RESUMO
We studied the prevalent cytotoxic CD8 T cell response mounted against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Spike glycoprotein269-277 epitope (sequence YLQPRTFLL) via the most frequent human leukocyte antigen (HLA) class I worldwide, HLA A∗02. The Spike P272L mutation that has arisen in at least 112 different SARS-CoV-2 lineages to date, including in lineages classified as "variants of concern," was not recognized by the large CD8 T cell response seen across cohorts of HLA A∗02+ convalescent patients and individuals vaccinated against SARS-CoV-2, despite these responses comprising of over 175 different individual T cell receptors. Viral escape at prevalent T cell epitopes restricted by high frequency HLAs may be particularly problematic when vaccine immunity is focused on a single protein such as SARS-CoV-2 Spike, providing a strong argument for inclusion of multiple viral proteins in next generation vaccines and highlighting the need for monitoring T cell escape in new SARS-CoV-2 variants.
Assuntos
COVID-19 , SARS-CoV-2 , Linfócitos T CD8-Positivos , Epitopos de Linfócito T , Antígenos HLA-A , Antígenos de Histocompatibilidade Classe I , HumanosRESUMO
CD8(+) T cells contribute to the control of HIV, but it is not clear whether initial immune responses modulate the viral set point. We screened high-risk uninfected women twice a week for plasma HIV RNA and identified 12 hyperacute infections. Onset of viremia elicited a massive HIV-specific CD8(+) T cell response, with limited bystander activation of non-HIV memory CD8(+) T cells. HIV-specific CD8(+) T cells secreted little interferon-γ, underwent rapid apoptosis, and failed to upregulate the interleukin-7 receptor, known to be important for T cell survival. The rapidity to peak CD8(+) T cell activation and the absolute magnitude of activation induced by the exponential rise in viremia were inversely correlated with set point viremia. These data indicate that rapid, high magnitude HIV-induced CD8(+) T cell responses are crucial for subsequent immune control of acute infection, which has important implications for HIV vaccine design.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Infecções por HIV/imunologia , Ativação Linfocitária/imunologia , Carga Viral/imunologia , Adolescente , Apoptose/imunologia , Contagem de Linfócito CD4 , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/virologia , Feminino , Citometria de Fluxo , Infecções por HIV/sangue , Infecções por HIV/diagnóstico , Infecções por HIV/virologia , HIV-1/genética , HIV-1/imunologia , HIV-1/fisiologia , Humanos , Cinética , Proteínas Proto-Oncogênicas c-bcl-2/imunologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Viral/genética , RNA Viral/imunologia , Fatores de Tempo , Viremia/diagnóstico , Viremia/imunologia , Adulto Jovem , Receptor fas/imunologia , Receptor fas/metabolismoRESUMO
HIV-specific CD8+ T cells play a central role in immune control of adult HIV, but their contribution in pediatric infection is less well characterized. Previously, we identified a group of ART-naive children with persistently undetectable plasma viremia, termed "elite controllers," and a second group who achieved aviremia only transiently. To investigate the mechanisms of failure to maintain aviremia, we characterized in three transient aviremic individuals (TAs), each of whom expressed the disease-protective HLA-B*81:01, longitudinal HIV-specific T-cell activity, and viral sequences. In two TAs, a CD8+ T-cell response targeting the immunodominant epitope TPQDLNTML (Gag-TL9) was associated with viral control, followed by viral rebound and the emergence of escape variants with lower replicative capacity. Both TAs mounted variant-specific responses, but only at low functional avidity, resulting in immunological progression. In contrast, in TA-3, intermittent viremic episodes followed aviremia without virus escape or a diminished CD4+ T-cell count. High quality and magnitude of the CD8+ T-cell response were associated with aviremia. We therefore identify two distinct mechanisms of loss of viral control. In one scenario, CD8+ T-cell responses initially cornered low-replicative-capacity escape variants, but with insufficient avidity to prevent viremia and disease progression. In the other, loss of viral control was associated with neither virus escape nor progression but with a decrease in the quality of the CD8+ T-cell response, followed by recovery of viral control in association with improved antiviral response. These data suggest the potential for a consistently strong and polyfunctional antiviral response to achieve long-term viral control without escape. IMPORTANCE Very early initiation of antiretroviral therapy (ART) in pediatric HIV infection offers a unique opportunity to limit the size and diversity of the viral reservoir. However, only rarely is ART alone sufficient to achieve remission. Additional interventions that likely include contributions from host immunity are therefore required. The HIV-specific T-cell response plays a central role in immune control of adult HIV, often mediated through protective alleles such as HLA-B*57/58:01/81:01. However, due to the tolerogenic and type 2 biased immune response in early life, HLA-I-mediated immune suppression of viremia is seldom observed in children. We assessed a rare group of HLA-B*81:01-positive, ART-naive children who achieved aviremia, albeit only transiently, and investigated the role of the CD8+ T-cell response in the establishment and loss of viral control. We identified a mechanism by which the HIV-specific response can achieve viremic control without viral escape that can be explored in strategies to achieve remission.
Assuntos
Infecções por HIV/imunologia , Sobreviventes de Longo Prazo ao HIV , Viremia/imunologia , Adolescente , Contagem de Linfócito CD4 , Linfócitos T CD8-Positivos/imunologia , Criança , Pré-Escolar , Feminino , Infecções por HIV/virologia , HIV-1/genética , HIV-1/imunologia , Antígenos HLA-B/imunologia , Humanos , Evasão da Resposta Imune , Epitopos Imunodominantes/genética , Epitopos Imunodominantes/imunologia , Lactente , Masculino , Carga Viral , Viremia/virologia , Replicação Viral , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/imunologiaRESUMO
Natural Killer (NK) cells contribute to HIV control in adults, but HLA-B-mediated T-cell activity has a more substantial impact on disease outcome. However, the HLA-B molecules influencing immune control in adults have less impact on paediatric infection. To investigate the contribution NK cells make to immune control, we studied >300 children living with HIV followed over two decades in South Africa. In children, HLA-B alleles associated with adult protection or disease-susceptibility did not have significant effects, whereas Bw4 (p = 0.003) and low HLA-A expression (p = 0.002) alleles were strongly associated with immunological and viral control. In a comparator adult cohort, Bw4 and HLA-A expression contributions to HIV disease outcome were dwarfed by those of protective and disease-susceptible HLA-B molecules. We next investigated the immunophenotype and effector functions of NK cells in a subset of these children using flow cytometry. Slow progression and better plasma viraemic control were also associated with high frequencies of less terminally differentiated NKG2A+NKp46+CD56dim NK cells strongly responsive to cytokine stimulation and linked with the immunogenetic signature identified. Future studies are indicated to determine whether this signature associated with immune control in early life directly facilitates functional cure in children.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Antígenos HLA-B/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Células Matadoras Naturais/imunologia , Receptores KIR3DL1/metabolismo , Adolescente , Criança , Pré-Escolar , Estudos de Coortes , Infecções por HIV/metabolismo , Infecções por HIV/virologia , Humanos , Ativação LinfocitáriaRESUMO
Successful vaccine development for infectious diseases has largely been achieved in settings where natural immunity to the pathogen results in clearance in at least some individuals. HIV presents an additional challenge in that natural clearance of infection does not occur, and the correlates of immune protection are still uncertain. However, partial control of viremia and markedly different outcomes of disease are observed in HIV-infected persons. Here, we examine the antiviral mechanisms implicated by one variable that has been consistently associated with extremes of outcome, namely HLA class I alleles, and in particular HLA-B, and examine the mechanisms by which this modulation is likely to occur and the impact of these interactions on evolution of the virus and the host. Studies to date provide evidence for both HLA-dependent and epitope-dependent influences on viral control and viral evolution and have important implications for the continued quest for an effective HIV vaccine.
Assuntos
Infecções por HIV/imunologia , HIV/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Interações Hospedeiro-Patógeno/imunologia , Vacinas contra a AIDS/imunologia , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , HIV/genética , Infecções por HIV/genética , Infecções por HIV/virologia , Antígenos HLA-B/genética , Antígenos HLA-B/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Interações Hospedeiro-Patógeno/genética , Humanos , MutaçãoRESUMO
BACKGROUND: Susceptibility to coinfections in human immunodeficiency virus (HIV)-infected patients remains increased despite antiretroviral therapy (ART). To elucidate mechanisms involved in immune reconstitution, we studied immune activation, immune exhaustion, and HIV- and copathogen-specific T-cell responses in children before and after ART. METHODS: We prospectively enrolled 25 HIV-infected children to study HIV-, cytomegalovirus (CMV)-, and tuberculosis (TB)-specific T-cell responses before and 1 year after initiation of ART using intracellular cytokine (interleukin-2, interferon-γ, tumor necrosis factor-α) staining assays after in vitro stimulation. We further measured expression of activation, immune exhaustion, and memory phenotype markers and studied proliferative responses after antigen stimulation. RESULTS: We observed differential, pathogen-specific changes after 1 year of ART in cytokine profiles of CD4 T-cell responses that were associated with shifts in memory phenotype and decreased programmed cell death 1 (PD-1) expression. The proliferative capacity of HIV- and PPD-specific responses increased after 1 year of ART. Of note, the recovery of CMV- and TB-specific responses was correlated with a decrease in PD-1 expression (r = 0.83, P = .008 and r = 0.81, P = .0007, respectively). CONCLUSIONS: Reconstitution of immune responses on ART is associated with alterations in T-cell phenotype, function, and PD-1 expression that are distinct for HIV, TB, and CMV. The PD-1 pathway represents a potential target for immunotherapy in HIV-infected patients on ART with insufficient immune reconstitution.
Assuntos
Linfócitos T CD4-Positivos/imunologia , Citomegalovirus/imunologia , Infecções por HIV/tratamento farmacológico , HIV/imunologia , Reconstituição Imune , Mycobacterium tuberculosis/imunologia , Antirretrovirais/uso terapêutico , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/fisiologia , Proliferação de Células , Criança , Pré-Escolar , Citocinas/metabolismo , Feminino , Humanos , Memória Imunológica , Ativação Linfocitária , Masculino , Fenótipo , Receptor de Morte Celular Programada 1/metabolismo , Estudos ProspectivosRESUMO
BACKGROUND: Sustainable Development Goals set a challenge for the elimination of hepatitis B virus (HBV) infection as a public health concern by the year 2030. Deployment of a robust prophylactic vaccine and enhanced interventions for prevention of mother to child transmission (PMTCT) are cornerstones of elimination strategy. However, in light of the estimated global burden of 290 million cases, enhanced efforts are required to underpin optimisation of public health strategy. Robust analysis of population epidemiology is particularly crucial for populations in Africa made vulnerable by HIV co-infection, poverty, stigma and poor access to prevention, diagnosis and treatment. METHODS: We here set out to evaluate the current and future role of HBV vaccination and PMTCT as tools for elimination. We first investigated the current impact of paediatric vaccination in a cohort of children with and without HIV infection in Kimberley, South Africa. Second, we used these data to inform a new parsimonious model to simulate the ongoing impact of preventive interventions. By applying these two approaches in parallel, we are able to determine both the current impact of interventions, and the future projected outcome of ongoing preventive strategies over time. RESULTS: Existing efforts have been successful in reducing paediatric prevalence of HBV infection in this setting to < 1%, demonstrating the success of the existing vaccine campaign. Our model predicts that, if consistently deployed, combination efforts of vaccination and PMTCT can significantly reduce population prevalence (HBsAg) by 2030, such that a major public health impact is possible even without achieving elimination. However, the prevalence of HBV e-antigen (HBeAg)-positive carriers will decline more slowly, representing a persistent population reservoir. We show that HIV co-infection significantly reduces titres of vaccine-mediated antibody, but has a relatively minor role in influencing the projected time to elimination. Our model can also be applied to other settings in order to predict impact and time to elimination based on specific interventions. CONCLUSIONS: Through extensive deployment of preventive strategies for HBV, significant positive public health impact is possible, although time to HBV elimination as a public health concern is likely to be substantially longer than that proposed by current goals.
Assuntos
Coinfecção/epidemiologia , Infecções por HIV/epidemiologia , Infecções por HIV/prevenção & controle , Vacinas contra Hepatite B/uso terapêutico , Transmissão Vertical de Doenças Infecciosas/prevenção & controle , Adolescente , Adulto , Criança , Estudos de Coortes , Feminino , Vacinas contra Hepatite B/farmacologia , Humanos , Pessoa de Meia-Idade , Adulto JovemRESUMO
BACKGROUND: The factors determining differential HIV disease outcome among individuals expressing protective HLA alleles such as HLA-B*27:05 and HLA-B*57:01 remain unknown. We here analyse two HIV-infected subjects expressing both HLA-B*27:05 and HLA-B*57:01. One subject maintained low-to-undetectable viral loads for more than a decade of follow up. The other progressed to AIDS in < 3 years. RESULTS: The rapid progressor was the recipient within a known transmission pair, enabling virus sequences to be tracked from transmission. Progression was associated with a 12% Gag sequence change and 26% Nef sequence change at the amino acid level within 2 years. Although next generation sequencing from early timepoints indicated that multiple CD8+ cytotoxic T lymphocyte (CTL) escape mutants were being selected prior to superinfection, < 4% of the amino acid changes arising from superinfection could be ascribed to CTL escape. Analysis of an HLA-B*27:05/B*57:01 non-progressor, in contrast, demonstrated minimal virus sequence diversification (1.1% Gag amino acid sequence change over 10 years), and dominant HIV-specific CTL responses previously shown to be effective in control of viraemia were maintained. Clonal sequencing demonstrated that escape variants were generated within the non-progressor, but in many cases were not selected. In the rapid progressor, progression occurred despite substantial reductions in viral replicative capacity (VRC), and non-progression in the elite controller despite relatively high VRC. CONCLUSIONS: These data are consistent with previous studies demonstrating rapid progression in association with superinfection and that rapid disease progression can occur despite the relatively the low VRC that is typically observed in the setting of multiple CTL escape mutants.
Assuntos
Progressão da Doença , Infecções por HIV/virologia , HIV-1/fisiologia , Superinfecção/virologia , Substituição de Aminoácidos , Contagem de Linfócito CD4 , Linfócitos T CD4-Positivos/imunologia , Análise por Conglomerados , Epitopos de Linfócito T/genética , Variação Genética , Proteína do Núcleo p24 do HIV/genética , Infecções por HIV/genética , Infecções por HIV/imunologia , HIV-1/classificação , HIV-1/genética , HIV-1/imunologia , Antígenos HLA-B/imunologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Masculino , RNA Viral/sangue , RNA Viral/genética , Análise de Sequência de RNA , Superinfecção/genética , Superinfecção/imunologia , Linfócitos T Citotóxicos/imunologia , Carga Viral , Replicação Viral , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genéticaRESUMO
In the large majority of cases, HIV infection is established by a single variant, and understanding the characteristics of successfully transmitted variants is relevant to prevention strategies. Few studies have investigated the viral determinants of mother-to-child transmission. To determine the impact of Gag-protease-driven viral replication capacity on mother-to-child transmission, the replication capacities of 148 recombinant viruses encoding plasma-derived Gag-protease from 53 nontransmitter mothers, 48 transmitter mothers, and 47 infected infants were assayed in an HIV-1-inducible green fluorescent protein reporter cell line. All study participants were infected with HIV-1 subtype C. There was no significant difference in replication capacities between the nontransmitter (n = 53) and transmitter (n = 44) mothers (P = 0.48). Infant-derived Gag-protease NL4-3 recombinant viruses (n = 41) were found to have a significantly lower Gag-protease-driven replication capacity than that of viruses derived from the mothers (P < 0.0001 by a paired t test). High percent similarities to consensus subtype C Gag, p17, p24, and protease sequences were also found in the infants (n = 28) in comparison to their mothers (P = 0.07, P = 0.002, P = 0.03, and P = 0.02, respectively, as determined by a paired t test). These data suggest that of the viral quasispecies found in mothers, the HIV mother-to-child transmission bottleneck favors the transmission of consensus-like viruses with lower viral replication capacities.IMPORTANCE Understanding the characteristics of successfully transmitted HIV variants has important implications for preventative interventions. Little is known about the viral determinants of HIV mother-to-child transmission (MTCT). We addressed the role of viral replication capacity driven by Gag, a major structural protein that is a significant determinant of overall viral replicative ability and an important target of the host immune response, in the MTCT bottleneck. This study advances our understanding of the genetic bottleneck in MTCT by revealing that viruses transmitted to infants have a lower replicative ability as well as a higher similarity to the population consensus (in this case HIV subtype C) than those of their mothers. Furthermore, the observation that "consensus-like" virus sequences correspond to lower in vitro replication abilities yet appear to be preferentially transmitted suggests that viral characteristics favoring transmission are decoupled from those that enhance replicative capacity.
Assuntos
Infecções por HIV/transmissão , HIV-1/fisiologia , Transmissão Vertical de Doenças Infecciosas , Replicação Viral , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Progressão da Doença , Feminino , Infecções por HIV/virologia , HIV-1/classificação , Humanos , Lactente , Modelos Logísticos , Masculino , África do SulRESUMO
Immune control of human immunodeficiency virus type 1 (HIV) infection is typically associated with effective Gag-specific CD8+ T-cell responses. We here focus on HLA-B*14, which protects against HIV disease progression, but the immunodominant HLA-B*14-restricted anti-HIV response is Env specific (ERYLKDQQL, HLA-B*14-EL9). A subdominant HLA-B*14-restricted response targets Gag (DRYFKTLRA, HLA-B*14-DA9). Using HLA-B*14/peptide-saporin-conjugated tetramers, we show that HLA-B*14-EL9 is substantially more potent at inhibiting viral replication than HLA-B*14-DA9. HLA-B*14-EL9 also has significantly higher functional avidity (P < 0.0001) and drives stronger selection pressure on the virus than HLA-B*14-DA9. However, these differences were HLA-B*14 subtype specific, applying only to HLA-B*14:02 and not to HLA-B*14:01. Furthermore, the HLA-B*14-associated protection against HIV disease progression is significantly greater for HLA-B*14:02 than for HLA-B*14:01, consistent with the superior antiviral efficacy of the HLA-B*14-EL9 response. Thus, although Gag-specific CD8+ T-cell responses may usually have greater anti-HIV efficacy, factors independent of protein specificity, including functional avidity of individual responses, are also critically important to immune control of HIV.IMPORTANCE In HIV infection, although cytotoxic T lymphocytes (CTL) play a potentially critical role in eradication of viral reservoirs, the features that constitute an effective response remain poorly defined. We focus on HLA-B*14, unique among HLAs associated with control of HIV in that the dominant CTL response is Env specific, not Gag specific. We demonstrate that Env-specific HLA-B*14-restricted activity is substantially more efficacious than the subdominant HLA-B*14-restricted Gag response. Env immunodominance over Gag and strong Env-mediated selection pressure on HIV are observed only in subjects expressing HLA-B*14:02, and not HLA-B*14:01. This reflects the increased functional avidity of the Env response over Gag, substantially more marked for HLA-B*14:02. Finally, we show that HLA-B*14:02 is significantly more strongly associated with viremic control than HLA-B*14:01. These findings indicate that, although Gag-specific CTL may usually have greater anti-HIV efficacy than Env responses, factors independent of protein specificity, including functional avidity, may carry greater weight in mediating effective control of HIV.
Assuntos
Proteína gp160 do Envelope de HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Antígeno HLA-B14/imunologia , Imunidade Celular , Peptídeos/imunologia , Produtos do Gene gag do Vírus da Imunodeficiência Humana/imunologia , Adulto , Linfócitos T CD8-Positivos , Infecções por HIV/patologia , Infecções por HIV/terapia , HumanosRESUMO
UNLABELLED: The mechanisms of viral control and loss of viral control in chronically infected individuals with or without protective HLA class I alleles are not fully understood. We therefore characterized longitudinally the immunological and virological features that may explain divergence in disease outcome in 70 HIV-1 C-clade-infected antiretroviral therapy (ART)-naive South African adults, 35 of whom possessed protective HLA class I alleles. We demonstrate that, over 5 years of longitudinal study, 35% of individuals with protective HLA class I alleles lost viral control compared to none of the individuals without protective HLA class I alleles (P = 0.06). Sustained HIV-1 control in patients with protective HLA class I alleles was characteristically related to the breadth of HIV-1 CD8(+) T cell responses against Gag and enhanced ability of CD8(+) T cells to suppress viral replication ex vivo In some cases, loss of virological control was associated with reduction in the total breadth of CD8(+) T cell responses in the absence of differences in HIV-1-specific CD8(+) T cell polyfunctionality or proliferation. In contrast, viremic controllers without protective HLA class I alleles possessed reduced breadth of HIV-1-specific CD8(+) T cell responses characterized by reduced ability to suppress viral replication ex vivo These data suggest that the control of HIV-1 in individuals with protective HLA class I alleles may be driven by broad CD8(+) T cell responses with potent viral inhibitory capacity while control among individuals without protective HLA class I alleles may be more durable and mediated by CD8(+) T cell-independent mechanisms. IMPORTANCE: Host mechanisms of natural HIV-1 control are not fully understood. In a longitudinal study of antiretroviral therapy (ART)-naive individuals, we show that those with protective HLA class I alleles subsequently experienced virologic failure compared to those without protective alleles. Among individuals with protective HLA class I alleles, viremic control was associated with broad CD8(+) T cells that targeted the Gag protein, and CD8(+) T cells from these individuals exhibited superior virus inhibition capacity. In individuals without protective HLA class I alleles, HIV-1-specific CD8(+) T cell responses were narrow and poorly inhibited virus replication. These results suggest that broad, highly functional cytotoxic T cells (cytotoxic T lymphocytes [CTLs]) against the HIV-1 Gag protein are associated with control among those with protective HLA class I alleles and that loss of these responses eventually leads to viremia. A subset of individuals appears to have alternative, non-CTL mechanisms of viral control. These controllers may hold the key to an effective HIV vaccine.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Linfócitos T Citotóxicos/imunologia , Viremia/imunologia , Adulto , Terapia Antirretroviral de Alta Atividade , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/virologia , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Estudos Longitudinais , Carga Viral , Viremia/tratamento farmacológico , Replicação ViralAssuntos
Infecções por Coronavirus/prevenção & controle , Epitopos de Linfócito T/imunologia , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Vacinas Virais/uso terapêutico , Algoritmos , Motivos de Aminoácidos , Apresentação de Antígeno , Betacoronavirus , COVID-19 , Vacinas contra COVID-19 , Biologia Computacional , Infecções por Coronavirus/imunologia , Reações Cruzadas , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Ligação Proteica , SARS-CoV-2 , Vacinas Virais/imunologiaRESUMO
Exhausted T cells express multiple co-inhibitory molecules that impair their function and limit immunity to chronic viral infection. Defining novel markers of exhaustion is important both for identifying and potentially reversing T cell exhaustion. Herein, we show that the ectonucleotidse CD39 is a marker of exhausted CD8+ T cells. CD8+ T cells specific for HCV or HIV express high levels of CD39, but those specific for EBV and CMV do not. CD39 expressed by CD8+ T cells in chronic infection is enzymatically active, co-expressed with PD-1, marks cells with a transcriptional signature of T cell exhaustion and correlates with viral load in HIV and HCV. In the mouse model of chronic Lymphocytic Choriomeningitis Virus infection, virus-specific CD8+ T cells contain a population of CD39high CD8+ T cells that is absent in functional memory cells elicited by acute infection. This CD39high CD8+ T cell population is enriched for cells with the phenotypic and functional profile of terminal exhaustion. These findings provide a new marker of T cell exhaustion, and implicate the purinergic pathway in the regulation of T cell exhaustion.
Assuntos
Antígenos CD/imunologia , Apirase/imunologia , Biomarcadores , Linfócitos T CD8-Positivos/imunologia , Infecções por Vírus de RNA/imunologia , Subpopulações de Linfócitos T/imunologia , Animais , Infecções por Arenaviridae/imunologia , Cromatografia Líquida de Alta Pressão , Doença Crônica , Modelos Animais de Doenças , Citometria de Fluxo , Infecções por HIV/imunologia , Hepatite C Crônica/imunologia , Humanos , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de OligonucleotídeosRESUMO
HLA class I polymorphism has a major influence on adult HIV disease progression. An important mechanism mediating this effect is the impact on viral replicative capacity (VRC) of the escape mutations selected in response to HLA-restricted CD8+ T-cell responses. Factors that contribute to slow progression in pediatric HIV infection are less well understood. We here investigate the relationship between VRC and disease progression in pediatric infection, and the effect of HLA on VRC and on disease outcome in adult and pediatric infection. Studying a South African cohort of >350 ART-naïve, HIV-infected children and their mothers, we first observed that pediatric disease progression is significantly correlated with VRC. As expected, VRCs in mother-child pairs were strongly correlated (p = 0.004). The impact of the protective HLA alleles, HLA-B*57, HLA-B*58:01 and HLA-B*81:01, resulted in significantly lower VRCs in adults (p<0.0001), but not in children. Similarly, in adults, but not in children, VRCs were significantly higher in subjects expressing the disease-susceptible alleles HLA-B*18:01/45:01/58:02 (p = 0.007). Irrespective of the subject, VRCs were strongly correlated with the number of Gag CD8+ T-cell escape mutants driven by HLA-B*57/58:01/81:01 present in each virus (p = 0.0002). In contrast to the impact of VRC common to progression in adults and children, the HLA effects on disease outcome, that are substantial in adults, are small and statistically insignificant in infected children. These data further highlight the important role that VRC plays both in adult and pediatric progression, and demonstrate that HLA-independent factors, yet to be fully defined, are predominantly responsible for pediatric non-progression.
Assuntos
Infecções por HIV/genética , HIV-1/fisiologia , Antígenos HLA/genética , Replicação Viral/genética , Adulto , Criança , Estudos de Coortes , Progressão da Doença , Humanos , Reação em Cadeia da PolimeraseRESUMO
It is widely believed that epidemics in new hosts diminish in virulence over time, with natural selection favoring pathogens that cause minimal disease. However, a tradeoff frequently exists between high virulence shortening host survival on the one hand but allowing faster transmission on the other. This is the case in HIV infection, where high viral loads increase transmission risk per coital act but reduce host longevity. We here investigate the impact on HIV virulence of HIV adaptation to HLA molecules that protect against disease progression, such as HLA-B*57 and HLA-B*58:01. We analyzed cohorts in Botswana and South Africa, two countries severely affected by the HIV epidemic. In Botswana, where the epidemic started earlier and adult seroprevalence has been higher, HIV adaptation to HLA including HLA-B*57/58:01 is greater compared with South Africa (P = 7 × 10(-82)), the protective effect of HLA-B*57/58:01 is absent (P = 0.0002), and population viral replicative capacity is lower (P = 0.03). These data suggest that viral evolution is occurring relatively rapidly, and that adaptation of HIV to the most protective HLA alleles may contribute to a lowering of viral replication capacity at the population level, and a consequent reduction in HIV virulence over time. The potential role in this process played by increasing antiretroviral therapy (ART) access is also explored. Models developed here suggest distinct benefits of ART, in addition to reducing HIV disease and transmission, in driving declines in HIV virulence over the course of the epidemic, thereby accelerating the effects of HLA-mediated viral adaptation.
Assuntos
Adaptação Biológica/genética , Evolução Molecular , Infecções por HIV/epidemiologia , HIV/genética , HIV/patogenicidade , Antígenos HLA-B/genética , Adulto , Sequência de Bases , Botsuana/epidemiologia , Estudos de Coortes , Infecções por HIV/transmissão , Antígenos HLA-B/imunologia , Humanos , Dados de Sequência Molecular , Análise de Sequência de DNA , Estudos Soroepidemiológicos , África do Sul/epidemiologia , VirulênciaRESUMO
BACKGROUND: HLA strongly influences human immunodeficiency virus type 1 (HIV-1) disease progression. A major contributory mechanism is via the particular HLA-presented HIV-1 epitopes that are recognized by CD8(+) T-cells. Different populations vary considerably in the HLA alleles expressed. We investigated the HLA-specific impact of the MRKAd5 HIV-1 Gag/Pol/Nef vaccine in a subset of the infected Phambili cohort in whom the disease-susceptible HLA-B*58:02 is highly prevalent. METHODS: Viral loads, CD4(+) T-cell counts, and enzyme-linked immunospot assay-determined anti-HIV-1 CD8(+) T-cell responses for a subset of infected antiretroviral-naive Phambili participants, selected according to sample availability, were analyzed. RESULTS: Among those expressing disease-susceptible HLA-B*58:02, vaccinees had a lower chronic viral set point than placebo recipients (median, 7240 vs 122 500 copies/mL; P = .01), a 0.76 log10 lower longitudinal viremia level (P = .01), and slower progression to a CD4(+) T-cell count of <350 cells/mm(3) (P = .02). These differences were accompanied by a higher Gag-specific breadth (4.5 vs 1 responses; P = .04) and magnitude (2300 vs 70 spot-forming cells/10(6) peripheral blood mononuclear cells; P = .06) in vaccinees versus placebo recipients. CONCLUSIONS: In addition to the known enhancement of HIV-1 acquisition resulting from the MRKAd5 HIV-1 vaccine, these findings in a nonrandomized subset of enrollees show an HLA-specific vaccine effect on the time to CD4(+) T-cell count decline and viremia level after infection and the potential for vaccines to differentially alter disease outcome according to population HLA composition. CLINICAL TRIALS REGISTRATION: NCT00413725, DOH-27-0207-1539.
Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Infecções por HIV/prevenção & controle , Infecções por HIV/virologia , Antígenos HLA-B/genética , Vacinas contra a SAIDS/imunologia , Carga Viral , Adulto , Alelos , Contagem de Linfócito CD4 , ELISPOT , Feminino , Humanos , Masculino , Placebos/administração & dosagem , Vacinas contra a SAIDS/administração & dosagem , Adulto JovemRESUMO
Outcomes of chronic infection with hepatitis B virus (HBV) are varied, with increased morbidity reported in the context of human immunodeficiency virus (HIV) coinfection. The factors driving different outcomes are not well understood, but there is increasing interest in an HLA class I effect. We therefore studied the influence of HLA class I on HBV in an African HIV-positive cohort. We demonstrated that virologic markers of HBV disease activity (hepatitis B e antigen status or HBV DNA level) are associated with HLA-A genotype. This finding supports the role of the CD8(+) T-cell response in HBV control, and potentially informs future therapeutic T-cell vaccine strategies.
Assuntos
Coinfecção , Infecções por HIV , Antígenos HLA/genética , Antígenos E da Hepatite B/sangue , Hepatite B , Adulto , Estudos de Coortes , Coinfecção/complicações , Coinfecção/epidemiologia , Coinfecção/genética , Coinfecção/virologia , Feminino , Infecções por HIV/complicações , Infecções por HIV/epidemiologia , Infecções por HIV/virologia , Hepatite B/complicações , Hepatite B/epidemiologia , Hepatite B/genética , Hepatite B/virologia , Humanos , Masculino , Prevalência , Curva ROCRESUMO
The success of the immune response is finely balanced between, on the one hand, the need to engage vigorously with, and clear, certain pathogens; and, on the other, the requirement to minimize immunopathology and autoimmunity. Distinct immune strategies to achieve this balance have evolved in females and males and also in infancy through to adulthood. Sex differences in outcome from a range of infectious diseases can be identified from as early as fetal life, such as in congenital cytomegalovirus infection. The impact of sex hormones on the T-helper 1/T-helper 2 cytokine balance has been proposed to explain the higher severity of most infectious diseases in males. In the minority where greater morbidity and mortality is observed in females, this is hypothesized to arise because of greater immunopathology and/or autoimmunity. However, a number of unexplained exceptions to this rule are described. Studies that have actually measured the sex differences in children in the immune responses to infectious diseases and that would further test these hypotheses, are relatively scarce.
Assuntos
Envelhecimento/imunologia , Doenças Transmissíveis/imunologia , Suscetibilidade a Doenças , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Fatores SexuaisRESUMO
BACKGROUND: The highly genetically diverse HIV-1 group M subtypes may differ in their biological properties. Nef is an important mediator of viral pathogenicity; however, to date, a comprehensive inter-subtype comparison of Nef in vitro function has not been undertaken. Here, we investigate two of Nef's most well-characterized activities, CD4 and HLA class I downregulation, for clones obtained from 360 chronic patients infected with HIV-1 subtypes A, B, C or D. RESULTS: Single HIV-1 plasma RNA Nef clones were obtained from N=360 antiretroviral-naïve, chronically infected patients from Africa and North America: 96 (subtype A), 93 (B), 85 (C), and 86 (D). Nef clones were expressed by transfection in an immortalized CD4+ T-cell line. CD4 and HLA class I surface levels were assessed by flow cytometry. Nef expression was verified by Western blot. Subset analyses and multivariable linear regression were used to adjust for differences in age, sex and clinical parameters between cohorts. Consensus HIV-1 subtype B and C Nef sequences were synthesized and functionally assessed. Exploratory sequence analyses were performed to identify potential genotypic correlates of Nef function. Subtype B Nef clones displayed marginally greater CD4 downregulation activity (p = 0.03) and markedly greater HLA class I downregulation activity (p < 0.0001) than clones from other subtypes. Subtype C Nefs displayed the lowest in vitro functionality. Inter-subtype differences in HLA class I downregulation remained statistically significant after controlling for differences in age, sex, and clinical parameters (p < 0.0001). The synthesized consensus subtype B Nef showed higher activities compared to consensus C Nef, which was most pronounced in cells expressing lower protein levels. Nef clones exhibited substantial inter-subtype diversity: cohort consensus residues differed at 25% of codons, while a similar proportion of codons exhibited substantial inter-subtype differences in major variant frequency. These amino acids, along with others identified in intra-subtype analyses, represent candidates for mediating inter-subtype differences in Nef function. CONCLUSIONS: Results support a functional hierarchy of subtype B > A/D > C for Nef-mediated CD4 and HLA class I downregulation. The mechanisms underlying these differences and their relevance to HIV-1 pathogenicity merit further investigation.
Assuntos
Antígenos CD4/biossíntese , HIV-1/fisiologia , Antígenos de Histocompatibilidade Classe I/biossíntese , Interações Hospedeiro-Patógeno , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo , Adulto , África , Linfócitos T CD4-Positivos/virologia , Linhagem Celular , Regulação para Baixo , Feminino , Genótipo , Infecções por HIV/virologia , HIV-1/classificação , HIV-1/genética , HIV-1/isolamento & purificação , Humanos , Masculino , América do NorteRESUMO
HIV-1 attenuation resulting from immune escape mutations selected in Gag may contribute to slower disease progression in HIV-1-infected individuals expressing certain HLA class I alleles. We previously showed that the protective allele HLA-B*81 and the HLA-B*81-selected Gag T186S mutation are strongly associated with a lower viral replication capacity of recombinant viruses encoding Gag-protease derived from individuals chronically infected with HIV-1 subtype C. In the present study, we directly tested the effect of this mutation on viral replication capacity. In addition, we investigated potential compensatory effects of various polymorphisms, including other HLA-B*81-associated mutations that significantly covary with the T186S mutation. Mutations were introduced into a reference subtype B backbone and into patient-derived subtype C sequences in subtype B and C backbones by site-directed mutagenesis. The exponential-phase growth of mutant and wild-type viruses was assayed by flow cytometry of a green fluorescent protein reporter T cell line or by measurement of HIV-1 reverse transcriptase activity in culture supernatants. Engineering of the T186S mutation alone into all patient-derived subtype C sequences failed to yield replication-competent viruses, while in the subtype B sequence, the T186S mutation resulted in impaired replication capacity. Only the T186S mutation in combination with the T190I mutation yielded replication-competent viruses for all virus backbones tested; however, these constructs replicated slower than the wild type, suggesting that only partial compensation is mediated by the T190I mutation. Constructs encoding the T186S mutation in combination with other putative compensatory mutations were attenuated or defective. These results suggest that the T186S mutation is deleterious to HIV-1 subtype C replication and likely requires complex compensatory pathways, which may contribute to the clinical benefit associated with HLA-B*81.