natl Acad Sci U S A ; 111(14): 5260-5, 2014 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-24706864

RESUMO

α-Catenin (α-cat) is an actin-binding protein required for cell-cell cohesion. Although this adhesive function for α-cat is well appreciated, cells contain a substantial amount of nonjunctional α-cat that may be used for other functions. We show that α-cat is a nuclear protein that can interact with ß-catenin (ß-cat) and T-cell factor (TCF) and that the nuclear accumulation of α-cat depends on ß-cat. Using overexpression, knockdown, and chromatin immunoprecipitation approaches, we show that α-cat attenuates Wnt/ß-cat-responsive genes in a manner that is downstream of ß-cat/TCF loading on promoters. Both ß-cat- and actin-binding domains of α-cat are required to inhibit Wnt signaling. A nuclear-targeted form of α-cat induces the formation of nuclear filamentous actin, whereas cells lacking α-cat show altered nuclear actin properties. Formation of nuclear actin filaments correlates with reduced RNA synthesis and altered chromatin organization. Conversely, nuclear extracts made from cells lacking α-cat show enhanced general transcription in vitro, an activity that can be partially rescued by restoring the C-terminal actin-binding region of α-cat. These data demonstrate that α-cat may limit gene expression by affecting nuclear actin organization.


Assuntos
Transcrição Gênica/fisiologia , alfa Catenina/fisiologia , Linhagem Celular Tumoral , Humanos , Transdução de Sinais
17.
J Allergy Clin Immunol ; 138(1): 123-129.e2, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26947180

RESUMO

BACKGROUND: Recent genome-wide association studies have identified single nucleotide polymorphisms in the gene encoding the protein αT-catenin (CTNNA3) that correlate with both steroid-resistant atopic asthma and asthmatic exacerbations. α-Catenins are important mediators of cell-cell adhesion, and αT-catenin is predominantly expressed in cardiomyocytes. In the lung αT-catenin appears to be exclusively expressed in cardiomyocytes surrounding the pulmonary veins (PVs), but its contribution to atopic asthma remains unknown. OBJECTIVE: We sought to understand the role of αT-catenin in asthma pathogenesis. METHODS: We used αT-catenin knockout mice and a house dust mite (HDM) extract model of atopic asthma, with assessment by means of forced oscillation, bronchoalveolar lavage, and histologic analysis. RESULTS: We found that the genetic loss of αT-catenin in mice largely attenuated HDM-induced airway inflammation and airway hyperresponsiveness to methacholine. Mice lacking αT-catenin that were exposed to HDM extract had reduced PV inflammation, specifically near the large veins surrounded by cardiac cells. The proximity of the airways to PVs correlated with the severity of airway goblet cell metaplasia, suggesting that PVs can influence the inflammatory milieu of adjacent airways. Loss of αT-catenin led to compensatory upregulation of αE-catenin, which itself has a defined anti-inflammatory function. CONCLUSION: These data mechanistically support previous clinical and genetic associations between αT-catenin and the development of atopic asthma and suggest that PVs might have an underappreciated role in allergic airway inflammation.


Assuntos
Asma/etiologia , Asma/metabolismo , Miócitos Cardíacos/metabolismo , Veias Pulmonares/metabolismo , Vasculite/metabolismo , alfa Catenina/metabolismo , Animais , Asma/patologia , Modelos Animais de Doenças , Feminino , Expressão Gênica , Camundongos , Camundongos Knockout , Veias Pulmonares/patologia , Pyroglyphidae/imunologia , Vasculite/genética , Vasculite/patologia , alfa Catenina/genética
18.
J Cell Sci ; 127(Pt 8): 1779-91, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24522187

RESUMO

The findings presented here demonstrate the role of α-catenin in cadherin-based adhesion and mechanotransduction in different mechanical contexts. Bead-twisting measurements in conjunction with imaging, and the use of different cell lines and α-catenin mutants reveal that the acute local mechanical manipulation of cadherin bonds triggers vinculin and actin recruitment to cadherin adhesions in an actin- and α-catenin-dependent manner. The modest effect of α-catenin on the two-dimensional binding affinities of cell surface cadherins further suggests that force-activated adhesion strengthening is due to enhanced cadherin-cytoskeletal interactions rather than to α-catenin-dependent affinity modulation. Complementary investigations of cadherin-based rigidity sensing also suggest that, although α-catenin alters traction force generation, it is not the sole regulator of cell contractility on compliant cadherin-coated substrata.


Assuntos
Caderinas/sangue , Caderinas/fisiologia , Adesão Celular , Mecanotransdução Celular , alfa Catenina/fisiologia , Actinas/metabolismo , Animais , Sítios de Ligação , Fenômenos Biomecânicos , Caderinas/química , Linhagem Celular Tumoral , Cães , Eritrócitos/metabolismo , Humanos , Cinética , Células Madin Darby de Rim Canino , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Vinculina/metabolismo
19.
Biochem Biophys Res Commun ; 470(3): 606-612, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26797284

RESUMO

Adiponectin is a pleiotropic adipokine implicated in obesity, metabolic syndrome and cardiovascular disease. Recent studies have identified adiponectin as a negative regulator of tissue fibrosis. Wnt/ß-catenin signaling has also been implicated in metabolic syndrome and can promote tissue fibrosis, but the extent to which adiponectin cross-regulates Wnt/ß-catenin signaling is unknown. Using primary human dermal fibroblasts and recombinant purified proteins, we show that adiponectin can limit ß-catenin accumulation and downstream gene activation by inhibiting Lrp6 phosphorylation, a key activation step in canonical Wnt signaling. Inhibition of Wnt3a-mediated Lrp6 phospho-activation is relatively rapid (e.g., by 30 min), and is not dependent on established adiponectin G-protein coupled receptors, AdipoR1 and R2, suggesting a more direct relationship to Lrp6 signaling. In contrast, the ability of adiponectin to limit Wnt-induced and baseline collagen production in fibroblasts requires AdipoR1/R2. These results suggest the possibility that the pleiotropic effects of adiponectin may be mediated through distinct cell surface receptor complexes. Accordingly, we propose that the anti-fibrotic activity of adiponectin may be mediated through AdipoR1/R2 receptors, while the ability of adiponectin to inhibit Lrp6 phospho-activation may be relevant to other recently established roles for Lrp6 signaling in glucose metabolism and metabolic syndrome.


Assuntos
Adiponectina/administração & dosagem , Fibroblastos/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/fisiologia , beta Catenina/metabolismo , Células Cultivadas , Relação Dose-Resposta a Droga , Fibroblastos/efeitos dos fármacos , Humanos , Fosforilação , Pele/citologia , Pele/efeitos dos fármacos , Pele/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos
20.
Proc Natl Acad Sci U S A ; 110(42): 17053-8, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24082114

RESUMO

Uterine leiomyomas are extremely common estrogen and progesterone-dependent tumors of the myometrium and cause irregular uterine bleeding, severe anemia, and recurrent pregnancy loss in 15-30% of reproductive-age women. Each leiomyoma is thought to arise from a single mutated myometrial smooth muscle stem cell. Leiomyoma side-population (LMSP) cells comprising 1% of all tumor cells and displaying tumor-initiating stem cell characteristics are essential for estrogen- and progesterone-dependent in vivo growth of tumors, although they have remarkably lower estrogen/progesterone receptor levels than mature myometrial or leiomyoma cells. However, how estrogen/progesterone regulates the growth of LMSP cells via mature neighboring cells is unknown. Here, we demonstrate a critical paracrine role of the wingless-type (WNT)/ß-catenin pathway in estrogen/progesterone-dependent tumorigenesis, involving LMSP and differentiated myometrial or leiomyoma cells. Estrogen/progesterone treatment of mature myometrial cells induced expression of WNT11 and WNT16, which remained constitutively elevated in leiomyoma tissues. In LMSP cells cocultured with mature myometrial cells, estrogen-progesterone selectively induced nuclear translocation of ß-catenin and induced transcriptional activity of its heterodimeric partner T-cell factor and their target gene AXIN2, leading to the proliferation of LMSP cells. This effect could be blocked by a WNT antagonist. Ectopic expression of inhibitor of ß-catenin and T-cell factor 4 in LMSP cells, but not in mature leiomyoma cells, blocked the estrogen/progesterone-dependent growth of human tumors in vivo. We uncovered a paracrine role of the WNT/ß-catenin pathway that enables mature myometrial or leiomyoma cells to send mitogenic signals to neighboring tissue stem cells in response to estrogen and progesterone, leading to the growth of uterine leiomyomas.


Assuntos
Proliferação de Células , Estrogênios/metabolismo , Leiomioma/metabolismo , Proteínas de Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Comunicação Parácrina , Progesterona/metabolismo , Neoplasias Uterinas/metabolismo , Proteínas Wnt/biossíntese , Via de Sinalização Wnt , beta Catenina/metabolismo , Adulto , Animais , Proteína Axina/genética , Proteína Axina/metabolismo , Estrogênios/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Leiomioma/genética , Leiomioma/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , Células-Tronco Neoplásicas/patologia , Gravidez , Progesterona/genética , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismo , Neoplasias Uterinas/genética , Neoplasias Uterinas/patologia , Proteínas Wnt/genética , beta Catenina/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa