Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
EMBO Rep ; 24(12): e57238, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37929625

RESUMO

Interferons (IFN) are crucial antiviral and immunomodulatory cytokines that exert their function through the regulation of a myriad of genes, many of which are not yet characterized. Here, we reveal that lipin-2, a phosphatidic acid phosphatase whose mutations produce an autoinflammatory syndrome known as Majeed syndrome in humans, is regulated by IFN in a STAT-1-dependent manner. Lipin-2 inhibits viral replication both in vitro and in vivo. Moreover, lipin-2 also acts as a regulator of inflammation in a viral context by reducing the signaling through TLR3 and the generation of ROS and release of mtDNA that ultimately activate the NLRP3 inflammasome. Inhibitors of mtDNA release from mitochondria restrict IL-1ß production in lipin-2-deficient animals in a model of viral infection. Finally, analyses of databases from COVID-19 patients show that LPIN2 expression levels negatively correlate with the severity of the disease. Overall, these results uncover novel regulatory mechanisms of the IFN response driven by lipin-2 and open new perspectives for the future management of patients with LPIN2 mutations.


Assuntos
DNA Mitocondrial , Interferons , Animais , Humanos , Fosfatidato Fosfatase/genética , Fosfatidato Fosfatase/metabolismo
2.
J Med Virol ; 95(6): e28878, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37322614

RESUMO

Monkeypox (MPOX) is a zoonotic disease that affects humans and other primates, resulting in a smallpox-like illness. It is caused by monkeypox virus (MPXV), which belongs to the Poxviridae family. Clinically manifested by a range of cutaneous and systemic findings, as well as variable disease severity phenotypes based on the genetic makeup of the virus, the cutaneous niche and respiratory mucosa are the epicenters of MPXV pathogenicity. Herein, we describe the ultrastructural features of MPXV infection in both human cultured cells and cutaneous clinical specimens collected during the 2022-2023 MPOX outbreak in New York City that were revealed through electron microscopy. We observed typical enveloped virions with brick-shaped morphologies that contained surface protrusions, consistent with the classic ultrastructural features of MPXV. In addition, we describe morpho-functional evidence that point to roles of distinct cellular organelles in viral assembly during clinical MPXV infection. Interestingly, in skin lesions, we found abundant melanosomes near viral assembly sites, particularly in the vicinity of mature virions, which provides further insight into virus-host interactions at the subcellular level that contribute to MPXV pathogenesis. These findings not only highlight the importance of electron microscopic studies for further investigation of this emerging pathogen but also in characterizing MPXV pathogenesis during human infection.


Assuntos
Mpox , Dermatopatias , Animais , Humanos , Monkeypox virus/genética , Virulência , Primatas , Genômica
3.
J Med Virol ; 95(1): e28247, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36271493

RESUMO

Monkeypox virus (MPXV) is a zoonotic orthopoxvirus within the Poxviridae family. MPXV is endemic to Central and West Africa. However, the world is currently witnessing an international outbreak with no clear epidemiological links to travel or animal exposure and with ever-increasing numbers of reported cases worldwide. Here, we evaluated and validated a new, sensitive, and specific real-time PCR-assay for MPXV diagnosis in humans and compare the performance of this novel assay against a Food & Drug Administration-cleared pan-Orthopox RT-PCR assay. We determined specificity, sensitivity, and analytic performance of the PKamp™ Monkeypox Virus RT-PCR assay targeting the viral F3L-gene. In addition, we further evaluated MPXV-PCR-positive specimens by viral culture, electron microscopy, and viral inactivation assays. The limit of detection was established at 7.2 genome copies/reaction, and MPXV was successfully identified in 20 clinical specimens with 100% correlation against the reference method with 100% sensitivity and specificity. Our results demonstrated the validity of this rapid, robust, and reliable RT-PCR assay for specific and accurate diagnosis of MPXV infection in human specimens collected both as dry swabs and in viral transport media. This assay has been approved by NYS Department of Health for clinical use.


Assuntos
Monkeypox virus , Mpox , Animais , Humanos , Monkeypox virus/genética , Mpox/epidemiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Técnicas de Amplificação de Ácido Nucleico/métodos , Reação em Cadeia da Polimerase em Tempo Real
4.
Mol Biol Rep ; 50(8): 6619-6626, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37349607

RESUMO

BACKGROUND: Current biological research extensively describes the interactions of molecules such as RNA with other nucleic acids or proteins. However, the relatively recent discovery of nuclear phospholipids playing biologically relevant processes outside membranes, as well as, RNA-lipid interactions shows the need for new methods to explore the identity of these RNAs. METHODS AND RESULTS: In this study, we describe the method for LIPID-RNA isolation followed by sequencing and analysis of the RNA that has the ability to interact with the selected lipids. Here we utilized specific phospholipid coated beads for selective RNA binding. We tested RNA from organisms belonging to different realms (human, plant, and yeast), and tested their ability to bind a specific lipid. CONCLUSIONS: The results show several RNAs differentially enriched in the pull-down of phosphatidyl Inositol 4,5 bisphosphate coated beads. This method is helpful to screen lipid-binding RNA, which may have relevant biological functions. The method can be used with different lipids and comparison of pull-downs and can narrow the selection of RNAs that interact with a particular lipid for further studies.


Assuntos
Fosfolipídeos , RNA , Humanos , RNA/metabolismo , Fosfolipídeos/metabolismo
5.
Nucleic Acids Res ; 49(14): 8199-8213, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34302490

RESUMO

PrimPol is the second primase in human cells, the first with the ability to start DNA chains with dNTPs. PrimPol contributes to DNA damage tolerance by restarting DNA synthesis beyond stalling lesions, acting as a TLS primase. Multiple alignment of eukaryotic PrimPols allowed us to identify a highly conserved motif, WxxY near the invariant motif A, which contains two active site metal ligands in all members of the archeo-eukaryotic primase (AEP) superfamily. In vivo and in vitro analysis of single variants of the WFYY motif of human PrimPol demonstrated that the invariant Trp87 and Tyr90 residues are essential for both primase and polymerase activities, mainly due to their crucial role in binding incoming nucleotides. Accordingly, the human variant F88L, altering the WFYY motif, displayed reduced binding of incoming nucleotides, affecting its primase/polymerase activities especially during TLS reactions on UV-damaged DNA. Conversely, the Y89D mutation initially associated with High Myopia did not affect the ability to rescue stalled replication forks in human cells. Collectively, our data suggest that the WFYY motif has a fundamental role in stabilizing the incoming 3'-nucleotide, an essential requisite for both its primase and TLS abilities during replication fork restart.


Assuntos
DNA Primase/genética , Replicação do DNA/genética , DNA Polimerase Dirigida por DNA/genética , DNA/genética , Enzimas Multifuncionais/genética , Motivos de Aminoácidos/genética , DNA/biossíntese , Dano ao DNA/genética , Humanos , Proteína FUS de Ligação a RNA/genética
6.
J Virol ; 95(2)2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33115866

RESUMO

Induction of the endogenous innate immune system by interferon (IFN) triggers the expression of many proteins that serve like alarm bells in the body, activating an immune response. After a viral infection, one of the genes activated by IFN induction is the IFN-stimulated gene 15 (ISG15), which encodes a ubiquitin-like protein that undergoes a reversible posttranslational modification (ISGylation). ISG15 protein can also act unconjugated, intracellularly and secreted, acting as a cytokine. Although ISG15 has an essential role in host defense responses to microbial infection, its role as an immunomodulator in the vaccine field remains to be defined. In this investigation, we showed that ISG15 exerts an immunomodulatory role in human immunodeficiency virus (HIV) vaccines. In mice, after priming with a DNA-ISG15 vector mixed with a DNA expressing HIV-1 gp120 (DNA-gp120), followed by a booster with a modified vaccinia virus Ankara (MVA) vector expressing HIV-1 antigens, both wild-type ISG15-conjugated (ISG15-wt) and mutant unconjugated (ISG15-mut) proteins act as immune adjuvants by increasing the magnitude and quality of HIV-1-specific CD8 T cells, with ISG15-wt providing better immunostimulatory activity than ISG15-mut. The HIV-1 Env-specific CD8 T cell responses showed a predominant T effector memory (TEM) phenotype in all groups. Moreover, the amount of DNA-gp120 used to immunize mice could be reduced 5-fold after mixing with DNA-ISG15 without affecting the potency and the quality of the HIV-1 Env-specific immune responses. Our study clearly highlights the potential use of the IFN-induced ISG15 protein as immune adjuvant to enhance immune responses to HIV antigens, suggesting that this molecule might be exploitable for prophylactic and therapeutic vaccine approaches against pathogens.IMPORTANCE Our study described the potential role of ISG15 as an immunomodulatory molecule in the optimization of HIV/AIDS vaccine candidates. Using a DNA prime-MVA boost immunization protocol, our results indicated an increase in the potency and the quality of the HIV-1 Env-specific CD8 T cell response. These results highlight the adjuvant potency of ISG15 to elicit improved viral antigen presentation to the immune system, resulting in an enhanced HIV-1 vaccine immune response. The DNA-ISG15 vector could find applicability in the vaccine field in combination with other nucleic acid-based vector vaccines.


Assuntos
Vacinas contra a AIDS/imunologia , Adjuvantes Imunológicos , Linfócitos T CD8-Positivos/imunologia , Citocinas/imunologia , Proteína gp120 do Envelope de HIV/imunologia , HIV-1/imunologia , Imunização/métodos , Vacinas contra a AIDS/administração & dosagem , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/genética , Animais , Citocinas/administração & dosagem , Citocinas/genética , Feminino , Células HEK293 , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/administração & dosagem , Proteína gp120 do Envelope de HIV/genética , Humanos , Imunização Secundária , Memória Imunológica , Imunomodulação , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Ubiquitinas/administração & dosagem , Ubiquitinas/genética , Ubiquitinas/imunologia , Potência de Vacina , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia , Vaccinia virus/genética
7.
J Cell Sci ; 130(18): 2961-2969, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28842471

RESUMO

Interferon stimulated gene 15 (ISG15) is an ubiquitin-like protein whose expression and conjugation to targets (ISGylation) is induced by infection, interferon (IFN)-α and -ß, ischemia, DNA damage and aging. Attention has historically focused on the antiviral effects of ISGylation, which blocks the entry, replication or release of different intracellular pathogens. However, recently, new functions of ISGylation have emerged that implicate it in multiple cellular processes, such as DNA repair, autophagy, protein translation and exosome secretion. In this Review, we discuss the induction and conjugation of ISG15, as well as the functions of ISGylation in the prevention of infections and in cancer progression. We also offer a novel perspective with regard to the latest findings on this pathway, with special attention to the role of ISGylation in the inhibition of exosome secretion, which is mediated by fusion of multivesicular bodies with lysosomes. Finally, we propose that under conditions of stress or infection, ISGylation acts as a defense mechanism to inhibit normal protein translation by modifying protein kinase R (PKR, also known as EIF2AK2), while any newly synthesized proteins are being tagged and thus marked as potentially dangerous. Then, the endosomal system is re-directed towards protein degradation at the lysosome, to effectively 'lock' the cell gates and thus prevent the spread of pathogens, prions and deleterious aggregates through exosomes.


Assuntos
Células/metabolismo , Interferons/metabolismo , Animais , Infecções Bacterianas/metabolismo , Humanos , Modelos Biológicos , Neoplasias/metabolismo , Viroses/metabolismo
8.
PLoS Pathog ; 13(10): e1006651, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29077752

RESUMO

The interferon (IFN)-stimulated gene 15 (ISG15) encodes one of the most abundant proteins induced by interferon, and its expression is associated with antiviral immunity. To identify protein components implicated in IFN and ISG15 signaling, we compared the proteomes of ISG15-/- and ISG15+/+ bone marrow derived macrophages (BMDM) after vaccinia virus (VACV) infection. The results of this analysis revealed that mitochondrial dysfunction and oxidative phosphorylation (OXPHOS) were pathways altered in ISG15-/- BMDM treated with IFN. Mitochondrial respiration, Adenosine triphosphate (ATP) and reactive oxygen species (ROS) production was higher in ISG15+/+ BMDM than in ISG15-/- BMDM following IFN treatment, indicating the involvement of ISG15-dependent mechanisms. An additional consequence of ISG15 depletion was a significant change in macrophage polarization. Although infected ISG15-/- macrophages showed a robust proinflammatory cytokine expression pattern typical of an M1 phenotype, a clear blockade of nitric oxide (NO) production and arginase-1 activation was detected. Accordingly, following IFN treatment, NO release was higher in ISG15+/+ macrophages than in ISG15-/- macrophages concomitant with a decrease in viral titer. Thus, ISG15-/- macrophages were permissive for VACV replication following IFN treatment. In conclusion, our results demonstrate that ISG15 governs the dynamic functionality of mitochondria, specifically, OXPHOS and mitophagy, broadening its physiological role as an antiviral agent.


Assuntos
Citocinas/metabolismo , Macrófagos/metabolismo , Mitocôndrias/metabolismo , Mitofagia , Vaccinia virus/metabolismo , Vacínia/metabolismo , Animais , Arginase/genética , Arginase/metabolismo , Citocinas/genética , Ativação Enzimática/genética , Macrófagos/patologia , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/patologia , Óxido Nítrico/metabolismo , Fosforilação Oxidativa , Ubiquitinas/genética , Ubiquitinas/metabolismo , Vacínia/genética
9.
J Biol Chem ; 292(50): 20472-20480, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-28986447

RESUMO

Self/non-self-discrimination by the innate immune system relies on germline-encoded, non-rearranging receptors expressed by innate immune cells recognizing conserved pathogen-associated molecular patterns. The natural killer group 2D (NKG2D) receptor is a potent immune-activating receptor that binds human genome-encoded ligands, whose expression is negligible in normal tissues, but increased in stress and disease conditions for reasons that are incompletely understood. Here it is not clear how the immune system reconciles receptor binding of self-proteins with self/non-self-discrimination to avoid autoreactivity. We now report that increased expression of NKG2D ligands after virus infection depends on interferon response factors activated by the detection of viral double-stranded RNA by pattern-recognition receptors (RIG-I/MDA-5) and that NKG2D ligand up-regulation can be blocked by the expression of viral dsRNA-binding proteins. Thus, innate immunity-mediated recognition of viral nucleic acids triggers the infected cell to release interferon for NK cell recruitment and to express NKG2D ligands to become more visible to the immune system. Finally, the observation that NKG2D-ligand induction is a consequence of signaling by pattern-recognition receptors that have been selected over evolutionary time to be highly pathogen-specific explains how the risks of autoreactivity in this system are minimized.


Assuntos
Regulação da Expressão Gênica , Imunidade Inata , Células Matadoras Naturais/metabolismo , Lentivirus/fisiologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/agonistas , RNA Viral/metabolismo , Substituição de Aminoácidos , Animais , Linhagem Celular , Células Cultivadas , Cricetinae , Proteína DEAD-box 58/química , Proteína DEAD-box 58/genética , Proteína DEAD-box 58/metabolismo , Regulação Viral da Expressão Gênica , Genes Reporter , Humanos , Helicase IFIH1 Induzida por Interferon/química , Helicase IFIH1 Induzida por Interferon/genética , Helicase IFIH1 Induzida por Interferon/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/virologia , Lentivirus/imunologia , Ligantes , Mutação , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Receptores Imunológicos , Proteínas Recombinantes/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
11.
Proc Natl Acad Sci U S A ; 112(5): 1577-82, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25605921

RESUMO

Protein modification by the ubiquitin-like protein ISG15 is an interferon (IFN) effector system, which plays a major role in antiviral defense. ISG15 modification is counteracted by the isopeptidase USP18, a major negative regulator of IFN signaling, which was also shown to exert its regulatory function in an isopeptidase-independent manner. To dissect enzymatic and nonenzymatic functions of USP18 in vivo, we generated knock-in mice (USP18(C61A/C61A)) expressing enzymatically inactive USP18. USP18(C61A/C61A) mice displayed increased levels of ISG15 conjugates, validating that USP18 is a major ISG15 isopeptidase in vivo. Unlike USP18(-/-) mice, USP18(C61A/C61A) animals did not exhibit morphological abnormalities, fatal IFN hypersensitivity, or increased lethality, clearly showing that major USP18 functions are unrelated to its protease activity. Strikingly, elevated ISGylation in USP18(C61A/C61A) mice was accompanied by increased viral resistance against vaccinia virus and influenza B virus infections. Enhanced resistance upon influenza B infection in USP18(C61A/C61A) mice was completely reversed in USP18(C61A/C61A) mice, which additionally lack ISG15, providing evidence that the observed reduction in viral titers is ISG15 dependent. These results suggest that increasing ISGylation by specific inhibition of USP18 protease activity could constitute a promising antiviral strategy with only a minimal risk of severe adverse effects.


Assuntos
Citocinas/metabolismo , Farmacorresistência Viral , Ubiquitina Tiolesterase/antagonistas & inibidores , Animais , Antivirais/farmacologia , Células Cultivadas , Vírus da Influenza B/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Ubiquitinas/metabolismo
12.
J Virol ; 90(4): 2135-41, 2016 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-26656695

RESUMO

Protein kinase R (PKR) and RNase L are host cell components that function to contain viral spread after infections. In this study, we analyzed the role of both proteins in the abortive infection of human HeLa cells with the poxvirus strain NYVAC, for which an inhibition of viral A27L and B5R gene expression is described. Specifically, the translation of these viral genes is independent of PKR activation, but their expression is dependent on the RNase L activity.


Assuntos
Endorribonucleases/metabolismo , Células Epiteliais/imunologia , Interações Hospedeiro-Patógeno , Glicoproteínas de Membrana/antagonistas & inibidores , Vaccinia virus/imunologia , Proteínas do Envelope Viral/antagonistas & inibidores , Proteínas Virais/antagonistas & inibidores , eIF-2 Quinase/metabolismo , Células HeLa , Humanos , Biossíntese de Proteínas
13.
J Virol ; 88(4): 2312-8, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24257616

RESUMO

Conjugation of ISG15 inhibits replication of several viruses. Here, using an expression system for assaying human and mouse ISG15 conjugations (ISGylations), we have demonstrated that vaccinia virus E3 protein binds and antagonizes human and mouse ISG15 modification. To study ISGylation importance in poxvirus infection, we used a mouse model that expresses deconjugating proteases. Our results indicate that ISGylation restricts in vitro replication of the vaccinia virus VVΔE3L mutant but unconjugated ISG15 is crucial to counteract the inflammatory response produced after VVΔE3L infection.


Assuntos
Citocinas/metabolismo , Infecções por Poxviridae/metabolismo , Infecções por Poxviridae/patologia , Proteínas de Ligação a RNA/metabolismo , Ubiquitinas/metabolismo , Proteínas Virais/metabolismo , Replicação Viral/genética , Animais , Citocinas/antagonistas & inibidores , Citocinas/genética , Técnicas Histológicas , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Camundongos Knockout , Mutação/genética , Peptídeo Hidrolases/metabolismo , Ubiquitinas/antagonistas & inibidores , Ubiquitinas/genética
14.
J Virol ; 88(10): 5511-23, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24599993

RESUMO

UNLABELLED: Due to the essential role macrophages play in antiviral immunity, it is important to understand the intracellular and molecular processes that occur in macrophages following infection with various strains of vaccinia virus, particularly those used as vaccine vectors. Similarities as well as differences were found in macrophages infected with different poxvirus strains, particularly at the level of virus-induced apoptosis and the expression of immunomodulatory genes, as determined by microarray analyses. Interestingly, the attenuated modified vaccinia Ankara virus (MVA) was particularly efficient in triggering apoptosis and beta interferon (IFN-ß) secretion and in inducing changes in the expression of genes associated with increased activation of innate immunity, setting it apart from the other five vaccinia virus strains tested. Taken together, these results increase our understanding of how these viruses interact with human macrophages, at the cellular and molecular levels, and suggest mechanisms that may underlie their utility as recombinant vaccine vectors. IMPORTANCE: Our studies clearly demonstrate that there are substantial biological differences in the patterns of cellular gene expression between macrophages infected with different poxvirus strains and that these changes are due specifically to infection with the distinct viruses. For example, a clear induction in IFN-ß mRNA was observed after infection with MVA but not with other poxviruses. Importantly, antiviral bioassays confirmed that MVA-infected macrophages secreted a high level of biologically active type I IFN. Similarly, the phagocytic capacity of macrophages was also specifically increased after infection with MVA. Although the main scope of this study was not to test the vaccine potential of MVA as there are several groups in the field working extensively on this aspect, the characteristics/phenotypes we observed at the in vitro level clearly highlight the inherent advantages that MVA possesses in comparison to other poxvirus strains.


Assuntos
Apoptose , Interferons/imunologia , Macrófagos/imunologia , Macrófagos/virologia , Fagocitose , Poxviridae/imunologia , Transdução de Sinais , Células Cultivadas , Perfilação da Expressão Gênica , Humanos , Análise em Microsséries
15.
PLoS Pathog ; 9(10): e1003632, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24137104

RESUMO

Upon viral infection, the production of type I interferon (IFN) and the subsequent upregulation of IFN stimulated genes (ISGs) generate an antiviral state with an important role in the activation of innate and adaptive host immune responses. The ubiquitin-like protein (UBL) ISG15 is a critical IFN-induced antiviral molecule that protects against several viral infections, but the mechanism by which ISG15 exerts its antiviral function is not completely understood. Here, we report that ISG15 plays an important role in the regulation of macrophage responses. ISG15-/- macrophages display reduced activation, phagocytic capacity and programmed cell death activation in response to vaccinia virus (VACV) infection. Moreover, peritoneal macrophages from mice lacking ISG15 are neither able to phagocyte infected cells nor to block viral infection in co-culture experiments with VACV-infected murine embryonic fibroblast (MEFs). This phenotype is independent of cytokine production and secretion, but clearly correlates with impaired activation of the protein kinase AKT in ISG15 knock-out (KO) macrophages. Altogether, these results indicate an essential role of ISG15 in the cellular immune antiviral response and point out that a better understanding of the antiviral responses triggered by ISG15 may lead to the development of therapies against important human pathogens.


Assuntos
Citocinas/metabolismo , Imunidade Inata , Macrófagos Peritoneais/metabolismo , Vaccinia virus/metabolismo , Vacínia/metabolismo , Animais , Células Cultivadas , Citocinas/genética , Citocinas/imunologia , Fibroblastos/imunologia , Fibroblastos/metabolismo , Fibroblastos/virologia , Humanos , Interferon gama/genética , Interferon gama/imunologia , Interferon gama/metabolismo , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/virologia , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/imunologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ubiquitinas/genética , Ubiquitinas/imunologia , Ubiquitinas/metabolismo , Vacínia/genética , Vacínia/imunologia , Vaccinia virus/genética , Vaccinia virus/imunologia
16.
Nucleic Acids Res ; 41(19): 9105-16, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23935073

RESUMO

Human DNA polymerases mu (Polµ) and lambda (Polλ) are X family members involved in the repair of double-strand breaks in DNA during non-homologous end joining. Crucial abilities of these enzymes include bridging of the two 3' single-stranded overhangs and trans-polymerization using one 3' end as primer and the other as template, to minimize sequence loss. In this context, we have studied the importance of a previously uncharacterised sequence ('brooch'), located at the N-terminal boundary of the Polß-like polymerase core, and formed by Tyr(141), Ala(142), Cys(143), Gln(144) and Arg(145) in Polµ, and by Trp(239), Val(240), Cys(241), Ala(242) and Gln(243) in Polλ. The brooch is potentially implicated in the maintenance of a closed conformation throughout the catalytic cycle, and our studies indicate that it could be a target of Cdk phosphorylation in Polµ. The brooch is irrelevant for 1 nt gap filling, but of specific importance during end joining: single mutations in the conserved residues reduced the formation of two ended synapses and strongly diminished the ability of Polµ and polymerase lambda to perform non-homologous end joining reactions in vitro.


Assuntos
DNA Polimerase beta/química , DNA Polimerase Dirigida por DNA/química , DNA/metabolismo , Sequência de Aminoácidos , Quinases Ciclina-Dependentes/metabolismo , Reparo do DNA por Junção de Extremidades , DNA Polimerase beta/metabolismo , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Humanos , Dados de Sequência Molecular , Mutação , Fosforilação , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína
17.
Vaccines (Basel) ; 12(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38400136

RESUMO

The Interferon Stimulated Gene 15 (ISG15), a unique Ubiquitin-like (Ubl) modifier exclusive to vertebrates, plays a crucial role in the immune system. Primarily induced by interferon (IFN) type I, ISG15 functions through diverse mechanisms: (i) covalent protein modification (ISGylation); (ii) non-covalent intracellular action; and (iii) exerting extracellular cytokine activity. These various roles highlight its versatility in influencing numerous cellular pathways, encompassing DNA damage response, autophagy, antiviral response, and cancer-related processes, among others. The well-established antiviral effects of ISGylation contrast with its intriguing dual role in cancer, exhibiting both suppressive and promoting effects depending on the tumour type. The multifaceted functions of ISG15 extend beyond intracellular processes to extracellular cytokine signalling, influencing immune response, chemotaxis, and anti-tumour effects. Moreover, ISG15 emerges as a promising adjuvant in vaccine development, enhancing immune responses against viral antigens and demonstrating efficacy in cancer models. As a therapeutic target in cancer treatment, ISG15 exhibits a double-edged nature, promoting or suppressing oncogenesis depending on the tumour context. This review aims to contribute to future studies exploring the role of ISG15 in immune modulation and cancer therapy, potentially paving the way for the development of novel therapeutic interventions, vaccine development, and precision medicine.

18.
Bol Med Hosp Infant Mex ; 81(1): 36-43, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38503323

RESUMO

BACKGROUND: Early detection of suspected neurodevelopmental delay allows for timely diagnosis and appropriate intervention, for which numerous screening tests have been developed. However, most are complex and impractical for health-care workers at the community level. This study aimed to validate the KARVI scale in the neurodevelopment assessment of children under 1 year of age. METHODS: We conducted an observational, longitudinal, comparative, inferential, and prospective study. Healthy children without risk factors for developing neurodevelopmental delay from 0 to 12 months of age were evaluated remotely using the Zoom® application. The Child Development Evaluation Test and the KARVI scale were applied once a month for four consecutive months. RESULTS: Fifty individuals were analyzed, with a predominance of males in 52%. Adequate percentages for a screening test were obtained in the first evaluation with a sensitivity of 70% (confidence interval [CI] 95% 34.75-93.33) and a specificity of 75% (CI 95% 58.8-87.31), and in the fourth evaluation with a sensitivity of 100% (CI 95% 29.4-100) and a specificity of 78.72% (CI 95% 64.34-89.3), being significant in both evaluations (p = 0.007 and p = 0.001, respectively). CONCLUSIONS: The KARVI scale has the elements to be an effective screening test for suspected neurodevelopmental delay, but more extensive studies are needed to obtain more reliable results.


INTRODUCCIÓN: La identificación temprana de retraso en el neurodesarrollo permite un diagnóstico oportuno y una intervención apropiada. Para ello, se han creado diversas pruebas de tamizaje; sin embargo, la mayoría son complejas y poco prácticas para el personal de la salud a nivel comunitario. El objetivo del estudio fue realizar la validación de la escala KARVI en la valoración del neurodesarrollo en niños menores de un año. MÉTODOS: Se realizó un estudio observacional, longitudinal, comparativo inferencial y prospectivo, en el cual se evaluaron, vía remota mediante la aplicación Zoom®, niños sanos de 0 a 12 meses de edad sin factores de riesgo para desarrollar retraso en el neurodesarrollo. Se aplicaron la prueba EDI (Evaluación del Desarrollo Infantil) y la escala KARVI una vez al mes por cuatro meses consecutivos. RESULTADOS: Se analizaron 50 individuos, con predominio del sexo masculino en el 52%. Se obtuvieron porcentajes adecuados para una prueba de tamizaje tanto en la primera evaluación, con sensibilidad de 70% (IC 95% 34.75-93.33) y especificidad de 75% (IC 95% 58.8-87.31), como en la cuarta, con sensibilidad de 100% (IC 95% 29.4-100) y especificidad de 78.72% (IC 95% 64.34-89.3), con significación estadística en ambas evaluaciones (p = 0.007 y p = 0.001, respectivamente). CONCLUSIONES: Se considera que la escala KARVI cuenta con los elementos para considerarla como una prueba de tamizaje efectiva para detectar retraso del neurodesarrollo, sin embargo. Sin requieren estudios más extensos para obtener resultados más confiables.


Assuntos
Desenvolvimento Infantil , Feminino , Humanos , Masculino , Estudos Prospectivos , Lactente , Recém-Nascido
19.
Nat Commun ; 15(1): 3059, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637500

RESUMO

The 2023 monkeypox (mpox) epidemic was caused by a subclade IIb descendant of a monkeypox virus (MPXV) lineage traced back to Nigeria in 1971. Person-to-person transmission appears higher than for clade I or subclade IIa MPXV, possibly caused by genomic changes in subclade IIb MPXV. Key genomic changes could occur in the genome's low-complexity regions (LCRs), which are challenging to sequence and are often dismissed as uninformative. Here, using a combination of highly sensitive techniques, we determine a high-quality MPXV genome sequence of a representative of the current epidemic with LCRs resolved at unprecedented accuracy. This reveals significant variation in short tandem repeats within LCRs. We demonstrate that LCR entropy in the MPXV genome is significantly higher than that of single-nucleotide polymorphisms (SNPs) and that LCRs are not randomly distributed. In silico analyses indicate that expression, translation, stability, or function of MPXV orthologous poxvirus genes (OPGs), including OPG153, OPG204, and OPG208, could be affected in a manner consistent with the established "genomic accordion" evolutionary strategies of orthopoxviruses. We posit that genomic studies focusing on phenotypic MPXV differences should consider LCR variability.


Assuntos
Mpox , Orthopoxvirus , Poxviridae , Humanos , Monkeypox virus/genética , Genômica , Mpox/genética
20.
Microbiol Spectr ; 11(3): e0450822, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37036376

RESUMO

Viruses have developed many different strategies to counteract immune responses, and Vaccinia virus (VACV) is one of a kind in this aspect. To ensure an efficient infection, VACV undergoes a complex morphogenetic process resulting in the production of two types of infective virions: intracellular mature virus (MV) and extracellular enveloped virus (EV), whose spread depends on different dissemination mechanisms. MVs disseminate after cell lysis, whereas EVs are released or propelled in actin tails from living cells. Here, we show that ISG15 participates in the control of VACV dissemination. Infection of Isg15-/- mouse embryonic fibroblasts with VACV International Health Department-J (IHD-J) strain resulted in decreased EV production, concomitant with reduced induction of actin tails and the abolition of comet-shaped plaque formation, compared to Isg15+/+ cells. Transmission electron microscopy revealed the accumulation of intracellular virus particles and a decrease in extracellular virus particles in the absence of interferon-stimulated gene 15 (ISG15), a finding consistent with altered virus egress. Immunoblot and quantitative proteomic analysis of sucrose gradient-purified virions from both genotypes reported differences in protein levels and composition of viral proteins present on virions, suggesting an ISG15-mediated control of viral proteome. Lastly, the generation of a recombinant IHD-J expressing V5-tagged ISG15 (IHD-J-ISG15) allowed us to identify several viral proteins as potential ISG15 targets, highlighting the proteins A34 and A36, which are essential for EV formation. Altogether, our results indicate that ISG15 is an important host factor in the regulation of VACV dissemination. IMPORTANCE Viral infections are a constant battle between the virus and the host. While the host's only goal is victory, the main purpose of the virus is to spread and conquer new territories at the expense of the host's resources. Along millions of years of incessant encounters, poxviruses have developed a unique strategy consisting in the production two specialized "troops": intracellular mature virions (MVs) and extracellular virions (EVs). MVs mediate transmission between hosts, and EVs ensure advance on the battlefield mediating the long-range dissemination. The mechanism by which the virus "decides" to shed from the primary site of infection and its significant impact in viral transmission is not yet fully established. Here, we demonstrate that this process is finely regulated by ISG15/ISGylation, an interferon-induced ubiquitin-like protein with broad antiviral activity. Studying the mechanism that viruses use during infection could result in new ways of understanding our perpetual war against disease and how we might win the next great battle.


Assuntos
Interferons , Vaccinia virus , Animais , Camundongos , Vaccinia virus/genética , Actinas/metabolismo , Proteômica , Fibroblastos/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Vírion/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa