RESUMO
Microglia are specialized brain-resident macrophages that arise from primitive macrophages colonizing the embryonic brain1. Microglia contribute to multiple aspects of brain development, but their precise roles in the early human brain remain poorly understood owing to limited access to relevant tissues2-6. The generation of brain organoids from human induced pluripotent stem cells recapitulates some key features of human embryonic brain development7-10. However, current approaches do not incorporate microglia or address their role in organoid maturation11-21. Here we generated microglia-sufficient brain organoids by coculturing brain organoids with primitive-like macrophages generated from the same human induced pluripotent stem cells (iMac)22. In organoid cocultures, iMac differentiated into cells with microglia-like phenotypes and functions (iMicro) and modulated neuronal progenitor cell (NPC) differentiation, limiting NPC proliferation and promoting axonogenesis. Mechanistically, iMicro contained high levels of PLIN2+ lipid droplets that exported cholesterol and its esters, which were taken up by NPCs in the organoids. We also detected PLIN2+ lipid droplet-loaded microglia in mouse and human embryonic brains. Overall, our approach substantially advances current human brain organoid approaches by incorporating microglial cells, as illustrated by the discovery of a key pathway of lipid-mediated crosstalk between microglia and NPCs that leads to improved neurogenesis.
Assuntos
Encéfalo , Colesterol , Células-Tronco Pluripotentes Induzidas , Microglia , Células-Tronco Neurais , Neurogênese , Organoides , Animais , Humanos , Camundongos , Encéfalo/citologia , Encéfalo/metabolismo , Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Microglia/citologia , Microglia/metabolismo , Organoides/citologia , Organoides/metabolismo , Colesterol/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Axônios , Proliferação de Células , Ésteres/metabolismo , Gotículas Lipídicas/metabolismoRESUMO
Differential diagnosis between constitutional mismatch repair deficiency (CMMRD) and neurofibromatosis type 1 (NF1) is crucial as treatment and surveillance differ. We report the case of a girl with a clinical diagnosis of sporadic NF1 who developed a glioblastoma. Immunohistochemistry for MMR proteins identified PMS2 loss in tumour and normal cells and WES showed the tumour had an ultra-hypermutated phenotype, supporting the diagnosis of CMMRD. Germline analyses identified two variants (one pathogenic variant and one classified as variant(s) of unknown significance) in the PMS2 gene and subsequent functional assays on blood lymphocytes confirmed the diagnosis of CMMRD. The large plexiform neurofibroma of the thigh and the freckling were however more compatible with NF1. Indeed, a NF1 PV (variant allele frequencies of 20%, 3% and 9% and in blood, skin and saliva samples, respectively) was identified confirming a mosaicism for NF1. Retrospective analysis of a French cohort identified NF1 mosaicism in blood DNA in 2 out of 22 patients with CMMRD, underlining the existence of early postzygotic PV of NF1 gene in patients with CMMRD whose tumours have been frequently reported to exhibit somatic NF1 mutations. It highlights the potential role of this pathway in the pathogenesis of CMMRD-associated gliomas and argues in favour of testing MEK inhibitors in this context.
Assuntos
Neoplasias Encefálicas , Neoplasias Colorretais , Síndromes Neoplásicas Hereditárias , Neurofibromatose 1 , Feminino , Humanos , Neurofibromatose 1/diagnóstico , Neurofibromatose 1/genética , Mosaicismo , Estudos Retrospectivos , Endonuclease PMS2 de Reparo de Erro de Pareamento/genética , Síndromes Neoplásicas Hereditárias/genética , Neoplasias Encefálicas/genética , Neoplasias Colorretais/genética , Reparo de Erro de Pareamento de DNA/genéticaRESUMO
MOTIVATION: In the field of oncology, statistical models are used for the discovery of candidate factors that influence the development of the pathology or its outcome. These statistical models can be designed in a multiblock framework to study the relationship between different multiomic data, and variable selection is often achieved by imposing constraints on the model parameters. A priori graph constraints have been used in the literature as a way to improve feature selection in the model, yielding more interpretability. However, it is still unclear how these graphs interact with the models and how they impact the feature selection. Additionally, with the availability of different graphs encoding different information, one can wonder how the choice of the graph meaningfully impacts the results obtained. RESULTS: We proposed to study the graph penalty impact on a multiblock model. Specifically, we used the SGCCA as the multiblock framework. We studied the effect of the penalty on the model using the TCGA-LGG dataset. Our findings are 3-fold. We showed that the graph penalty increases the number of selected genes from this dataset, while selecting genes already identified in other works as pertinent biomarkers in the pathology. We demonstrated that using different graphs leads to different though consistent results, but that graph density is the main factor influencing the obtained results. Finally, we showed that the graph penalty increases the performance of the survival prediction from the model-derived components and the interpretability of the results. AVAILABILITY AND IMPLEMENTATION: Source code is freely available at https://github.com/neurospin/netSGCCA.
Assuntos
Multiômica , Software , Modelos EstatísticosRESUMO
BACKGROUND: Children with constitutional mismatch repair deficiency (CMMRD) syndrome have an increased risk of high-grade gliomas (HGG), and brain imaging abnormalities. This study analyzes brain imaging features in CMMRD syndrome children versus those with HGG without CMMRD. METHODS: Retrospective comparative analysis of brain imaging in 30 CMMRD children (20 boys, median age eight years, 22 with HGG), seven with Lynch syndrome (7 HGG), 39 with type 1 neurofibromatosis (NF1) (four with HGG) and 50 with HGG without MMR or NF1 pathogenic variant ("no-predisposition" patients). RESULTS: HGG in CMMRD and Lynch patients were predominantly hemispheric (versus midline) compared to NF1 and no-predisposition patients (91% and 86%, vs 25% and 54%, p = 0.004). CMMRD-associated tumors often had ill-defined boundaries (p = 0.008). All CMMRD patients exhibited at least one developmental venous anomaly (DVA), versus 14%, 10%, and 6% of Lynch, NF1, and no-predisposition patients (p < 0.0001). Multiple DVAs were observed in 83% of CMMRD patients, one NF1 patient (3%), and never in other groups (p < 0.0001). Cavernomas were discovered in 21% of CMMRD patients, never in other groups (p = 0.01). NF1-like focal areas of high T2-FLAIR signal intensity (FASI) were more prevalent in CMMRD patients than in Lynch or no-predisposition patients (50%, vs 20% and 0%, respectively, p < 0.0001). Subcortical and ill-limited FASI, possibly involving the cortex, were specific to CMMRD (p < 0.0001) and did not evolve in 93% of patients (13/14). CONCLUSION: Diffuse hemispherically located HGG associated with multiple DVAs, cavernomas, and NF1-like or subcortical FASI strongly suggests CMMRD syndrome compared to children with HGG in other contexts. CLINICAL RELEVANCE STATEMENT: The radiologic suggestion of CMMRD syndrome when confronted with HGGs in children may prompt genetic testing. This can influence therapeutic plans. Therefore, imaging features could potentially be incorporated into CMMRD testing recommendations. KEY POINTS: Using imaging to detect CMMRD syndrome early may improve patient care. CMMRD features include: hemispheric HGG with multiple developmental venous anomalies and NF1-like or subcortical areas with high T2-FLAIR intensity. We propose novel imaging features to improve the identification of potential CMMRD patients.
RESUMO
OBJECTIVES: Posterior fossa ependymoma group A (EPN_PFA) and group B (EPN_PFB) can be distinguished by their DNA methylation and give rise to different prognoses. We compared the MRI characteristics of EPN_PFA and EPN_PFB at presentation. METHODS: Preoperative imaging of 68 patients with posterior fossa ependymoma from two centers was reviewed by three independent readers, blinded for histomolecular grouping. Location, tumor extension, tumor volume, hydrocephalus, calcifications, tissue component, enhancement or diffusion signal, and histopathological data (cellular density, calcifications, necrosis, mitoses, vascularization, and microvascular proliferation) were compared between the groups. Categorical data were compared between groups using Fisher's exact tests, and quantitative data using Mann-Whitney tests. We performed a Benjamini-Hochberg correction of the p values to account for multiple tests. RESULTS: Fifty-six patients were categorized as EPN_PFA and 12 as EPN_PFB, with median ages of 2 and 20 years, respectively (p = 0.0008). The median EPN_PFA tumoral volume was larger (57 vs 29 cm3, p = 0.003), with more pronounced hydrocephalus (p = 0.002). EPN_PFA showed an exclusive central position within the 4th ventricle in 61% of patients vs 92% for EPN_PFB (p = 0.01). Intratumor calcifications were found in 93% of EPN_PFA vs 40% of EPN_PFB (p = 0.001). Invasion of the posterior fossa foramina was mostly found for EPN_PFA, particularly the foramina of Luschka (p = 0.0008). EPN_PFA showed whole and homogeneous tumor enhancement in 5% vs 75% of EPN_PFB (p = 0.0008). All mainly cystic tumors were EPN_PFB (p = 0.002). The minimal and maximal relative ADC was slightly lower in EPN_PFA (p = 0.02 and p = 0.01, respectively). CONCLUSION: Morphological characteristics from imaging differ between posterior fossa ependymoma subtypes and may help to distinguish them preoperatively. CLINICAL RELEVANCE STATEMENT: This study provides a tool to differentiate between group A and group B ependymomas, which will ultimately allow the therapeutic strategy to be adapted in the early stages of patient management. KEY POINTS: ⢠Posterior fossa ependymoma subtypes often have different imaging characteristics. ⢠Posterior fossa ependymomas group A are commonly median or lateral tissular calcified masses, with incomplete enhancement, affecting young children and responsible for pronounced hydrocephalus and invasion of the posterior fossa foramina. ⢠Posterior fossa ependymomas group B are commonly median non-calcified masses of adolescents and adults, predominantly cystic, and minimally invasive, with total and homogeneous enhancement.
Assuntos
Ependimoma , Hidrocefalia , Criança , Adulto , Adolescente , Humanos , Pré-Escolar , Adulto Jovem , Imageamento por Ressonância Magnética , Prognóstico , Ependimoma/diagnóstico por imagem , Ependimoma/genética , Ependimoma/patologia , CabeçaRESUMO
PURPOSE: Childhood cancer survivors (CCS) have an increased risk of developing late chronic diseases, which can be influenced by the cancer type and its treatment. These chronic diseases can be severe and disabling, typically emerging years to decades after treatment. These deficits negatively impact quality of life, intelligence quotient, and memory. This study investigated how much the cancer type and treatment could affect the neurological hospitalisations in the French Childhood Cancer Survivors Study (FCCSS). METHODS: We included 5579 childhood cancer survivors (CCS), diagnosed with solid tumours or lymphoma between 1945 and 2000, treated before 2001 and below the age of 21 years at initial treatment. The follow-up period was from 2006 to 2018. Hospitalisation data were obtained by linkage with the National Health Data System. We calculated the relative hospitalisation rate (RHRs) and absolute excess rate (AERs). Multivariable analyses were conducted using a Generalized Linear Model (GLM) with a Poisson distribution to estimate the association between neurological hospitalisation and patient characteristics. The expected number of hospitalisations served as an offset to compare the risk for FCCSS survivors with that of the reference population. Risk estimates were reported as relative risk (RR) with 95% confidence intervals. RESULTS: The hospitalisation rate for CCS was 114.2 per 10,000 person-years (PY), compared to 48.4 in the reference population. The highest hospitalisation rates were observed for epilepsy (AER = 27.1 per 10000 PY, 95%CI: 23.5-31.2 and RHR = 5.1, 95%CI 4.4-5.7). In multivariable analyses, central nervous system (CNS) tumours survivors had the highest relative risk (RR) of hospitalisation (RR = 9.4, 95%CI: 6.7-13.1) followed by neuroblastoma survivors (RR = 2.5, 95%CI: 1.7-3.7). In the whole population, survivors who received radiation to the head and neck had a significantly higher risk of hospitalisation (RR = 3.9, 95%CI: 3.3-4.7) compared to those who did not receive radiotherapy. CONCLUSIONS: Head and neck irradiation was identified as a strong risk factor for hospitalisation. This underlines the importance of implementing specific neurologic surveillance programs for at-risk individuals.
Assuntos
Sobreviventes de Câncer , Hospitalização , Neoplasias , Humanos , Sobreviventes de Câncer/estatística & dados numéricos , Hospitalização/estatística & dados numéricos , Masculino , Feminino , França/epidemiologia , Adolescente , Criança , Adulto Jovem , Pré-Escolar , Neoplasias/epidemiologia , Neoplasias/terapia , Estudos de Coortes , Lactente , Doenças do Sistema Nervoso/epidemiologia , AdultoRESUMO
Diffuse midline gliomas (DMG) H3 K27-altered are incurable grade 4 gliomas and represent a major challenge in neuro-oncology. This tumour type is now classified in four subtypes by the 2021 edition of the WHO Classification of the Central Nervous System (CNS) tumours. However, the H3.3-K27M subgroup still appears clinically and molecularly heterogeneous. Recent publications reported that rare patients presenting a co-occurrence of H3.3K27M with BRAF or FGFR1 alterations tended to have a better prognosis. To better study the role of these co-driver alterations, we assembled a large paediatric and adult cohort of 29 tumours H3K27-altered with co-occurring activating mutation in BRAF or FGFR1 as well as 31 previous cases from the literature. We performed a comprehensive histological, radiological, genomic, transcriptomic and DNA methylation analysis. Interestingly, unsupervised t-distributed Stochastic Neighbour Embedding (tSNE) analysis of DNA methylation profiles regrouped BRAFV600E and all but one FGFR1MUT DMG in a unique methylation cluster, distinct from the other DMG subgroups and also from ganglioglioma (GG) or high-grade astrocytoma with piloid features (HGAP). This new DMG subtype harbours atypical radiological and histopathological profiles with calcification and/or a solid tumour component both for BRAFV600E and FGFR1MUT cases. The analyses of a H3.3-K27M BRAFV600E tumour at diagnosis and corresponding in vitro cellular model showed that mutation in H3-3A was the first event in the oncogenesis. Contrary to other DMG, these tumours occur more frequently in the thalamus (70% for BRAFV600E and 58% for FGFR1MUT) and patients have a longer overall survival with a median above three years. In conclusion, DMG, H3 K27 and BRAF/FGFR1 co-altered represent a new subtype of DMG with distinct genotype/phenotype characteristics, which deserve further attention with respect to trial interpretation and patient management.
Assuntos
Astrocitoma , Neoplasias Encefálicas , Neoplasias do Sistema Nervoso Central , Glioma , Adulto , Humanos , Criança , Histonas/genética , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Proteínas Proto-Oncogênicas B-raf/genética , Glioma/diagnóstico por imagem , Glioma/genética , Glioma/patologia , Astrocitoma/genética , Mutação/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genéticaRESUMO
Pediatric spinal low-grade glioma (LGG) and glioneuronal tumours are rare, accounting for less 2.8-5.2% of pediatric LGG. New tumour types frequently found in spinal location such as diffuse leptomeningeal glioneuronal tumours (DLGNT) have been added to the World Health Organization (WHO) classification of tumours of the central nervous system since 2016, but their distinction from others gliomas and particularly from pilocytic astrocytoma (PA) are poorly defined. Most large studies on this subject were published before the era of the molecular diagnosis and did not address the differential diagnosis between PAs and DLGNTs in this peculiar location. Our study retrospectively examined a cohort of 28 children with LGGs and glioneuronal intramedullary tumours using detailed radiological, clinico-pathological and molecular analysis. 25% of spinal PAs were reclassified as DLGNTs. PA and DLGNT are nearly indistinguishable in histopathology or neuroradiology. 83% of spinal DLGNTs presented first without leptomeningeal contrast enhancement. Unsupervised t-distributed stochastic neighbor embedding (t-SNE) analysis of DNA methylation profiles showed that spinal PAs formed a unique methylation cluster distinct from reference midline and posterior fossa PAs, whereas spinal DLGNTs clustered with reference DLGNT cohort. FGFR1 alterations were found in 36% of spinal tumours and were restricted to PAs. Spinal PAs affected significantly younger patients (median age 2 years old) than DLGNTs (median age 8.2 years old). Progression-free survival was similar among the two groups. In this location, histopathology and radiology are of limited interest, but molecular data (methyloma, 1p and FGFR1 status) represent important tools differentiating these two mitogen-activated protein kinase (MAPK) altered tumour types, PA and DLGNT. Thus, these molecular alterations should systematically be explored in this type of tumour in a spinal location.
Assuntos
Astrocitoma , Neoplasias Encefálicas , Neoplasias do Sistema Nervoso Central , Glioma , Humanos , Criança , Pré-Escolar , Estudos Retrospectivos , Astrocitoma/patologia , Neoplasias do Sistema Nervoso Central/genética , Glioma/genética , Epigênese Genética , Neoplasias Encefálicas/genéticaRESUMO
BACKGROUND: Diffuse gliomas are the most frequent neoplasms in adolescent and young adults (AYAs), especially high-grade gliomas, which have the highest mortality rate. Recent histo-molecular advances are in favour of specialized therapeutic management of AYA patients, which we have analysed in this comprehensive review of the literature. SUMMARY: A literature search was conducted to identify all studies concerning diffuse gliomas and AYAs (15-39 years). We assessed epidemiology, clinical and imaging findings, histo-molecular characteristics, neurosurgical and neuro-oncological management, prognosis, and health-related quality of life. KEY MESSAGES: Diffuse gliomas remain the most frequent brain tumours in the AYA population. Symptoms mainly depend on the tumour location, which varies due to histo-molecular profiles. Specific imaging patterns of histo-molecular subtypes of diffuse gliomas are identified; however, no specific pattern related to the age group has been identified. The literature review favours optimizing the extent of surgical resection for diffuse gliomas, whichever the grade, and suggests a dedicated management for these patients. It seems more relevant to consider the treatment according to the histo-molecular profile of the diffuse glioma rather than the age group. Clinical trials will allow AYA patients to benefit from innovative therapies that could improve their outcome. This literature review suggests the need for a close and long-term psychological follow-up for AYA patients with brain tumour during the transitional care, during adulthood, as well as for their family members. Collaborative efforts are needed between paediatric and adult neurosurgical and neuro-oncological teams, to move forward in the therapeutic management of AYA patients harbouring diffuse gliomas.
Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Adolescente , Adulto Jovem , Criança , Adulto , Qualidade de Vida , Glioma/genética , Glioma/patologia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , PrognósticoRESUMO
We show that a common polymorphic variant in the ERCC5 5' untranslated region (UTR) generates an upstream ORF (uORF) that affects both the background expression of this protein and its ability to be synthesized following exposure to agents that cause bulky adduct DNA damage. Individuals that harbor uORF1 have a marked resistance to platinum-based agents, illustrated by the significantly reduced progression-free survival of pediatric ependymoma patients treated with such compounds. Importantly, inhibition of DNA-PKcs restores sensitivity to platinum-based compounds by preventing uORF1-dependent ERCC5 expression. Our data support a model in which a heritable 5' noncoding mRNA element influences individuals' responses to platinum-based chemotherapy.
Assuntos
Regiões 5' não Traduzidas/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Endonucleases/genética , Endonucleases/metabolismo , Ependimoma/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fases de Leitura Aberta/genética , Polimorfismo Genético/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proteínas de Ligação ao Cálcio/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Dano ao DNA , Ependimoma/tratamento farmacológico , Ependimoma/mortalidade , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Células HeLa , HumanosRESUMO
Background Diffuse midline gliomas (DMG) are characterized by a high incidence of H3 K27 mutations and poorer outcome. The HERBY trial has provided one of the largest cohorts of pediatric DMGs with available radiologic, histologic-genotypic, and survival data. Purpose To define MRI and molecular characteristics of DMG. Materials and Methods This study is a secondary analysis of a prospective trial (HERBY; ClinicalTrials.gov identifier, NCT01390948) undertaken between October 2011 and February 2016. Among 121 HERBY participants, 50 had midline nonpontine-based tumors. Midline high-grade gliomas were reclassified into DMG H3 K27 mutant, H3 wild type with enhancer of zest homologs inhibitory protein overexpression, epidermal growth factor receptormutant, or not otherwise stated. The epicenter of each tumor and other radiologic characteristics were ascertained from MRI and correlated with the new subtype classification, histopathologic characteristics, surgical extent, and outcome parameters. Kaplan-Meier curves and log-rank tests were applied to determine and describe survival differences between groups. Results There were 42 participants (mean age, 12 years ± 4 [SD]; 23 girls) with radiologically evaluable thalamic-based DMG. Eighteen had partial thalamic involvement (12 thalamopulvinar, six anteromedial), 10 involved a whole thalamus, nine had unithalamic tumors with diffuse contiguous extension, and five had bithalamic tumors (two symmetric, three partial). Twenty-eight participants had DMG H3 K27 mutant tumors; there were no differences in outcome compared with other DMGs (n = 4). Participants who underwent major debulking or total or near-total resection had longer overall survival (OS): 18.5 months vs 11.4 months (P = .02). Enrolled participants who developed leptomeningeal metastatic dissemination before starting treatment had worse outcomes (event-free survival, 2.9 months vs 8.0 months [P = .02]; OS, 11.4 months vs 18.5 months [P = .004]). Conclusion Thalamic involvement of diffuse midline gliomas ranged from localized partial thalamic to holo- or bithalamic with diffuse contiguous spread and had poor outcomes, irrespective of H3 K27 subtype alterations. Leptomeningeal dissemination and less than 50% surgical resection were adverse risk factors for survival. Clinical trial registration no. NCT01390948 © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Widjaja in this issue.
Assuntos
Neoplasias Encefálicas , Glioma , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Criança , Feminino , Glioma/diagnóstico por imagem , Glioma/genética , Glioma/patologia , Histonas/genética , Humanos , Imageamento por Ressonância Magnética , Mutação/genética , Estudos Prospectivos , Tálamo/patologiaRESUMO
AIMS: Dysembryoplastic neuroepithelial tumour (DNT) is a glioneuronal tumour that is challenging to diagnose, with a wide spectrum of histological features. Three histopathological patterns have been described: specific DNTs (both the simple form and the complex form) comprising the specific glioneuronal element, and also the non-specific/diffuse form which lacks it, and has unclear phenotype-genotype correlations with numerous differential diagnoses. METHODS: We used targeted methods (immunohistochemistry, fluorescence in situ hybridisation and targeted sequencing) and large-scale genomic methodologies including DNA methylation profiling to perform an integrative analysis to better characterise a large retrospective cohort of 82 DNTs, enriched for tumours that showed progression on imaging. RESULTS: We confirmed that specific DNTs are characterised by a single driver event with a high frequency of FGFR1 variants. However, a subset of DNA methylation-confirmed DNTs harbour alternative genomic alterations to FGFR1 duplication/mutation. We also demonstrated that a subset of DNTs sharing the same FGFR1 alterations can show in situ progression. In contrast to the specific forms, "non-specific/diffuse DNTs" corresponded to a heterogeneous molecular group encompassing diverse, newly-described, molecularly distinct entities. CONCLUSIONS: Specific DNT is a homogeneous group of tumours sharing characteristics of paediatric low-grade gliomas: a quiet genome with a recurrent genomic alteration in the RAS-MAPK signalling pathway, a distinct DNA methylation profile and a good prognosis but showing progression in some cases. The "non-specific/diffuse DNTs" subgroup encompasses various recently described histomolecular entities, such as PLNTY and diffuse astrocytoma, MYB or MYBL1 altered.
Assuntos
Neoplasias Encefálicas , Glioma , Neoplasias Neuroepiteliomatosas , Neoplasias Encefálicas/patologia , Genômica , Humanos , Neoplasias Neuroepiteliomatosas/genética , Neoplasias Neuroepiteliomatosas/patologia , Estudos RetrospectivosRESUMO
INTRODUCTION: At least half of children with low-grade glioma (LGG) treated with first line chemotherapy experience a relapse/progression and may therefore need a second-line chemotherapy. Irinotecan-bevacizumab has been recommended in this setting in France after encouraging results of pilot studies. We performed a retrospective analysis to define the efficacy, toxicity and predictors for response to the combination on a larger cohort. METHODS: We reviewed the files from children < 19 years of age with progressive or refractory LGG treated between 2009 and 2016 in 7 French centers with this combination. RESULTS: 72 patients (median age 7.8 years [range 1-19]) received a median of 16 courses (range 3-30). The median duration of treatment was 9 months (range 1.4-16.2). 96% of patients experienced at least disease stabilization. The 6-month and 2-year progression-free survivals (PFS) were 91.7% [IC 95% 85.5-98.3] and 38.2% [IC 95% 28.2-51.8] respectively. No progression occurred after treatment in 18 patients with a median follow-up of 35.6 months (range 7.6-75.9 months). Younger patients had a worse PFS (p = 0.005). Prior chemoresistance, NF1 status, duration of treatment, histopathology or radiologic response did not predict response. The most frequent toxicities related to bevacizumab included grades 1-2 proteinuria in 21, epistaxis in 10, fatigue in 12 and hypertension in 8 while gastro-intestinal toxicity was the most frequent side effect related to irinotecan. CONCLUSIONS: Bevacizumab-irinotecan has the potential of disease control clinically and radiographically in children with recurrent LGG whatever their previous characteristics; in many cases however these responses are not sustained, especially in younger children.
Assuntos
Neoplasias Encefálicas , Glioma , Adolescente , Adulto , Anticorpos Monoclonais Humanizados/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Bevacizumab/efeitos adversos , Neoplasias Encefálicas/patologia , Camptotecina/efeitos adversos , Criança , Pré-Escolar , Glioma/tratamento farmacológico , Glioma/patologia , Humanos , Lactente , Irinotecano , Recidiva Local de Neoplasia/patologia , Estudos Retrospectivos , Adulto JovemRESUMO
AIMS: There is a crucial need for pharmacokinetic (PK) data on oral vinorelbine (VNR) in the paediatric population. The aim of this work was to assess the PK profile of orally administered VNR in children with recurrent/progressive primary low-grade glioma (LGG). METHODS: A multicentre, open-label, single-arm intervention phase II study was conducted. Patients, aged between 6 and 18 years, with histologically confirmed recurrent or progressive primary LGG or non-documented typical optic pathway tumours, were included. PK parameters were estimated by non-compartmental analysis using Phoenix WinNonlin® software (version 8.0, Certara, Inc.). The influence of demographic and biological covariates on VNR PK parameters was investigated using a multivariate linear regression analysis. RESULTS: PK analysis included 36 patients with a median age (range) of 11 (6-17) years. Estimates of apparent oral clearance (CL/F), apparent volume of distribution (V/F), half-life (t1/2 ) and their between-subject variability (CV%) at 60 mg m-2 dose level, were 472 L h-1 (51.8%), 7002 L (57.9%) and 10 h (21.0%), respectively. Negligible accumulation of VNR between C1 and C2 was observed. CL/F and V/F were found to increase with body surface area (BSA) (P = .004). Lower area under the concentration-time curve (AUC) levels were observed among children in comparison to adults. CONCLUSION: Higher doses may be necessary for children with LGG. BSA showed a significant impact on VNR systemic exposure. We believe that our findings will serve as a basis for further studies to better characterize the concentration-response relationships of VNR among paediatric patients.
Assuntos
Glioma , Recidiva Local de Neoplasia , Adolescente , Criança , Glioma/tratamento farmacológico , Meia-Vida , Humanos , Infusões Intravenosas , Recidiva Local de Neoplasia/tratamento farmacológico , VinorelbinaRESUMO
PURPOSE OF REVIEW: Brain tumors are the most frequent solid cancer in the pediatric population. Owing to the rarity of environmental clues about their origin, it is tempting to consider these neoplasms as developmental processes gone awry. Our review will explore the heuristic power of this hypothesis and the influence of these findings on the clinical management. RECENT FINDING: A more accurate description of cancer predisposition syndrome has shown their frequent association with developmental abnormalities. Several genes involved in pediatric brain tumor oncogenesis are involved in developmental processes. Modeling of several pediatric brain tumor in cerebral organoids, mimicking embryonal stage of brain development, indicates that early events during brain development create the conditions necessary for their oncogenesis. SUMMARY: The onset of multiple brain tumor types early in life suggests a functional relationship between brain development and oncogenesis. A growing body of evidence seems to support the hypothesis that some of the main developmental steps in the brain can be highjacked by the tumors during their initiation. Collaborations between neuroscientists and oncologists should provide room for improvement in the knowledge for these neoplasms.
Assuntos
Neoplasias Encefálicas/etiologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Carcinogênese , Criança , Predisposição Genética para Doença , HumanosRESUMO
OBJECTIVES: The diffuse intrinsic pontine gliomas (DIPGs) are now defined by the type of histone H3 mutated at lysine 27. We aimed to correlate the multimodal MRI features of DIPGs, H3K27M mutant, with their histological and molecular characteristics. METHODS: Twenty-seven treatment-naïve children with histopathologically confirmed DIPG H3K27M mutant were prospectively included. MRI performed prior to biopsy included multi-b-value diffusion-weighted imaging, ASL, and dynamic susceptibility contrast (DSC) perfusion imaging. The ADC and cerebral blood flow (CBF) and blood volume (CBV) were measured at the biopsy site. We assessed quantitative histological data, including microvascular density, nuclear density, and H3K27M-positive nuclear density. Gene expression profiling was also assessed in the samples. We compared imaging and histopathological data according to histone subgroup. We correlated MRI quantitative data with histological data and gene expression. RESULTS: H3.1K27M mutated tumors showed higher ADC values (median 3151 µm2/s vs 1741 µm2/s, p = 0.003), and lower perfusion values (DSC-rCBF median 0.71 vs 1.43, p = 0.002, and DSC-rCBV median 1.00 vs 1.71, p = 0.02) than H3.3K27M ones. They had similar microvascular and nuclear density, but lower H3K27M-positive nuclear density (p = 0.007). The DSC-rCBV was positively correlated to the H3K27M-positive nuclear density (rho = 0.74, p = 0.02). ADC values were not correlated with nuclear density nor perfusion values with microvascular density. The expression of gated channel activity-related genes tended to be inversely correlated with ADC values and positively correlated with DSC perfusion. CONCLUSIONS: H3.1K27M mutated tumors have higher ADC and lower perfusion values than H3.3K27M ones, without direct correlation with microvascular or nuclear density. This may be due to tissular edema possibly related to gated channel activity-related gene expression. KEY POINTS: ⢠H3.1K27M mutant DIPG had higher apparent diffusion coefficient (p = 0.003), lower α (p = 0.048), and lower relative cerebral blood volume (p = 0.02) than H3.3K27M mutant DIPG at their biopsy sites. ⢠Biopsy samples obtained within the tumor's enhancing portion showed higher microvascular density (p = 0.03) than samples obtained outside the tumor's enhancing portion, but similar H3K27M-positive nuclear density (p = 0.84). ⢠Relative cerebral blood volume measured at the biopsy site was significantly correlated with H3K27M-positive nuclear density (rho = 0.74, p = 0.02).
Assuntos
Neoplasias Encefálicas , Neoplasias do Tronco Encefálico , Glioma Pontino Intrínseco Difuso , Glioma , Neoplasias do Tronco Encefálico/diagnóstico por imagem , Neoplasias do Tronco Encefálico/genética , Criança , Glioma/diagnóstico por imagem , Glioma/genética , Histonas/genética , Humanos , Imageamento por Ressonância MagnéticaRESUMO
Pilocytic astrocytoma (PA) is the most common pediatric glioma, arising from a single driver MAPK pathway alteration. Classified as a grade I tumor according to the 2016 WHO classification, prognosis is excellent with a 10-year survival rate > 95% after surgery. However, rare cases present with anaplastic features, including an unexpected high mitotic/proliferative index, thus posing a diagnostic and therapeutic challenge. Based on small histomolecular series and case reports, such tumors arising at the time of diagnosis or recurrence have been designated by many names including pilocytic astrocytoma with anaplastic features (PAAF). Recent DNA methylation-profiling studies performed mainly on adult cases have revealed that PAAF exhibit a specific methylation signature, thus constituting a distinct methylation class from typical PA [methylation class anaplastic astrocytoma with piloid features-(MC-AAP)]. However, the diagnostic and prognostic significance of MC-AAP remains to be determined in children. We performed an integrative work on the largest pediatric cohort of PAAF, defined according to strict criteria: morphology compatible with the diagnosis of PA, with or without necrosis, ≥ 4 mitoses for 2.3 mm2, and MAPK pathway alteration. We subjected 31 tumors to clinical, imaging, morphological and molecular analyses, including DNA methylation profiling. We identified only one tumor belonging to the MC-AAP (3%), the others exhibiting a methylation profile typical for PA (77%), IDH-wild-type glioblastoma (7%), and diffuse leptomeningeal glioneuronal tumor (3%), while three cases (10%) did not match to a known DNA methylation class. No significant outcome differences were observed between PAAF with necrosis versus no necrosis (p = 0.07), or with 4-6 mitoses versus 7 or more mitoses (p = 0.857). Our findings argue that the diagnostic histomolecular criteria established for anaplasia in adult PA are not of diagnostic or prognostic value in a pediatric setting. Further extensive and comprehensive integrative studies are necessary to accurately define this exceptional entity in children.
Assuntos
Astrocitoma/genética , Astrocitoma/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Adolescente , Fatores Etários , Astrocitoma/mortalidade , Neoplasias Encefálicas/mortalidade , Criança , Pré-Escolar , Metilação de DNA , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Intervalo Livre de Progressão , Estudos Retrospectivos , Taxa de SobrevidaRESUMO
Pediatric brain tumors are the most common solid tumor and the first cause of cancer death in childhood, adolescence, and young adulthood. Current treatments are far from optimal in most of these tumors and the prognosis remains dismal for many of them. One of the main causes of the failure of current medical treatments is in part due to the existence of the blood-brain barrier (BBB), which limits drug delivery to tumors. Opening of the BBB with low-intensity pulsed ultrasound (LIPU) has emerged during the last 2 decades as a promising technique for enhancing drug delivery to the brain. In preclinical models, enhanced delivery of a wide range of therapeutic agents, from low-molecular-weight drugs, to antibodies and immune cells, has been observed as well as tumor control and increased survival. This technique has recently entered clinical trials with extracranial and intracranial devices. The safety and feasibility of this technique has furthermore been shown in patients treated monthly for recurrent glioblastoma receiving carboplatin chemotherapy. In this review, the characteristics of the BBB in the most common pediatric brain tumors are reviewed. Then, principles and mechanisms of BBB disruption with ultrasound (US) are summarized and described at the histological and biological levels. Lastly, preclinical studies that have used US-induced BBB opening in tumor models, recent clinical trials, and the potential use of this technology in pediatrics are provided.
Assuntos
Barreira Hematoencefálica/patologia , Neoplasias Encefálicas/tratamento farmacológico , Recidiva Local de Neoplasia/tratamento farmacológico , Ondas Ultrassônicas , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/patologia , Glioma/diagnóstico , Glioma/tratamento farmacológico , Glioma/patologia , Humanos , Recidiva Local de Neoplasia/diagnóstico , Recidiva Local de Neoplasia/patologia , PediatriaRESUMO
There are two errors and one omission in the original article. Author Gottardo's correct name is Nicholas G. Gottardo, author Hulleman's correct affiliation is no. 3 (VUMC, Amsterdam), and the Acknowledgements should include the following sentence: "We would like to thank Dr Angel Montero Carcaboso (Hospital Sant Joan de Deu, Barcelona, Spain) for generously supplying the HSJD-DIPG007 cells."
RESUMO
PURPOSE: Diffuse intrinsic pontine glioma is the most aggressive form of high grade glioma in children with no effective therapies. There have been no improvements in survival in part due poor understanding of underlying biology, and lack of representative in vitro and in vivo models. Recently, it has been found feasible to use both biopsy and autopsy tumors to generate cultures and xenograft models. METHODS: To further model development, we evaluated the collective international experience from 8 collaborating centers to develop DIPG pre-clinical models from patient-derived autopsies and biopsies. Univariate and multivariate analysis was performed to determine key factors associated with the success of in vitro and in vivo PDX development. RESULTS: In vitro cultures were successfully established from 57% of samples (84.2% of biopsies and 38.2% of autopsies). Samples transferred in DMEM media were more likely to establish successful culture than those transported in Hibernate A. In vitro cultures were more successful from biopsies (84.2%) compared with autopsies (38.2%) and as monolayer on laminin-coated plates than as neurospheres. Primary cultures successfully established from autopsy samples were more likely to engraft in animal models than cultures established from biopsies (86.7% vs. 47.4%). Collectively, tumor engraftment was more successful when DIPG samples were directly implanted in mice (68%), rather than after culturing (40.7%). CONCLUSION: This multi-center study provides valuable information on the success rate of establishing patient-derived pre-clinical models of DIPG. The results can lead to further optimization of DIPG model development and ultimately assist in the investigation of new therapies for this aggressive pediatric brain tumor.