Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Soft Matter ; 18(26): 4963-4972, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35748523

RESUMO

Herein, we describe the design and synthesis of a new variety of bio-based hydrogel films using a Cu(I)-catalyzed photo-click reaction. These films exhibited thermal-triggered swelling-deswelling and were constructed by crosslinking a triazide derivative of glycerol ethoxylate and dialkyne structures derived from isosorbide, a well-known plant-based platform molecule. The success of the click reaction was corroborated through infrared spectroscopy (FTIR) and the smooth surface of the obtained films was confirmed by scanning electron microscopy (SEM). The thermal characterization was carried out in terms of thermogravimetry (TGA) and differential scanning calorimetry (DSC), from which the decomposition onset and glass transition temperatures were determined, respectively. Additionally, mechanical properties of the samples were estimated by stress-strain experiments. Then, their swelling and deswelling properties were systematically examined in PBS buffer, revealing a thermoresponsive behavior that was successfully tested in the release of the anticancer drug doxorubicin. We also confirmed the non-cytotoxicity of these materials, which is a fundamental aspect for their potential use as drug carriers or tissue engineering matrices.


Assuntos
Hidrogéis , Isossorbida , Biomassa , Varredura Diferencial de Calorimetria , Sistemas de Liberação de Medicamentos , Hidrogéis/química , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria
2.
Molecules ; 27(12)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35745067

RESUMO

The development of oligonucleotide conjugates for in vivo targeting is one of the most exciting areas for oligonucleotide therapeutics. A major breakthrough in this field was the development of multifunctional GalNAc-oligonucleotides with high affinity to asialoglycoprotein receptors (ASGPR) that directed therapeutic oligonucleotides to hepatocytes. In the present study, we explore the use of G-rich sequences functionalized with one unit of GalNAc at the 3'-end for the formation of tetrameric GalNAc nanostructures upon formation of a parallel G-quadruplex. These compounds are expected to facilitate the synthetic protocols by providing the multifunctionality needed for the binding to ASGPR. To this end, several G-rich oligonucleotides carrying a TGGGGGGT sequence at the 3'-end functionalized with one molecule of N-acetylgalactosamine (GalNAc) were synthesized together with appropriate control sequences. The formation of a self-assembled parallel G-quadruplex was confirmed through various biophysical techniques such as circular dichroism, nuclear magnetic resonance, polyacrylamide electrophoresis and denaturation curves. Binding experiments to ASGPR show that the size and the relative position of the therapeutic cargo are critical for the binding of these nanostructures. The biological properties of the resulting parallel G-quadruplex were evaluated demonstrating the absence of the toxicity in cell lines. The internalization preferences of GalNAc-quadruplexes to hepatic cells were also demonstrated as well as the enhancement of the luciferase inhibition using the luciferase assay in HepG2 cell lines versus HeLa cells. All together, we demonstrate that tetramerization of G-rich oligonucleotide is a novel and simple route to obtain the beneficial effects of multivalent N-acetylgalactosamine functionalization.


Assuntos
Acetilgalactosamina , Quadruplex G , Acetilgalactosamina/química , Receptor de Asialoglicoproteína/metabolismo , Células HeLa , Hepatócitos , Humanos , Oligonucleotídeos/metabolismo
4.
Molecules ; 26(6)2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33804620

RESUMO

Fluoropyrimidines, such as 5-fluorouracil (5-FU) and related prodrugs have been considered first-line chemotherapy agents for the treatment of colorectal cancer. However, poor specificity and tumor cell resistance remain major limiting bottlenecks. G-quadruplexes, have been suggested as preferred nanostructures for enhancing cellular uptake mediated by G-quadruplex binding proteins which are abundant at the membranes of some tumor cells. In the current study, we propose a new strategy to deliver 5-fluoro-2'-deoxyuridine (5-FdU) monophosphate, the main active drug from 5-FU derivatives that may circumvent the cellular mechanisms of FU-resistant cancer cells. Two G-quadruplexes delivery systems containing four and six G-tetrads ((TG4T) and (TG6T)) linked to a FdU oligonucleotide were synthesized. Biophysical studies show that the G-quadruplex parallel structures are not affected by the incorporation of the 5 units of FdU at the 5'-end. Internalization studies confirmed the ability of such G-quadruplex nanostructures to facilitate the transport of the FdU pentamer and increase its cytotoxic effect relative to conventional FU drug in FU-resistant colorectal cancer cells. These results suggest that FdU oligomers linked to G-quadruplex parallel sequences may be a promising strategy to deliver fluoropyrimidines to cancer cells.


Assuntos
Citotoxinas/farmacologia , Desoxiuridina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Fluoruracila , Quadruplex G , Neoplasias/tratamento farmacológico , Citotoxinas/química , Desoxiuridina/química , Desoxiuridina/farmacologia , Células HT29 , Células HeLa , Humanos , Neoplasias/metabolismo , Neoplasias/patologia
5.
Mol Pharm ; 17(6): 1848-1858, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32293897

RESUMO

Gene therapy employing nanocarriers represents a promising strategy to treat central nervous system (CNS) diseases, where brain microvasculature is frequently compromised. Vascular endothelial growth factor (VEGF) is a key angiogenic molecule; however, its in vivo administration to the CNS by nonviral gene therapy has not been conducted. Hence, we prepared and physicochemically characterized four cationic niosome formulations (1-4), which were combined with pVEGF-GFP to explore their capacity to transfer the VEGF gene to CNS cells and achieve angiogenesis in the brain. Experiments in primary neuronal cells showed successful and safe transfection with niosome 4, producing double levels of biologically active VEGF in comparison to the rest of the formulations. Intracortical administration of niosome 4 based nioplexes in mouse brain validated the ability of this nonviral vector to deliver the VEGF gene to CNS cells, inducing brain angiogenesis and emerging as a promising therapeutic approach for the treatment of CNS diseases.


Assuntos
Doenças do Sistema Nervoso Central/terapia , Sistema Nervoso Central/patologia , Terapia Genética/métodos , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Sobrevivência Celular/fisiologia , Células Cultivadas , Sistema Nervoso Central/metabolismo , Doenças do Sistema Nervoso Central/metabolismo , Feminino , Camundongos , Gravidez , Ratos , Ratos Sprague-Dawley , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
Int J Mol Sci ; 22(1)2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374392

RESUMO

Two G-quadruplex forming oligonucleotides [d(TG4T)4 and d(TG6T)4] were selected as two tetramolecular quadruplex nanostructures because of their demonstrated ability to be modified with hydrophobic molecules. This allowed us to synthesize two series of G-quadruplex conjugates that differed in the number of G-tetrads, as well as in the terminal position of the lipid modification. Both solution and solid-phase syntheses were carried out to yield the corresponding lipid oligonucleotide conjugates modified at their 3'- and 5'-termini, respectively. Biophysical studies confirmed that the presence of saturated alkyl chains with different lengths did not affect the G-quadruplex integrity, but increased the stability. Next, the G-quadruplex domain was added to an 18-mer antisense oligonucleotide. Gene silencing studies confirmed the ability of such G-rich oligonucleotides to facilitate the inhibition of target Renilla luciferase without showing signs of toxicity in tumor cell lines.


Assuntos
Quadruplex G , Lipídeos/química , Nanoestruturas/química , Oligonucleotídeos/genética , Animais , Biofísica , Linhagem Celular Tumoral , Dicroísmo Circular , Células HEK293 , Células HeLa , Humanos , Luciferases/metabolismo , Microscopia de Fluorescência , Conformação de Ácido Nucleico , Oligonucleotídeos/química , Oligonucleotídeos Antissenso , Renilla/enzimologia , Transfecção
7.
Mol Pharm ; 15(8): 2963-2972, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-29446950

RESUMO

In this work, we demonstrated that the simple substitution of the 1,2,4-triazole moiety in 5-( 4H-1,2,4-triazol-4-yl)isophthalic acid (5-TIA) by the 1 H-1,2,3-triazol-5-yl unit enables the preparation of a hydrogelator (click-TIA). In sharp contrast to 5-TIA, its isostere click-TIA undergoes self-assembly in water upon sonication, leading to the formation of stable supramolecular viscoelastic hydrogels with a critical gelation concentration of 6 g/L. Hydrogels made of click-TIA as well as hybrid hydrogels made of the mixture click-TIA + 5-TIA (molar ratio 1:0.2) were used to compare different properties of the materials (i.e., rheological properties, thermal properties, mechanical stability, morphology). In terms of toxicity, neither click-TIA nor 5-TIA showed cytotoxic effects on cellular viability of HeLa cells up to 2.3 × 10-3 g/L when compared to untreated cells incubated with DMSO. Furthermore, the hydrogels were used for the encapsulation and in vitro controlled release of oxytetracycline that followed first-order kinetics. For the hydrogel made of click-TIA, a maximum drug release of ∼60% was reached after ∼8 h within a pH range between 6.5 and 10. However, the release rate was reduced to approximately half of its value at pH values between 1.2 and 5.0, whereas the use of hybrid hydrogels made of click-TIA + 5-TIA allowed to reduce the original rate at pH ≤ 6.5.


Assuntos
Portadores de Fármacos/química , Hidrogéis/química , Oxitetraciclina/administração & dosagem , Sobrevivência Celular/efeitos dos fármacos , Química Farmacêutica , Química Click , Preparações de Ação Retardada/administração & dosagem , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Oxitetraciclina/farmacocinética , Ácidos Ftálicos/química , Testes de Toxicidade/métodos , Triazóis/química
8.
Nanomedicine ; 14(2): 521-531, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29157978

RESUMO

Bone morphogenetic protein-7(BMP-7) plays a pivotal role in the transformation of mesenchymal stem cells (MSCs) into bone. However, its impact is hampered due to its short half-life. Therefore, gene therapy may be an interesting approach to deliver BMP-7 gene to D1-MSCs. In this manuscript we prepared and characterized niosomes based on cationic lipid 2,3-di(tetradecyloxy)propan-1-amine, combined with polysorbate 80 for gene delivery purposes. Niosomes were characterized and combined initially with pCMS-EGFP reporter plasmid, and later with pUNO1-hBMP-7 plasmid to evaluate osteogenesis differentiation. Additionally, specific blockers of most relevant endocytic pathways were used to evaluate the intracellular disposition of complexes. MSCs transfected with niosomes showed increased growth rate, enhanced alkaline phosphatase activity (ALP) and extracellular matrix deposition which suggested the formation of osteoblast-like cells. We concluded that hBMP-7-transfected MSCs could be considered not only as an effective delivery tool of hBMP-7, but also as proliferating and bone forming cells for bone regeneration.


Assuntos
Proteína Morfogenética Óssea 7/genética , Regeneração Óssea , Cátions/química , Terapia Genética , Lipossomos/administração & dosagem , Células-Tronco Mesenquimais/citologia , Plasmídeos/administração & dosagem , Animais , Diferenciação Celular , Células Cultivadas , Humanos , Lipossomos/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Plasmídeos/química , Engenharia Tecidual
9.
Artigo em Inglês | MEDLINE | ID: mdl-28193659

RESUMO

A hepatitis C virus (HCV) epidemic affecting HIV-infected men who have sex with men (MSM) is expanding worldwide. In spite of the improved cure rates obtained with the new direct-acting antiviral drug (DAA) combinations, the high rate of reinfection within this population calls urgently for novel preventive interventions. In this study, we determined in cell culture and ex vivo experiments with human colorectal tissue that lipoquads, G-quadruplex DNA structures fused to cholesterol, are efficient HCV pangenotypic entry and cell-to-cell transmission inhibitors. Thus, lipoquads may be promising candidates for the development of rectally applied gels to prevent HCV transmission.


Assuntos
Antivirais/uso terapêutico , Colesterol/uso terapêutico , Hepacivirus/efeitos dos fármacos , Hepatite C/tratamento farmacológico , Hepatite C/transmissão , Oligonucleotídeos/uso terapêutico , Internalização do Vírus/efeitos dos fármacos , Linhagem Celular Tumoral , Colesterol/química , Quadruplex G , Células HEK293 , Infecções por HIV , Hepacivirus/crescimento & desenvolvimento , Homossexualidade Masculina , Humanos , Masculino , Oligonucleotídeos/química
10.
Bioorg Med Chem ; 25(1): 175-186, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27810441

RESUMO

The ability of oligonucleotides to silence specific genes or inhibit the biological activity of specific proteins has generated great interest in their use as research tools and therapeutic agents. Unfortunately, their biological applications meet the limitation of their poor cellular accessibility. Developing an appropriate delivery system for oligonucleotides is essential to achieve their efficient cellular uptake. In the present work a series of phosphorothioate lipid-oligonucleotide hybrids were synthesized introducing covalently single or double lipid tails at both 3'- and 5'-termini of an antisense oligonucleotide. Gene transfections in cultured cells showed antisense luciferase inhibition without the use of a transfecting agent for conjugates modified with the double-lipid tail at 5'-termini. The effect of the double lipid-tailed modification was further studied in detail in several model membrane systems as well as in cellular uptake experiments. During these studies the spontaneous formation of self-assembled microstructures is clearly observed. Lipidation allowed the efficient incorporation of the oligonucleotide in HeLa cells by a macropinocytosis mechanism without causing cytotoxicity in cells or altering the binding properties of the oligonucleotide conjugates. In addition, both single- and double-tailed compounds showed a similar behavior in lipid model membranes, making them useful in nucleotide-based technologies.


Assuntos
Inativação Gênica , Lipídeos/química , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/genética , Tionucleotídeos/química , Tionucleotídeos/genética , Células HeLa , Humanos , Metabolismo dos Lipídeos , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/metabolismo , Pinocitose , Tionucleotídeos/administração & dosagem , Tionucleotídeos/metabolismo , Transfecção
11.
Int J Mol Sci ; 18(6)2017 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-28587106

RESUMO

Three different ionene polymers with varying quaternary ammonium moieties were used as a proof of concept for the formulation of antisense oligonucleotides, which are capable of inhibiting Renilla luciferase messenger ribonucleic acid (mRNA). Cationic vesicles, consisting of cationic polymer, antisense oligonucleotide (Luc) and non-ionic surfactant polysorbate 80, were investigated regarding their ζ potential, cytotoxicity and transfection efficiency. Deoxyribonucleic acid- (DNA) forming complexes in the presence of cationic vesicles were also investigated in terms of small-angle X-ray scattering (SAXS). The studied cationic vesicles showed very little, if any, toxicity against HeLa cells. Transfection abilities proved to vary strongly depending on the present quaternary ammonium moiety.


Assuntos
Oligonucleotídeos Antissenso , Poliaminas , Polímeros , Compostos de Amônio Quaternário , Tensoativos , Transfecção , Sobrevivência Celular/efeitos dos fármacos , Genes Reporter , Células HeLa , Humanos , Estrutura Molecular , Oligonucleotídeos Antissenso/genética , Poliaminas/química , Polieletrólitos , Polímeros/química , Polissorbatos , Compostos de Amônio Quaternário/química , Tensoativos/química , Transfecção/métodos , Difração de Raios X
12.
Mol Pharm ; 12(11): 4056-66, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26407108

RESUMO

The transfection of human NTera2/D1 teratocarcinoma-derived cell line (or NT2 cells) represents a promising strategy for the delivery of exogenous proteins or biological agents into the central nervous system (CNS). The development of suitable nonviral vectors with high transfection efficiencies requires a profound knowledge of the whole transfection process. In this work, we elaborated and characterized in terms of size and zeta potential three different nonviral vectors: lipoplexes (144 nm; -29.13 mV), nioplexes (142.5 nm; +35.4 mV), and polyplexes (294.8 nm; +15.1 mV). We compared the transfection efficiency, cellular uptake, and intracellular trafficking of the three vectors in NT2 cell line. Lipoplexes exhibited the highest percentages of EGFP positive cells. The values obtained with polyplexes were lower compared to lipoplexes but higher than the percentages obtained with nioplexes. Cellular uptake results had a clear correlation with respect to the corresponding transfection efficiencies. Regarding the endocytosis mechanism, lipoplexes enter in the cell, mainly, via clathrin-mediated endocytosis (CME) while polyplexes via caveolae-mediated endocytosis (CvME). Nioplexes were discarded for this experiment due to their low cellular uptake. By simulating an artificial endosome, we demonstrated that the vectors were able to release the DNA cargo once inside the late endosome. The data collected from this assay showed that at 6 h the genetic material carried by polyplexes was still located in the late endosome, while DNA carried by lipoplexes was already in the nucleus. This result indicates a faster intracellular traffic of the lipid-based vectors. Overall, our work gives new insights into the transfection process of NT2 cells by different nonviral vectors as a first step in the development of ex vivo gene therapy platform.


Assuntos
Células-Tronco de Carcinoma Embrionário/metabolismo , Técnicas de Transferência de Genes , Terapia Genética/métodos , Lipídeos/química , Lipossomos/química , Neurônios/metabolismo , Sobrevivência Celular , Células-Tronco de Carcinoma Embrionário/patologia , Endocitose/fisiologia , Proteínas de Fluorescência Verde/metabolismo , Humanos , Neurônios/patologia , Plasmídeos/administração & dosagem , Polímeros/química , Transfecção
13.
Bioorg Med Chem Lett ; 25(22): 5208-11, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26459209

RESUMO

O(6)-alkylguanine-DNA-alkyltransferase (hAGT) activity provides resistance to cancer chemotherapeutic agents and its inhibition enhances chemotherapy. We herein present the development of a novel fluorescence assay for the detection of hAGT activity. We designed a dsDNA sequence containing a fluorophore-quencher pair, where the fluorophore was attached to an O(6)-benzylguanine. This precursor was synthesized using the Mitsunobu reaction to introduce the benzyl group. The alkyl-fluorophore group is transferred to the active site during the dealkylation, producing an increase in fluorescence which is correlated to hAGT activity. This assay can be used for the evaluation of potential inhibitors of hAGT in a straightforward manner.


Assuntos
Ensaios Enzimáticos/métodos , Corantes Fluorescentes/síntese química , O(6)-Metilguanina-DNA Metiltransferase/análise , Oligonucleotídeos/síntese química , Pareamento Incorreto de Bases , Fluoresceínas/química , Corantes Fluorescentes/química , Humanos , Oligonucleotídeos/química
14.
Biochim Biophys Acta ; 1830(10): 4872-84, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23800579

RESUMO

BACKGROUND: The potential use of nucleic acids as therapeutic drugs has triggered the quest for oligonucleotide conjugates with enhanced cellular permeability. To this end, the biophysical aspects of previously reported potential lipid oligodeoxyribonucleotide conjugates were studied including its membrane-binding properties and cellular uptake. METHODS: These conjugates were fully characterized by MALDI-TOF mass spectrometry and HPLC chromatography. Their ability to insert into lipid model membrane systems was evaluated by Langmuir balance and confocal microscopy followed by the study of the internalization of a lipid oligodeoxyribonucleotide conjugate bearing a double-tail lipid modification (C28) into different cell lines by confocal microscopy and flow cytometry. This compound was also compared with other lipid containing conjugates and with the classical lipoplex formulation using Transfectin as transfection reagent. RESULTS: This double-tail lipid modification showed better incorporation into both lipid model membranes and cell systems. Indeed, this lipid conjugation was capable of inserting the oligodeoxyribonucleotide into both liquid-disordered and liquid-ordered domains of model lipid bilayer systems and produced an enhancement of oligodeoxyribonucleotide uptake in cells, even better than the effect caused by lipoplexes. In addition, in ß2 integrin (CR3) expressing cells this receptor was directly involved in the enhanced internalization of this compound. CONCLUSIONS: All these features confirm that the dual lipid modification (C28) is an excellent modification for enhancing nucleic acid delivery without altering their binding properties. GENERAL SIGNIFICANCE: Compared to the commercial lipoplex approach, oligodeoxyribonucleotide conjugation with C28 dual lipid modification seems to be promising to improve oligonucleotide delivery in mammalian cells.


Assuntos
Lipídeos/química , Oligonucleotídeos/administração & dosagem , Sequência de Bases , Cromatografia Líquida de Alta Pressão , Primers do DNA , Corantes Fluorescentes/química , Células HeLa , Humanos , Bicamadas Lipídicas , Microscopia Confocal , Oligonucleotídeos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
15.
Bioconjug Chem ; 25(3): 618-27, 2014 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-24559310

RESUMO

A rapid strategy for the covalent immobilization of DNA onto silicon-based materials using the UV-initiated radical thiol-ene reaction is presented in this study. Following this approach, thiol- and alkene-modified oligonucleotide probes were covalently attached in microarray format, reaching immobilization densities around 6 pmol·cm(-2). The developed methodology presents the advantages of spatially controlled probe anchoring (using a photomask), direct attachment without using cross-linkers (one-pot fashion), and short irradiation times (20 min). Using the described strategy, hybridization efficiencies up to 65% with full complementary strands were reached. The approach was evaluated by scoring single-base pair mismatches with discrimination ratios around 15. Moreover, the efficacy of the proposed DNA detection scheme is further demonstrated through the assay on a genomic target of bacterial Escherichia coli.


Assuntos
Alcenos/química , DNA/análise , Análise de Sequência com Séries de Oligonucleotídeos , Sondas de Oligonucleotídeos/química , Compostos de Sulfidrila/química , Química Click , Escherichia coli/isolamento & purificação , Fluorescência , Compostos de Organossilício/química , Tamanho da Partícula , Propriedades de Superfície , Raios Ultravioleta
16.
Pharm Res ; 31(7): 1665-75, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24449439

RESUMO

PURPOSE: The aim of the present study was to evaluate the potential application of a novel formulation based on a synthesized cationic lipid 2,3-di(tetradecyloxy)propan-1-amine, combined with polysorbate 80 to deliver the pCMS-EGFP plasmid into the rat retina. METHODS: We elaborated lipoplexes by mixing the formulation containing the cationic lipid and the polysorbate 80 with the plasmid at different cationic lipid/DNA ratios (w/w). Resulted lipoplexes were characterized in terms of size, charge, and capacity to condense, protect and release the DNA. In vitro transfection studies were performed in HEK-293 and ARPE-19 cells. Formulations were also tested in vivo by monitoring the expression of the EGFP after intravitreal and subretinal injections in rat eyes. RESULTS: At 2/1 cationic lipid/DNA mass ratio, the resulted lipoplexes had 200 nm of hydrodynamic diameter; were positive charged, spherical, protected DNA against enzymatic digestion and transfected efficiently HEK-293 and ARPE-19 cultured cells exhibiting lower cytotoxicity than LipofectamineTM 2000. Subretinal administrations transfected mainly photoreceptors and retinal pigment epithelial cells; whereas intravitreal injections produced a more uniform distribution of transfection through the inner part of the retina. CONCLUSIONS: These results hold great expectations for other gene delivery formulations based on this cationic lipid for retinal gene therapy purposes.


Assuntos
DNA/administração & dosagem , Diglicerídeos/química , Polissorbatos/química , Retina/metabolismo , Transfecção/métodos , Animais , Cátions/química , Linhagem Celular , DNA/genética , Células HEK293 , Humanos , Masculino , Ratos , Ratos Sprague-Dawley
17.
Molecules ; 19(7): 10495-523, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-25045890

RESUMO

Oligonucleotide gold nanoparticle conjugates are being used as diagnostic tools and gene silencing experiments. Thiol-chemistry is mostly used to functionalize gold nanoparticles with oligonucleotides and to incorporate DNA or RNA molecules onto gold surfaces. However, the stability of such nucleic acid-gold nanoparticle conjugates in certain conditions may be a limitation due to premature break of the thiol-gold bonds followed by aggregation processes. Here, we describe a straightforward synthesis of oligonucleotides carrying thioctic acid moiety based on the use of several thioctic acid-L-threoninol derivatives containing different spacers, including triglycine, short polyethyleneglycol, or aliphatic spacers. The novel thioctic-oligonucleotides were used for the functionalization of gold nanoparticles and the surface coverage and stability of the resulting thioctic-oligonucleotide gold nanoparticles were assessed. In all cases gold nanoparticles functionalized with thioctic-oligonucleotides had higher loadings and higher stability in the presence of thiols than gold nanoparticles prepared with commercially available thiol-oligonucleotides. Furthermore, the thioctic derivative carrying the triglycine linker is sensitive to cathepsin B present in endosomes. In this way this derivative may be interesting for the cellular delivery of therapeutic oligonucleotides as these results provides the basis for a potential endosomal escape.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/síntese química , Ácido Tióctico/análogos & derivados , Ácido Tióctico/química
18.
Beilstein J Nanotechnol ; 14: 339-350, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36959976

RESUMO

The formulation of nanoemulsions by low-energy strategies, particularly by the phase inversion composition method, and the use of these nanoemulsions as templates for the preparation of polymer nanoparticles for biomedical applications are reviewed. The methods of preparation, nature of the components in the formulation, and their impact on the physicochemical properties, drug loading, and drug release are discussed. We highlight the utilization of ethyl cellulose, poly(lactic-co-glycolic acid), and polyurethane/polyurea in the field of nanomedicine as potential drug delivery systems. Advances are still needed to achieve better control over size distribution, nanoparticle concentration, surface functionalization, and the type of polymers that can be processed.

19.
Nanoscale Adv ; 5(6): 1611-1623, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36926558

RESUMO

Oligopeptide end-modified poly(ß-amino ester)s (OM-pBAEs) offer a means for the effective implementation of gene therapeutics in the near future. A fine-tuning of OM-pBAEs to meet application requirements is achieved by the proportional balance of oligopeptides used and provide gene carriers with high transfection efficacy, low toxicity, precise targeting, biocompatibility, and biodegradability. Understanding the influence and conformation of each building block at molecular and biological levels is therefore pivotal for further development and improvement of these gene carriers. Herein, we unmask the role of individual OM-pBAE components and their conformation in OM-pBAE/polynucleotide nanoparticles using a combination of fluorescence resonance energy transfer, enhanced darkfield spectral microscopy, atomic force microscopy, and microscale thermophoresis. We found that modifying the pBAE backbone with three end-terminal amino acids produces unique mechanical and physical properties for each combination. Higher adhesion properties are seen with arginine and lysine-based hybrid nanoparticles, while histidine provides an advantage in terms of construct stability. Our results shed light on the high potential of OM-pBAEs as gene delivery vehicles and provide insights into the influence of the nature of surface charges and the chemical nature of the pBAE modifications on their paths towards endocytosis, endosomal escape, and transfection.

20.
Colloids Surf B Biointerfaces ; 222: 113019, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36435028

RESUMO

Drug and gene delivery systems based on polymeric nanoparticles offer a greater efficacy and a reduced toxicity compared to traditional formulations. Recent studies have evidenced that their internalization, biodistribution and efficacy can be affected, among other factors, by their mechanical properties. Here, we analyze by means of Atomic Force Microscopy force spectroscopy how composition, surface functionalization and loading affect the mechanics of nanoparticles. For this purpose, nanoparticles made of Poly(lactic-co-glycolic) (PLGA) and Ethyl cellulose (EC) with different functionalizations and loading were prepared by nano-emulsion templating using the Phase Inversion Composition method (PIC) to form the nano-emulsions. A multiparametric nanomechanical study involving the determination of the Young's modulus, maximum deformation and breakthrough force was carried out. The obtained results showed that composition, surface functionalization and loading affect the nanomechanical properties in a different way, thus requiring, in general, to consider the overall mechanical properties after the addition of a functionalization or loading. A graphical representation method has been proposed enabling to easily identify mechanically equivalent formulations, which is expected to be useful in the development of soft polymeric nanoparticles for pre-clinical and clinical use.


Assuntos
Nanopartículas , Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ácido Poliglicólico/química , Ácido Láctico/química , Distribuição Tecidual , Nanopartículas/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa