Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 337
Filtrar
1.
Nano Lett ; 24(15): 4512-4520, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38579125

RESUMO

Perovskite nanocrystals are advantageous for interfacial passivation of perovskite solar cells (PSCs), but the insulating long alkyl chain surface ligands impede the charge transfer, while the conventional ligand exchange would possibly introduce surface defects to the nanocrystals. In this work, we reported novel in situ modification of CsPbBr3 nanocrystals using a short chain conjugated molecule 2-methoxyphenylethylammonium iodide (2-MeO-PEAI) for interfacial passivation of PSCs. Transmission electron microscopy studies with atomic resolution unveil the transformation from cubic CsPbBr3 to Ruddlesden-Popper phase (RPP) nanocrystals due to halogen exchange. Synergic passivation by the RPP nanocrystals and 2-MeO-PEA+ has led to suppressed interface defects and enhanced charge carrier transport. Consequently, PSCs with in situ modified RPP nanocrystals achieved a champion power conversion efficiency of 24.39%, along with an improvement in stability. This work brings insights into the microstructural evolution of perovskite nanocrystals, providing a novel and feasible approach for interfacial passivation of PSCs.

2.
Biochem Biophys Res Commun ; 724: 150233, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38865814

RESUMO

Cryptochromes (CRYs) are blue light (BL) photoreceptors to regulate a variety of physiological processes including DNA double-strand break (DSB) repair. SUPPRESSOR OF GAMMA RADIATION 1 (SOG1) acts as the central transcription factor of DNA damage response (DDR) to induce the transcription of downstream genes, including DSB repair-related genes BRCA1 and RAD51. Whether CRYs regulate DSB repair by directly modulating SOG1 is unknown. Here, we demonstrate that CRYs physically interact with SOG1. Disruption of CRYs and SOG1 leads to increased sensitivity to DSBs and reduced DSB repair-related genes' expression under BL. Moreover, we found that CRY1 enhances SOG1's transcription activation of DSB repair-related gene BRCA1. These results suggest that the mechanism by which CRYs promote DSB repair involves positive regulation of SOG1's transcription of its target genes, which is likely mediated by CRYs-SOG1 interaction.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Criptocromos , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Criptocromos/metabolismo , Criptocromos/genética , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
3.
Biochem Biophys Res Commun ; 717: 150050, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38718571

RESUMO

Cryptochromes (CRYs) act as blue light photoreceptors to regulate various plant physiological processes including photomorphogenesis and repair of DNA double strand breaks (DSBs). ADA2b is a conserved transcription co-activator that is involved in multiple plant developmental processes. It is known that ADA2b interacts with CRYs to mediate blue light-promoted DSBs repair. Whether ADA2b may participate in CRYs-mediated photomorphogenesis is unknown. Here we show that ADA2b acts to inhibit hypocotyl elongation and hypocotyl cell elongation in blue light. We found that the SWIRM domain-containing C-terminus mediates the blue light-dependent interaction of ADA2b with CRYs in blue light. Moreover, ADA2b and CRYs act to co-regulate the expression of hypocotyl elongation-related genes in blue light. Based on previous studies and these results, we propose that ADA2b plays dual functions in blue light-mediated DNA damage repair and photomorphogenesis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Hipocótilo , Luz , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/efeitos da radiação , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/metabolismo , Hipocótilo/efeitos da radiação , Hipocótilo/genética , Criptocromos/metabolismo , Criptocromos/genética , Reparo do DNA/efeitos da radiação , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Morfogênese/efeitos da radiação , Luz Azul
4.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2689-2698, 2024 May.
Artigo em Chinês | MEDLINE | ID: mdl-38812169

RESUMO

This study aims to prepare co-loaded indocyanine green(ICG) and elemene(ELE) nano-emulsion(NE) in situ gel(ICG-ELE-NE-gel) and evaluate its physicochemical properties and antitumor activity in vitro. ICG-ELE-NE-gel was prepared by aqueous phase titration and cold solution methods, followed by characterization of the morphology, particle size, corrosion, and photothermal conversion characteristics. The human breast cancer MCF-7 cells were taken as the model, combined with 808 nm laser irradia-tion. Cell inhibition rate test and cell uptake test were performed. ICG-ELE-NE was spherical and uniform in size. The average particle size and Zeta potential were(85.61±0.35) nm and(-21.4±0.6) mV, respectively. The encapsulation efficiency and drug loading rate were 98.51%±0.39% and 10.96%±0.24%, respectively. ICG-ELE-NE-gel had a good photothermal conversion effect and good photothermal stability. The dissolution of ICG-ELE-NE-gel had both temperature and pH-responsive characteristics. Compared with free ELE, ICG-ELE-NE-gel combined with near-infrared light irradiation significantly enhanced the inhibitory effect on MCF-7 cells and could be uptaken in large amounts by MCF-7 cells. ICG-ELE-NE-gel was successfully prepared, and its antitumor activity was enhanced after 808 nm laser irradiation.


Assuntos
Neoplasias da Mama , Proliferação de Células , Emulsões , Verde de Indocianina , Humanos , Verde de Indocianina/química , Células MCF-7 , Emulsões/química , Proliferação de Células/efeitos dos fármacos , Feminino , Tamanho da Partícula , Géis/química , Nanopartículas/química , Composição de Medicamentos/métodos , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Portadores de Fármacos/química
5.
Mol Carcinog ; 62(4): 532-545, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36752341

RESUMO

MiR-1283 has been identified as a tumor suppressor in some malignancies. Whereas, the role of miR-1283 in HER2-positive (HER2+) breast cancer, particularly its role in regulating cell proliferation, one of the most significant features of tumor progression, is unclear. The related microRNA screened by the breast cancer sample GSE131599 dataset were detected in HER2+ breast cancer tissues and cell lines. Then, the obtained miR-1283 was overexpressed in SKBR3 and BT-474 cells followed by relevant functional assays concerning cell proliferation and apoptosis. The xenograft mouse model was induced and the effect of miR-1283 on tumor growth and cell proliferation was examined. The target of miR-1283 and the transcription factor regulating miR-1283 were predicted and identified. Finally, the influence of transcription factor KLF14 on cell proliferation and apoptosis was investigated. An integrated analysis confirmed that miR-1283 expression was significantly decreased in HER2+ breast cancer tissues. Also, by q-RT-PCR detection, miR-1283 expression was markedly reduced in HER2+ breast cancer tissues and cell lines. The miR-1283 overexpression prevented the proliferation and enhanced apoptosis of HER2+ breast cancer cells, as well as inhibited tumor growth. Mechanistically, miR-1283 inhibited TFAP2C expression by targeting the 3'-untranslated regions of TFAP2C messenger RNA, and the KLF14 enhanced miR-1283 level via binding to its promoter. The result subsequently confirmed the KLF14/miR-1283 signaling suppressed cell proliferation in HER2+ breast cancer. Our results suggested that the KLF14/miR-1283/TFAP2C axis inhibited HER2+ breast cancer progression, which might provide novel insight into mechanical exploration for this disease.


Assuntos
Neoplasias da Mama , MicroRNAs , Humanos , Animais , Camundongos , Feminino , Linhagem Celular Tumoral , Neoplasias da Mama/metabolismo , MicroRNAs/metabolismo , Proliferação de Células/genética , Fatores de Transcrição/genética , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Fator de Transcrição AP-2/genética
6.
Am J Nephrol ; 54(11-12): 479-488, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37812931

RESUMO

INTRODUCTION: Hyperphosphatemia in chronic kidney disease (CKD) patients is positively associated with mortality. Ferric citrate is a potent phosphorus binder that lowers serum phosphorus level and improves iron metabolism. We compared its efficacy and safety with active drugs in Chinese CKD patients with hemodialysis. METHODS: Chinese patients undergoing hemodialysis were randomized into two treatment groups in a 1:1 ratio, receiving either ferric citrate or sevelamer carbonate, respectively, for 12 weeks. Serum phosphorus levels, calcium concentration, and iron metabolism parameters were evaluated every 2 weeks. Frequency and severity of adverse events were recorded. RESULTS: 217 (90.4%) patients completed the study with balanced demographic and baseline characteristics between two groups. Ferric citrate decreased the serum phosphorus level to 0.59 ± 0.54 mmol/L, comparable to 0.56 ± 0.62 mmol/L by sevelamer carbonate. There was no significant difference between two groups (p > 0.05) in the proportion of patients with serum phosphorus levels reaching the target range, the response rate to the study drug, and the changes of corrected serum calcium concentrations, and intact-PTH levels at the end of treatment. The change of iron metabolism indicators in the ferric citrate group was significantly higher than those in the sevelamer carbonate group. There are 47 (40.5%) patients in the ferric citrate group, and 26 (21.3%) patients in the sevelamer carbonate group experienced drug-related treatment emergent adverse events (TEAEs); most were mild and tolerable. Common drug-related TEAEs were gastrointestinal disorders, including diarrhea (12.9 vs. 2.5%), fecal discoloration (14.7 vs. 0%), and constipation (1.7 vs. 7.4%) in ferric citrate and sevelamer carbonate group. CONCLUSION: Ferric citrate capsules have good efficacy and safety in the control of hyperphosphatemia in adult patients with CKD undergoing hemodialysis. Efficacy is not inferior to sevelamer carbonate. The TEAEs were mostly mild and tolerated by the patients.


Assuntos
Hiperfosfatemia , Insuficiência Renal Crônica , Adulto , Humanos , Hiperfosfatemia/tratamento farmacológico , Hiperfosfatemia/etiologia , Sevelamer/efeitos adversos , Cálcio , Quelantes/efeitos adversos , Diálise Renal/efeitos adversos , Compostos Férricos/efeitos adversos , Insuficiência Renal Crônica/terapia , Insuficiência Renal Crônica/tratamento farmacológico , Fósforo , Ferro/uso terapêutico , China
7.
Br J Clin Pharmacol ; 89(1): 209-221, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35939394

RESUMO

AIM: Propofol and opioids are commonly used in anaesthesia, but are highly susceptible to haemodynamic instability, thereby threatening the patient's surgical safety and prognosis. The purpose of this study was to investigate the predictors of haemodynamic instability and establish its predictive model. METHODS: A total of 150 Chinese patients undergoing thyroid or breast surgery participated in the study, with target-controlled infusion concentrations of propofol, opioids dosage, heart rate (HR), mean arterial pressure (MAP) and Narcotrend Index recorded at key points throughout the procedure. The Agena MassARRAY system was used to genotype candidate single nucleotide polymorphisms related to pharmacodynamics and pharmacokinetics of propofol and opioids. RESULTS: Among nongenetic factors, baseline HR (R = -.579, P < .001) and baseline MAP (R = -.725, P < .001) had a significant effect on the haemodynamic instability. Among genetic factors, the CT/CC genotype of GABRB1 rs4694846 (95% confidence interval [CI]: -11.309 to -3.155), AA/AG of OPRM1 rs1799971 (95%CI: 0.773 to 10.290), AA of CES2 rs8192925 (95%CI: 1.842 to 9.090) were associated with higher HR instability; the AA/GG genotype of NR1I2 rs6438550 (95%CI: 0.351 to 7.761), AA of BDNF rs2049046 (95%CI: -9.039 to -0.640) and GG of GABBR2 rs1167768 (95%CI: -10.146 to -1.740) were associated with higher MAP instability. The predictive models of HR and MAP fluctuations were developed, accounting for 45.0 and 59.2% of variations, respectively. CONCLUSION: We found that cardiovascular fundamentals and genetic variants of GABRB1, GABBR2, OPRM1, BDNF, CES2 and NR1I2 are associated with cardiovascular susceptibility, which can provide a reference for haemodynamic management in clinical anaesthesia.


Assuntos
Propofol , Humanos , Propofol/farmacocinética , Anestésicos Intravenosos/farmacocinética , Analgésicos Opioides/farmacologia , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Receptor de Pregnano X , Estudos Retrospectivos , Pressão Sanguínea , Hemodinâmica
8.
Analyst ; 148(20): 5033-5040, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37667620

RESUMO

Accurate and sensitive analysis of p53 DNA is important for early diagnosis of cancer. In this work, a fluorescence sensing system based on DNA supersandwich nanowires and cation exchange (CX)-triggered multiplex signal amplification was constructed for the detection of p53 DNA. In the presence of p53 DNA, the DNA self-assembles to form a DNA supersandwich nanowire that generates long double-stranded DNA. Subsequently, the cation exchange (CX) reaction between ZnS and Ag+ was utilized to release free Zn2+. With the participation of Zn2+, DNAzyme catalyzes the hydrolysis of numerous catalytic molecular beacons, resulting in a greatly enhanced fluorescence signal due to the cycling of DNAzyme. The fluorescence values increased in proportion to the concentrations of p53 DNA in the range of 10 pM to 200 nM, and a detection limit (LOD) of 2.34 pM (S/N = 3) was obtained. This method provides an effective strategy for the quantitative detection of p53 DNA.

9.
Anal Bioanal Chem ; 415(23): 5845-5854, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37528268

RESUMO

In this study, a photoelectrochemical (PEC) sensor based on perylene diimide derivatives (PDIs) was developed for the ultrasensitive quantification of dopamine (DA). PDIs were able to form self-assembled semiconductor nanostructures by strong π-π stacking, suitable for photoactive substances. Moreover, the shape of the PDI significantly affected the PEC properties of these nanostructures. The results showed that amino PDI with two-dimensional (2D) wrinkled layered nanostructures exhibited superior PEC properties relative to one-dimensional (1D) nanorods and fiber-based nanostructures (methyl and carboxyl PDIs). Based on these results, a mechanism for PEC sensor action was then proposed. The presence of 2D amino-PDI resulted in accelerated charge separation and transport. Furthermore, dopamine acted as effective electron donor to cause an increase in photocurrent. The as-obtained sensor was then used to detect small molecules like DA. A blue light optimized sensor at an applied potential of 0.7 V showed a detection limit of 1.67 nM with a wide linear range of 5 nM to 10 µM. On the other hand, the sensor presented acceptable reliability in determining DA in real samples. A recovery rate between 97.99 and 101.0% was obtained. Overall, controlling the morphology of semiconductors can influence PEC performance, which is a useful finding for the future development of PEC sensors.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Perileno , Dopamina , Perileno/química , Reprodutibilidade dos Testes , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais/métodos , Limite de Detecção
10.
J Gastroenterol Hepatol ; 38(4): 486-495, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36516040

RESUMO

BACKGROUND: The combination of sorafenib and hepatic arterial infusion chemotherapy (HAIC) is expected to exert a synergistic anticancer effect. We conducted this systematic review to examine the efficacy and safety of sorafenib plus HAIC vs sorafenib alone for advanced hepatocellular carcinoma (HCC). METHODS: We systematically searched the PubMed, Embase, and Cochrane Library with the following search terms: "sorafenib," "hepatic arterial infusion chemotherapy," "HAIC," "advanced," "hepatocellular carcinoma," and "HCC." Pooled hazard ratios (HRs) and 95% CIs were calculated for overall survival (OS) and progression-free survival (PFS), and we calculated the pooled risk ratios (RRs) and 95% CIs for objective response rate (ORR) and adverse events (AEs). RESULTS: We found that sorafenib plus HAIC was associated with significantly better OS (HR, 0.56; 95% CI, 0.37-0.83; P < 0.01), PFS (HR, 0.44; 95% CI, 0.27-0.72; P < 0.01), and ORR (RR, 3.77; 95% CI, 1.87-7.58; P < 0.01) than sorafenib alone in advanced HCC. Grade 3/4 AEs were more frequent in the sorafenib plus HAIC group, including leukopenia (RR, 4.54; 95% CI, 1.77-11.64; P < 0.01), neutropenia (RR, 7.81; 95% CI, 3.36-18.16; P < 0.01), thrombocytopenia (RR, 2.97; 95% CI, 1.98-4.46; P < 0.01), anemia (RR, 2.24; 95% CI, 1.22-4.09; P < 0.01), anorexia (RR, 2.37; 95% CI, 1.07-5.27; P = 0.03), nausea (RR, 2.98; 95% CI, 1.19-7.42; P = 0.02), and vomiting (RR, 3.99; 95% CI, 1.14-14.01; P = 0.03). CONCLUSION: Sorafenib plus HAIC improved OS, PFS, and ORR compared with sorafenib alone in advanced HCC, with acceptable safety profile.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Trombocitopenia , Humanos , Sorafenibe/uso terapêutico , Neoplasias Hepáticas/patologia , Resultado do Tratamento , Infusões Intra-Arteriais , Trombocitopenia/etiologia , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos
11.
Biomed Chromatogr ; 37(7): e5667, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37125667

RESUMO

Proteomics is the scientific discipline that deals with the protein composition of cells, tissues, and organisms and their patterns of change. It is considered an invaluable tool for tackling many challenges faced in medicine and biology. Among the available approaches, label-free quantitative proteomics techniques are extensively used to study malignant tumors due to their low cost, simple operation, and short cycle time. Therefore, it provides a novel approach to explore the pathogenesis, diagnostic markers, and targeted drugs of malignant tumors. Here, we summarize the research progress and potential of label-free quantitative proteomics and discuss the application of such techniques in the research on malignancies.


Assuntos
Neoplasias , Proteômica , Humanos , Proteômica/métodos , Espectrometria de Massas/métodos , Proteínas , Proteoma
12.
Environ Geochem Health ; 45(7): 5109-5125, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37071265

RESUMO

Cadmium pollution in farmland has become a global environmental problem, threatening ecological security and human health. Biochar is effective in remediation of soil pollution. However, high concentrations of biochar can inhibit plant growth, and low concentrations of biochar have limited mitigation effect on cadmium toxicity. Therefore, the combination of low-concentration biochar and other amendments is a promising approach to alleviate cadmium toxicity in plants and improve the safety of edible parts. In this study, muskmelon was selected as the research object, and different concentrations of α-Fe2O3 nanoparticles were used alone or combined with biochar to explore the effects of different treatments on muskmelon plants in cadmium-contaminated soil. The results showed that the combined application of 250 mg/kg α-Fe2O3 nanoparticles and biochar had a good effect on the repair of cadmium toxicity in muskmelon plants. Compared with cadmium treatment, its application increased plant height by 32.53%, cadmium transport factor from root to stem decreased by 32.95%, chlorophyll content of muskmelon plants increased by 14.27%, and cadmium content in muskmelon flesh decreased by 18.83%. Moreover, after plant harvest, soil available cadmium content in 250 mg/kg α-Fe2O3 nanoparticles and biochar combined treatment decreased by 31.18% compared with cadmium treatment. The results of this study provide an effective reference for the composite application of different exogenous amendments and a feasible idea for soil heavy metal remediation and mitigation of cadmium pollution in farmland.


Assuntos
Nanopartículas , Poluentes do Solo , Humanos , Cádmio/toxicidade , Cádmio/análise , Frutas/química , Carvão Vegetal/farmacologia , Solo , Nanopartículas/toxicidade , Poluentes do Solo/toxicidade , Poluentes do Solo/análise
13.
Angew Chem Int Ed Engl ; 62(30): e202304515, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37235527

RESUMO

Two-dimensional (2D) lead halide perovskites (LHPs) have shown great promises for light-emitting applications and excitonic devices. Fulfilling these promises demands an in-depth understanding on the relationships between the structural dynamics and exciton-phonon interactions that govern the optical properties. Here, we unveil the structural dynamics of 2D lead iodide perovskites with different spacer cations. Loose packing of an undersized spacer cation leads to out-of-plane octahedral tilting, whereas compact packing of an oversized spacer cation stretches Pb-I bond length, resulting in Pb2+ off-center displacement driven by stereochemical expression of the Pb2+ 6s2 lone pair electrons. Density functional theory calculations indicate that the Pb2+ cation is off-center displaced mainly along the direction where the octahedra are stretched the most by the spacer cation. We find dynamic structural distortions associated with either octahedral tilting or Pb2+ off-centering lead to a broad Raman central peak background and phonon softening, which increase the non-radiative recombination loss via exciton-phonon interactions and quench the photoluminescence intensity. The correlations between the structural, phonon, and optical properties are further confirmed by the pressure tuning of the 2D LHPs. Our results demonstrate that minimizing the dynamic structural distortions via a judicious selection of the spacer cations is essential to realize high luminescence properties in 2D LHPs.

14.
Malays J Med Sci ; 30(5): 221-235, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37928790

RESUMO

Neurological status is essential and often challenging for neurosurgical residents and also for neurosurgeons to determine surgical management. Pain as a component of the Glasgow Coma Scale (GCS) can be used as a tool in patients, especially an unconscious or comatose patient. In order to elicit this adequate noxious stimulus, a certain amount of pressure-pain threshold is required upon performing either as the central or peripheral technique. The scientific explanation behind each technique is required and needs to be well understood to aid the localisation of the defect in the neurological system. This paper will briefly review the aid of pain as a neurological guide in GCS status assessment.

15.
Malays J Med Sci ; 30(6): 61-69, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38239251

RESUMO

Background: Brachial plexus injury is a severe peripheral nerve injury that affects the upper extremities and causes functional damage and disability. A detailed and accurate clinical examination is required to accurately localise the site of injury. This video manuscript aims to provide guidelines for the structured assessment of a patient with brachial plexus injury, specifically tailored to Malaysian medical students and trainees. Methods: A video demonstrating the examination of the brachial plexus was made. This video, created at the School of Medical Sciences at Universiti Sains Malaysia (USM), demonstrates the proper examination technique for brachial plexus. Conclusion: We hope that this video will help students and young doctors evaluate patients with brachial plexus injury and reach accurate localisation of the injury.

16.
J Am Chem Soc ; 144(39): 18030-18042, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36134903

RESUMO

Two-dimensional (2D) metal halide perovskites are promising tunable semiconductors. Previous studies have focused on Pb-based structures, whereas the multilayered Sn- and Ge-based analogues are largely unexplored, even though they potentially exhibit more diverse structural chemistry and properties associated with the more polarizable ns2 lone-pair electrons. Herein, we report the synthesis and structures of 2D tin iodide perovskites (BA)2(A)Sn2I7, where BA = n-butylammonium and A = methylammonium, formamidinium, dimethylammonium, guanidinium, or acetamidinium, and those of 2D germanium iodide perovskites (BA)2(A)Ge2I7, where A = methylammonium or formamidinium. By comparing these structures along with their Pb counterparts, we establish correlations between the effect of group IV-cation's lone-pair stereochemical activity on the perovskite crystal structures and the resulting semiconducting properties such as bandgaps and carrier-phonon interactions and nonlinear optical properties. We find that the strength of carrier-phonon interaction increases with increasing lone-pair activity, leading to a more prominent photoluminescence tail on the low-energy side. Moreover, (BA)2(A)Ge2I7 exhibit strong second harmonic generation with second-order nonlinear coefficients of ∼10 pm V-1 that are at least 10 times those of Sn counterparts and 100 times those of Pb counterparts. We also report the third-order two-photon absorption coefficients of (BA)2(A)Sn2I7 to be ∼10 cm MW-1, which are one order of magnitude larger than those of the Pb counterparts and traditional inorganic semiconductors. These results not only highlight the role of lone-pair activity in linking the compositions and physical properties of 2D halide perovskites but also demonstrate 2D tin and germanium iodide perovskites as promising lead-free alternatives for nonlinear optoelectronic devices.

17.
J Am Chem Soc ; 144(27): 12247-12260, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35767659

RESUMO

The electron-phonon (e-ph) interaction in lead halide perovskites (LHPs) plays a role in a variety of physical phenomena. Unveiling how the local lattice distortion responds to charge carriers is a critical step toward understanding the e-ph interaction in LHPs. Herein, we advance a fundamental understanding of the e-ph interaction in LHPs from the perspective of stereochemical activity of 6s2 lone-pair electrons on the Pb2+ cation. We demonstrate a model system based on three LHPs with distinctive lone-pair activities for studying the structure-property relationships. By tuning the A-cation chemistry, we synthesized single-crystal CsPbBr3, (MA0.13EA0.87)PbBr3 (MA+ = methylammonium; EA+ = ethylammonium), and (MHy)PbBr3 (MHy+ = methylhydrazinium), which exhibit stereo-inactive, dynamic stereo-active, and static stereo-active lone pairs, respectively. This gives rise to distinctive local lattice distortions and low-frequency vibrational modes. We find that the e-ph interaction leads to a blue shift of the band gap as temperature increases in the structure with the dynamic stereo-active lone pair but to a red shift in the structure with the static stereo-active lone pair. Furthermore, analyses of the temperature-dependent low-energy photoluminescence tails reveal that the strength of the e-ph interaction increases with increasing lone-pair activity, leading to a transition from a large polaron to a small polaron, which has significant influence on the emission spectra and charge carrier dynamics. Our results highlight the role of the lone-pair activity in controlling the band gap, phonon, and polaronic effect in LHPs and provide guidelines for optimizing the optoelectronic properties, especially for tin-based and germanium-based halide perovskites, where stereo-active lone pairs are more prominent than their lead counterparts.

18.
Biochem Biophys Res Commun ; 622: 8-14, 2022 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-35841770

RESUMO

Post-traumatic stress disorder (PTSD) is a pathological fear memory-related disease. The persistence of pathological fearful memories is one of the most characteristic symptoms of PTSD. However, this can be eliminated by intervening in reconsolidation. Inflammation is intimately involved in the pathophysiologic progression of PTSD. Amentoflavone (AF) has anti-inflammatory effects. However, the effect of AF on fear memory reconsolidation remains unclear. In the present series of experiments, the CFC paradigm of rats were constructed. This was followed by AF administration immediately after exposure to the conditioning chamber to observe the maintenance of fear memory. Finally, a Western blot for the amygdala was used to explore the possible molecular biological mechanisms of AF affecting animal behavior. The findings suggest that re-exposure to the conditioning chamber for retrieval of CFC memory followed by immediate intragastric AF administration in rats attenuated the fear response for at least 14 days. In addition, the Western blot results show that the CFC memory intervention effect of AF administration during the reconsolidation phase may be related to the ERK signaling pathway inhibition. In general, the administration of AF in the reconsolidation phase to inhibit neuroinflammation can block the reconsolidation process and disrupt fear memory retention in the long term, at least in part through ERK pathway.


Assuntos
Medo , Sistema de Sinalização das MAP Quinases , Tonsila do Cerebelo/metabolismo , Animais , Biflavonoides , Medo/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Memória , Ratos
19.
Anesthesiology ; 137(2): 163-175, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35503980

RESUMO

BACKGROUND: Intranasal dexmedetomidine provides noninvasive, effective procedural sedation for pediatric patients, and has been widely used in clinical practice. However, the dosage applied has varied fourfold in pediatric clinical studies. To validate an appropriate dosing regimen, this study investigated the pharmacokinetics of intranasal dexmedetomidine in Chinese children under 3 yr old. METHODS: Intranasal dexmedetomidine 2 µg · kg-1 was administered to children with simple vascular malformations undergoing interventional radiological procedures. A population pharmacokinetic analysis with data from an optimized sparse-sampling design was performed using nonlinear mixed-effects modeling. Clearance was modeled using allometric scaling and a sigmoid postmenstrual age maturation model. Monte Carlo simulations were performed to assess the different dosing regimens. RESULTS: A total of 586 samples from 137 children aged 3 to 36 months were included in the trial. The data were adequately described by a two-compartment model with first-order elimination. Body weight with allometric scaling and maturation function were significant covariates of dexmedetomidine clearance. The pharmacokinetic parameters for the median subjects (weight 10 kg and postmenstrual age 101 weeks) in the authors' study were apparent central volume of distribution 7.55 l, apparent clearance of central compartment 9.92 l · h-1, apparent peripheral volume of distribution 7.80 l, and apparent intercompartmental clearance 61.7 l · h-1. The simulation indicated that at the dose of 2 µg · kg-1, 95% of simulated individuals could achieve a target therapeutic concentration of 0.3 ng · ml-1 within 20 min, and the average peak concentration of 0.563 ng · ml-1 could be attained at 61 min. CONCLUSIONS: The pharmacokinetic characteristics of intranasal dexmedetomidine were evaluated in Chinese pediatric patients aged between 3 and 36 months. An evidence-based dosing regimen at 2 µg · kg-1 could achieve a preset therapeutic threshold of mild to moderate sedation that lasted for up to 2 h.


Assuntos
Dexmedetomidina , Administração Intranasal , Pré-Escolar , Simulação por Computador , Humanos , Hipnóticos e Sedativos , Lactente , Método de Monte Carlo
20.
Analyst ; 147(20): 4578-4586, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36106920

RESUMO

Ochratoxin A (OTA) is a highly toxic food contaminant and is harmful to human beings. Herein, a ratiometric electrochemical aptasensor based on a DNA tetrahedral nanomaterial (NTH) was developed in combination with the signal tag of a zirconium metal-organic framework (UiO-66) for the detection of OTA. In the sensor, UiO-66 and a [Fe(CN)6]3-/4- electrolyte solution were used as the signal probe and the internal reference probe, respectively. In the presence of OTA, the OTA aptamer was released from the electrode due to the specific binding of OTA. Thus, signal probe P1 labeled-UiO-66 was captured on the electrode surface by hybridization with DNA NTH. Since signal probe P1 labeled-UiO-66 was close to the electrode, it leads to an increased signal current of UiO-66 at +0.9 V. As the conductivity of the modified electrode decreased, the current signal of [Fe(CN)6]3-/4- at +0.2 V also decreased. The proposed ratiometric electrochemical aptasensor could effectively eliminate external environmental influences and could avoid electrochemical background signals. The aptasensor demonstrated high specificity for OTA, and achieved a good linear range of 1 pg mL-1-100 ng mL-1 with a detection limit of 330 fg mL-1. The developed electrochemical aptamer biosensor effectively detected OTA in corn kernel samples, verifying its practical application for the determination of OTA in actual samples.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Estruturas Metalorgânicas , Nanoestruturas , Ocratoxinas , DNA , Técnicas Eletroquímicas , Eletrólitos , Ouro , Humanos , Limite de Detecção , Ocratoxinas/análise , Ácidos Ftálicos , Zea mays , Zircônio
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa