Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Blood ; 141(6): 634-644, 2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36219880

RESUMO

Randomized trials in acute myeloid leukemia (AML) have demonstrated improved survival by the BCL-2 inhibitor venetoclax combined with azacitidine in older patients, and clinical trials are actively exploring the role of venetoclax in combination with intensive chemotherapy in fitter patients with AML. As most patients still develop recurrent disease, improved understanding of relapse mechanisms is needed. We find that 17% of patients relapsing after venetoclax-based therapy for AML have acquired inactivating missense or frameshift/nonsense mutations in the apoptosis effector gene BAX. In contrast, such variants were rare after genotoxic chemotherapy. BAX variants arose within either leukemic or preleukemic compartments, with multiple mutations observed in some patients. In vitro, AML cells with mutated BAX were competitively selected during prolonged exposure to BCL-2 antagonists. In model systems, AML cells rendered deficient for BAX, but not its close relative BAK, displayed resistance to BCL-2 targeting, whereas sensitivity to conventional chemotherapy was variable. Acquired mutations in BAX during venetoclax-based therapy represent a novel mechanism of resistance to BH3-mimetics and a potential barrier to the long-term efficacy of drugs targeting BCL-2 in AML.


Assuntos
Leucemia Mieloide Aguda , Proteínas Proto-Oncogênicas c-bcl-2 , Humanos , Idoso , Proteína X Associada a bcl-2/genética , Linhagem Celular Tumoral , Proteínas Proto-Oncogênicas c-bcl-2/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Apoptose , Mutação
2.
Br J Cancer ; 125(5): 687-698, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34140638

RESUMO

BACKGROUND: CGM097 inhibits the p53-HDM2 interaction leading to downstream p53 activation. Preclinical in vivo studies support clinical exploration while providing preliminary evidence for dosing regimens. This first-in-human phase I study aimed at assessing the safety, MTD, PK/PD and preliminary antitumor activity of CGM097 in advanced solid tumour patients (NCT01760525). METHODS: Fifty-one patients received oral treatment with CGM097 10-400 mg 3qw (n = 31) or 300-700 mg 3qw 2 weeks on/1 week off (n = 20). Choice of dose regimen was guided by PD biomarkers, and quantitative models describing the effect of CGM097 on circulating platelet and PD kinetics. RESULTS: No dose-limiting toxicities were reported in any regimens. The most common treatment-related grade 3/4 AEs were haematologic events. PK/PD models well described the time course of platelet and serum GDF-15 changes, providing a tool to predict response to CGM097 for dose-limiting thrombocytopenia and GDF-15 biomarker. The disease control rate was 39%, including one partial response and 19 patients in stable disease. Twenty patients had a cumulative treatment duration of >16 weeks, with eight patients on treatment for >32 weeks. The MTD was not determined. CONCLUSIONS: Despite delayed-onset thrombocytopenia frequently observed, the tolerability of CGM097 appears manageable. This study provided insights on dosing optimisation for next-generation HDM2 inhibitors. TRANSLATIONAL RELEVANCE: Haematologic toxicity with delayed thrombocytopenia is a well-known on-target effect of HDM2 inhibitors. Here we have developed a PK/PD guided approach to optimise the dose and schedule of CGM097, a novel HDM2 inhibitor, using exposure, platelets and GDF-15, a known p53 downstream target to predict patients at higher risk to develop thrombocytopenia. While CGM097 had shown limited activity, with disease control rate of 39% and only one patient in partial response, the preliminary data from the first-in-human escalation study together with the PK/PD modeling provide important insights on how to optimize dosing of next generation HDM2 inhibitors to mitigate hematologic toxicity.


Assuntos
Fator 15 de Diferenciação de Crescimento/sangue , Isoquinolinas/administração & dosagem , Neoplasias/tratamento farmacológico , Piperazinas/administração & dosagem , Administração Oral , Adulto , Idoso , Animais , Biomarcadores Tumorais/sangue , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular , Esquema de Medicação , Cálculos da Dosagem de Medicamento , Feminino , Humanos , Isoquinolinas/efeitos adversos , Isoquinolinas/farmacocinética , Masculino , Camundongos , Pessoa de Meia-Idade , Neoplasias/sangue , Piperazinas/efeitos adversos , Piperazinas/farmacocinética , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Breast Cancer Res ; 22(1): 87, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32787886

RESUMO

BACKGROUND: Resistance to endocrine therapy is a major clinical challenge in the management of oestrogen receptor (ER)-positive breast cancer. In this setting, p53 is frequently wildtype and its activity may be suppressed via upregulation of its key regulator MDM2. This underlies our rationale to evaluate MDM2 inhibition as a therapeutic strategy in treatment-resistant ER-positive breast cancer. METHODS: We used the MDM2 inhibitor NVP-CGM097 to treat in vitro and in vivo models alone and in combination with fulvestrant or palbociclib. We perform cell viability, cell cycle, apoptosis and senescence assays to evaluate anti-tumour effects in p53 wildtype and p53 mutant ER-positive cell lines (MCF-7, ZR75-1, T-47D) and MCF-7 lines resistant to endocrine therapy and to CDK4/6 inhibition. We further assess the drug effects in patient-derived xenograft (PDX) models of endocrine-sensitive and endocrine-resistant ER-positive breast cancer. RESULTS: We demonstrate that MDM2 inhibition results in cell cycle arrest and increased apoptosis in p53-wildtype in vitro and in vivo breast cancer models, leading to potent anti-tumour activity. We find that endocrine therapy or CDK4/6 inhibition synergises with MDM2 inhibition but does not further enhance apoptosis. Instead, combination treatments result in profound regulation of cell cycle-related transcriptional programmes, with synergy achieved through increased antagonism of cell cycle progression. Combination therapy pushes cell lines resistant to fulvestrant or palbociclib to become senescent and significantly reduces tumour growth in a fulvestrant-resistant patient-derived xenograft model. CONCLUSIONS: We conclude that MDM2 inhibitors in combination with ER degraders or CDK4/6 inhibitors represent a rational strategy for treating advanced, endocrine-resistant ER-positive breast cancer, operating through synergistic activation of cell cycle co-regulatory programmes.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/tratamento farmacológico , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Receptores de Estrogênio/metabolismo , Animais , Apoptose , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Fulvestranto/administração & dosagem , Humanos , Isoquinolinas/administração & dosagem , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Piperazinas/administração & dosagem , Piridinas/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Neuroendocrinology ; 106(1): 1-19, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-27871087

RESUMO

BACKGROUND/AIMS: The tumor suppressor p53 is depleted in many tumor cells by the E3 ubiquitin ligase mouse double minute 2 homolog (MDM2) through MDM2/p53 interaction. A novel target for inhibiting p53 degradation and for causing reexpression of p53wild type is inhibition of MDM2. The small molecule NVP-CGM097 is a novel MDM2 inhibitor. We investigated MDM2 inhibition as a target in neuroendocrine tumor cells in vitro. METHODS: Human neuroendocrine tumor cell lines from the pancreas (BON1), lung (NCI-H727), and midgut (GOT1) were incubated with the MDM2 inhibitor NVP-CGM097 (Novartis) at concentrations from 4 to 2,500 nM. RESULTS: While p53wild type GOT1 cells were sensitive to NVP-CGM097, p53mutated BON1 and p53mutated NCI-H727 cells were resistant to NVP-CGM097. Incubation of GOT1 cells with NVP-CGM097 at 100, 500, and 2,500 nM for 96 h caused a significant decline in cell viability to 84.9 ± 9.2% (p < 0.05), 77.4 ± 6.6% (p < 0.01), and 47.7 ± 9.2% (p < 0.01). In a Western blot analysis of GOT1 cells, NVP-CGM097 caused a dose-dependent increase in the expression of p53 and p21 tumor suppressor proteins and a decrease in phospho-Rb and E2F1. Experiments of co-incubation of NVP-CGM097 with 5-fluorouracil, temozolomide, or everolimus each showed additive antiproliferative effects in GOT1 cells. NVP-CGM097 and 5-fluorouracil increased p53 and p21 expression in an additive manner. CONCLUSIONS: MDM2 inhibition seems a promising novel therapeutic target in neuroendocrine tumors harboring p53wild type. Further investigations should examine the potential role of MDM2 inhibitors in neuroendocrine tumor treatment.


Assuntos
Antineoplásicos/farmacologia , Fluoruracila/farmacologia , Isoquinolinas/farmacologia , Tumores Neuroendócrinos/tratamento farmacológico , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos , Quimioterapia Combinada , Fator de Transcrição E2F1/metabolismo , Humanos , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína do Retinoblastoma/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
7.
Proc Natl Acad Sci U S A ; 107(33): 14903-8, 2010 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-20668238

RESUMO

Tumors with mutant BRAF and some with mutant RAS are dependent upon ERK signaling for proliferation, and their growth is suppressed by MAPK/ERK kinase (MEK) inhibitors. In contrast, tumor cells with human EGF receptor (HER) kinase activation proliferate in a MEK-independent manner. These findings have led to the development of RAF and MEK inhibitors as anticancer agents. Like MEK inhibitors, the RAF inhibitor PLX4032 inhibits the proliferation of BRAF(V600E) tumor cells but not that of HER kinase-dependent tumors. However, tumors with RAS mutation that are sensitive to MEK inhibition are insensitive to PLX4032. MEK inhibitors inhibit ERK phosphorylation in all normal and tumor cells, whereas PLX4032 inhibits ERK signaling only in tumor cells expressing BRAF(V600E). In contrast, the drug activates MEK and ERK phosphorylation in cells with wild-type BRAF. In BRAF(V600E) tumor cells, MEK and RAF inhibitors affect the expression of a common set of genes. PLX4032 inhibits ERK signaling output in mutant BRAF cells, whereas it transiently activates the expression of these genes in tumor cells with wild-type RAF. Thus, PLX4032 inhibits ERK signaling output in a mutant BRAF-selective manner. These data explain why the drug selectively inhibits the growth of mutant BRAF tumors and suggest that it will not cause toxicity resulting from the inhibition of ERK signaling in normal cells. This selectivity may lead to a broader therapeutic index and help explain the greater antitumor activity observed with this drug than with MEK inhibitors.


Assuntos
Proliferação de Células/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Indóis/farmacologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia , Substituição de Aminoácidos , Apoptose/efeitos dos fármacos , Benzamidas/farmacologia , Western Blotting , Linhagem Celular Tumoral , Difenilamina/análogos & derivados , Difenilamina/farmacologia , Fase G1/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Vemurafenib
8.
Clin Cancer Res ; 28(6): 1087-1097, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34921024

RESUMO

PURPOSE: Well-differentiated (WDLPS) and dedifferentiated (DDLPS) liposarcoma are characterized by co-amplification of the murine double minute-2 (MDM2) and cyclin-dependent kinase-4 (CDK4) oncogenes. Siremadlin, a p53-MDM2 inhibitor, was combined with ribociclib, a CDK4/6 inhibitor, in patients with locally advanced/metastatic WDLPS or DDLPS who had radiologically progressed on, or despite, prior systemic therapy. PATIENTS AND METHODS: In this proof-of-concept, phase Ib, dose-escalation study, patients received siremadlin and ribociclib across different regimens until unacceptable toxicity, disease progression, and/or treatment discontinuation: Regimen A [4-week cycle: siremadlin once daily (QD) and ribociclib QD (2 weeks on, 2 weeks off)], Regimen B [3-week cycle: siremadlin once every 3 weeks; ribociclib QD (2 weeks on, 1 week off)], and Regimen C [4-week cycle: siremadlin once every 4 weeks; ribociclib QD (2 weeks on, 2 weeks off)]. The primary objective was to determine the maximum tolerated dose (MTD) and/or recommended dose for expansion (RDE) of siremadlin plus ribociclib in one or more regimens. RESULTS: As of October 16, 2019 (last patient last visit), 74 patients had enrolled. Median duration of exposure was 13 (range, 1-174) weeks. Dose-limiting toxicities occurred in 10 patients, most of which were Grade 3/4 hematologic events. The RDE was siremadlin 120 mg every 3 weeks plus ribociclib 200 mg QD (Regimen B). Three patients achieved a partial response, and 38 achieved stable disease. One patient (Regimen C) died as a result of treatment-related hematotoxicity. CONCLUSIONS: Siremadlin plus ribociclib demonstrated manageable toxicity and early signs of antitumor activity in patients with advanced WDLPS or DDLPS.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Lipossarcoma , Aminopiridinas/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Quinase 4 Dependente de Ciclina/genética , Humanos , Imidazóis/uso terapêutico , Lipossarcoma/tratamento farmacológico , Lipossarcoma/genética , Lipossarcoma/patologia , Proteínas Proto-Oncogênicas c-mdm2/genética , Purinas/uso terapêutico , Pirimidinas/uso terapêutico , Pirróis/uso terapêutico
9.
Clin Cancer Res ; 28(5): 870-881, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34862243

RESUMO

PURPOSE: This phase I, dose-escalation study investigated the recommended dose for expansion (RDE) of siremadlin, a p53-MDM2 inhibitor, in patients with wild-type TP53 advanced solid or hematologic cancers. PATIENTS AND METHODS: Initial dosing regimens were: 1A (day 1; 21-day cycle; dose 12.5-350 mg) and 2A (days 1-14; 28-day cycle; dose 1-20 mg). Alternative regimens included 1B (days 1 and 8; 28-day cycle) and 2C (days 1-7; 28-day cycle). The primary endpoint was incidence of dose-limiting toxicities (DLT) during cycle 1. RESULTS: Overall, 115 patients with solid tumors and 93 with hematologic malignancies received treatment. DLTs occurred in 8/92 patients with solid tumors and 10/53 patients with hematologic malignancies. In solid tumors, an RDE of 120 mg was defined in 1B. In hematologic tumors, RDEs were defined in 1A: 250 mg, 1B: 120 mg, and 2C: 45 mg. More patients with hematologic malignancies compared with solid tumors experienced grade 3/4 treatment-related adverse events (71% vs. 45%), most commonly resulting from myelosuppression. These were more frequent and severe in patients with hematologic malignancies; 22 patients exhibited tumor lysis syndrome. Overall response rates at the RDEs were 10.3% [95% confidence interval (CI), 2.2-27.4] in solid tumors and 4.2% (95% CI, 0.1-21.1), 20% (95% CI, 4.3-48.1), and 22.2% (95% CI, 8.6-42.3) in acute myeloid leukemia (AML) in 1B, 1A, and 2C, respectively. CONCLUSIONS: A common safety profile was identified and preliminary activity was noted, particularly in AML. Comprehensive investigation of dosing regimens yielded recommended doses/regimens for future combination studies.


Assuntos
Neoplasias Hematológicas , Leucemia Mieloide Aguda , Neoplasias , Relação Dose-Resposta a Droga , Neoplasias Hematológicas/tratamento farmacológico , Neoplasias Hematológicas/genética , Humanos , Imidazóis , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Dose Máxima Tolerável , Neoplasias/tratamento farmacológico , Pirimidinas , Pirróis , Proteína Supressora de Tumor p53/genética
10.
Cancer Res ; 81(11): 3079-3091, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33504557

RESUMO

p53 is a transcription factor that plays a central role in guarding the genomic stability of cells through cell-cycle arrest or induction of apoptosis. However, the effects of p53 in antitumor immunity are poorly understood. To investigate the role of p53 in controlling tumor-immune cell cross-talk, we studied murine syngeneic models treated with HDM201, a potent and selective second-generation MDM2 inhibitor. In response to HDM201 treatment, the percentage of dendritic cells increased, including the CD103+ antigen cross-presenting subset. Furthermore, HDM201 increased the percentage of Tbet+Eomes+ CD8+ T cells and the CD8+/Treg ratio within the tumor. These immunophenotypic changes were eliminated with the knockout of p53 in tumor cells. Enhanced expression of CD80 on tumor cells was observed in vitro and in vivo, which coincided with T-cell-mediated tumor cell killing. Combining HDM201 with PD-1 or PD-L1 blockade increased the number of complete tumor regressions. Responding mice developed durable, antigen-specific memory T cells and rejected subsequent tumor implantation. Importantly, antitumor activity of HDM201 in combination with PD-1/PD-L1 blockade was abrogated in p53-mutated and knockout syngeneic tumor models, indicating the effect of HDM201 on the tumor is required for triggering antitumor immunity. Taken together, these results demonstrate that MDM2 inhibition triggers adaptive immunity, which is further enhanced by blockade of PD-1/PD-L1 pathway, thereby providing a rationale for combining MDM2 inhibitors and checkpoint blocking antibodies in patients with wild-type p53 tumors. SIGNIFICANCE: This study provides a mechanistic rationale for combining checkpoint blockade immunotherapy with MDM2 inhibitors in patients with wild-type p53 tumors.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Neoplasias do Colo/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Células Estromais/imunologia , Microambiente Tumoral/imunologia , Proteína Supressora de Tumor p53/antagonistas & inibidores , Animais , Apoptose , Proliferação de Células , Neoplasias do Colo/imunologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Quimioterapia Combinada , Feminino , Humanos , Imidazóis/farmacologia , Inibidores de Checkpoint Imunológico/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Nus , Pirimidinas/farmacologia , Pirróis/farmacologia , Células Estromais/efeitos dos fármacos , Células Tumorais Cultivadas , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Eur J Cancer ; 126: 93-103, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31927215

RESUMO

INTRODUCTION: Uveal melanoma (UM) is a rare and malignant intraocular tumour with a dismal prognosis. Despite a good control of the primary tumour by radiation or surgery, up to 50% of patients subsequently develop metastasis for which no efficient treatment is yet available. METHODOLOGY: To identify therapeutic opportunities, we performed an in vitro screen of 30 combinations of different inhibitors of pathways that are dysregulated in UM. Effects of drug combinations on viability, cell cycle and apoptosis were assessed in eight UM cell lines. The best synergistic combinations were further evaluated in six UM patient-derived xenografts (PDXs). RESULTS: We demonstrated that the Bcl-2/XL/W inhibitor (ABT263) sensitised the UM cell lines to other inhibitors, mainly to mammalian target of rapamycin (mTOR), mitogen-activated protein kinase kinase (MEK) and murine double minute 2 (MDM2) inhibitors. mTOR (RAD001) and MEK1/2 (trametinib) inhibitors were efficient as single agents, but their combinations with ABT263 displayed no synergism in UM PDXs. In contrast, the combination of ABT263 with MDM2 inhibitor (HDM201) showed a trend for a synergistic effect. CONCLUSION: We showed that inhibition of Bcl-2/XL/W sensitised the UM cell lines to other treatments encouraging investigation of the underlying mechanisms. Furthermore, our findings highlighted Bcl-2/XL/W and MDM2 co-inhibition as a promising strategy in UM.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Melanoma/tratamento farmacológico , Neoplasias Uveais/tratamento farmacológico , Compostos de Anilina/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Combinação de Medicamentos , Everolimo/administração & dosagem , Humanos , Imidazóis/administração & dosagem , Melanoma/metabolismo , Melanoma/patologia , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Piridonas/administração & dosagem , Pirimidinas/administração & dosagem , Pirimidinonas/administração & dosagem , Pirróis/administração & dosagem , Sulfonamidas/administração & dosagem , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Neoplasias Uveais/metabolismo , Neoplasias Uveais/patologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Proteína bcl-X/antagonistas & inibidores , Proteína bcl-X/metabolismo
12.
Cancer Cell ; 38(6): 872-890.e6, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33217342

RESUMO

Acquired resistance to BH3 mimetic antagonists of BCL-2 and MCL-1 is an important clinical problem. Using acute myelogenous leukemia (AML) patient-derived xenograft (PDX) models of acquired resistance to BCL-2 (venetoclax) and MCL-1 (S63845) antagonists, we identify common principles of resistance and persistent vulnerabilities to overcome resistance. BH3 mimetic resistance is characterized by decreased mitochondrial apoptotic priming as measured by BH3 profiling, both in PDX models and human clinical samples, due to alterations in BCL-2 family proteins that vary among cases, but not to acquired mutations in leukemia genes. BCL-2 inhibition drives sequestered pro-apoptotic proteins to MCL-1 and vice versa, explaining why in vivo combinations of BCL-2 and MCL-1 antagonists are more effective when concurrent rather than sequential. Finally, drug-induced mitochondrial priming measured by dynamic BH3 profiling (DBP) identifies drugs that are persistently active in BH3 mimetic-resistant myeloblasts, including FLT-3 inhibitors and SMAC mimetics.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Resistencia a Medicamentos Antineoplásicos , Leucemia Mieloide Aguda/patologia , Mitocôndrias/metabolismo , Pirimidinas/farmacologia , Sulfonamidas/farmacologia , Tiofenos/farmacologia , Animais , Apoptose , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Camundongos , Mitocôndrias/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Proteínas Proto-Oncogênicas/farmacologia , Transdução de Sinais
13.
J Cell Biol ; 161(3): 535-45, 2003 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-12732615

RESUMO

Centrosomes nucleate microtubules and contribute to mitotic spindle organization and function. They also participate in cytokinesis and cell cycle progression in ways that are poorly understood. Here we describe a novel human protein called centriolin that localizes to the maternal centriole and functions in both cytokinesis and cell cycle progression. Centriolin silencing induces cytokinesis failure by a novel mechanism whereby cells remain interconnected by long intercellular bridges. Most cells continue to cycle, reenter mitosis, and form multicellular syncytia. Some ultimately divide or undergo apoptosis specifically during the protracted period of cytokinesis. At later times, viable cells arrest in G1/G0. The cytokinesis activity is localized to a centriolin domain that shares homology with Nud1p and Cdc11p, budding and fission yeast proteins that anchor regulatory pathways involved in progression through the late stages of mitosis. The Nud1p-like domain of centriolin binds Bub2p, another component of the budding yeast pathway. We conclude that centriolin is required for a late stage of vertebrate cytokinesis, perhaps the final cell cleavage event, and plays a role in progression into S phase.


Assuntos
Proteínas de Ciclo Celular/isolamento & purificação , Divisão Celular/genética , Centríolos/metabolismo , Células Eucarióticas/metabolismo , Fase S/genética , Sequência de Aminoácidos/genética , Animais , Anticorpos/farmacologia , Sequência de Bases/genética , Células COS , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Centríolos/ultraestrutura , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , DNA Complementar/análise , Desoxirribonucleases/genética , Desoxirribonucleases/metabolismo , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Células Eucarióticas/ultraestrutura , Células HeLa , Humanos , Imuno-Histoquímica , Microscopia Eletrônica , Microtúbulos/genética , Microtúbulos/metabolismo , Dados de Sequência Molecular , Ligação Proteica/genética , Estrutura Terciária de Proteína/genética , RNA Interferente Pequeno , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , tRNA Metiltransferases
14.
Curr Opin Pharmacol ; 8(4): 419-26, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18644254

RESUMO

Mitogen-activated protein kinase (MAPK) activation is a common property of human cancers and is often due to activating mutations in the BRAF and RAS genes. BRAF kinase domain mutations, the vast majority of which are V600E, occur in approximately 8% of human tumors. These mutations are non-overlapping in distribution with RAS mutations and are observed most frequently in melanoma but also in tumors arising in the colon, thyroid, lung and other sites. V600E BRAF mutation stimulates extracellular signal-regulated kinase (ERK) signaling, induces proliferation and is capable of promoting transformation. Given the frequent occurrence of BRAF mutations in human cancer and the continued requirement for BRAF activity in tumors in which it is mutated, efforts are underway to develop targeted inhibitors of BRAF and its downstream effectors. These agents offer the possibility of greater therapeutic efficacy than the currently available systemic therapies for tumors driven by activating mutations in the MAPK pathway.


Assuntos
Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/genética , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/genética , Transdução de Sinais/efeitos dos fármacos , Animais , Humanos , MAP Quinase Quinase Quinases/antagonistas & inibidores , Mutação/efeitos dos fármacos , Mutação/fisiologia , Quinases raf/antagonistas & inibidores
15.
Sci Transl Med ; 11(505)2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31413145

RESUMO

Intrinsic resistance of unknown mechanism impedes the clinical utility of inhibitors of cyclin-dependent kinases 4 and 6 (CDK4/6i) in malignancies other than breast cancer. Here, we used melanoma patient-derived xenografts (PDXs) to study the mechanisms for CDK4/6i resistance in preclinical settings. We observed that melanoma PDXs resistant to CDK4/6i frequently displayed activation of the phosphatidylinositol 3-kinase (PI3K)-AKT pathway, and inhibition of this pathway improved CDK4/6i response in a p21-dependent manner. We showed that a target of p21, CDK2, was necessary for proliferation in CDK4/6i-treated cells. Upon treatment with CDK4/6i, melanoma cells up-regulated cyclin D1, which sequestered p21 and another CDK inhibitor, p27, leaving a shortage of p21 and p27 available to bind and inhibit CDK2. Therefore, we tested whether induction of p21 in resistant melanoma cells would render them responsive to CDK4/6i. Because p21 is transcriptionally driven by p53, we coadministered CDK4/6i with a murine double minute (MDM2) antagonist to stabilize p53, allowing p21 accumulation. This resulted in improved antitumor activity in PDXs and in murine melanoma. Furthermore, coadministration of CDK4/6 and MDM2 antagonists with standard of care therapy caused tumor regression. Notably, the molecular features associated with response to CDK4/6 and MDM2 inhibitors in PDXs were recapitulated by an ex vivo organotypic slice culture assay, which could potentially be adopted in the clinic for patient stratification. Our findings provide a rationale for cotargeting CDK4/6 and MDM2 in melanoma.


Assuntos
Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Análise de Variância , Animais , Western Blotting , Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Quinase 4 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Replicação do DNA/efeitos dos fármacos , Replicação do DNA/genética , Dimetil Sulfóxido/farmacologia , Humanos , Imunoprecipitação , Células MCF-7 , Melanoma/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Proteômica , Ensaio de Radioimunoprecipitação
16.
Leukemia ; 33(4): 905-917, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30214012

RESUMO

Improving outcomes in acute myeloid leukemia (AML) remains a major clinical challenge. Overexpression of pro-survival BCL-2 family members rendering transformed cells resistant to cytotoxic drugs is a common theme in cancer. Targeting BCL-2 with the BH3-mimetic venetoclax is active in AML when combined with low-dose chemotherapy or hypomethylating agents. We now report the pre-clinical anti-leukemic efficacy of a novel BCL-2 inhibitor S55746, which demonstrates synergistic pro-apoptotic activity in combination with the MCL1 inhibitor S63845. Activity of the combination was caspase and BAX/BAK dependent, superior to combination with standard cytotoxic AML drugs and active against a broad spectrum of poor risk genotypes, including primary samples from patients with chemoresistant AML. Co-targeting BCL-2 and MCL1 was more effective against leukemic, compared to normal hematopoietic progenitors, suggesting a therapeutic window of activity. Finally, S55746 combined with S63845 prolonged survival in xenograft models of AML and suppressed patient-derived leukemia but not normal hematopoietic cells in bone marrow of engrafted mice. In conclusion, a dual BH3-mimetic approach is feasible, highly synergistic, and active in diverse models of human AML. This approach has strong clinical potential to rapidly suppress leukemia, with reduced toxicity to normal hematopoietic precursors compared to chemotherapy.


Assuntos
Biomimética , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Pirimidinas/farmacologia , Sulfonamidas/farmacologia , Tiofenos/farmacologia , Animais , Antineoplásicos/farmacologia , Quimioterapia Combinada , Feminino , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Fragmentos de Peptídeos , Proteínas Proto-Oncogênicas , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Cancer Res ; 78(21): 6257-6267, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30135191

RESUMO

Activation of p53 by inhibitors of the p53-MDM2 interaction is being pursued as a therapeutic strategy in p53 wild-type cancers. Here, we report distinct mechanisms by which the novel, potent, and selective inhibitor of the p53-MDM2 interaction HDM201 elicits therapeutic efficacy when applied at various doses and schedules. Continuous exposure of HDM201 led to induction of p21 and delayed accumulation of apoptotic cells. By comparison, high-dose pulses of HDM201 were associated with marked induction of PUMA and a rapid onset of apoptosis. shRNA screens identified PUMA as a mediator of the p53 response specifically in the pulsed regimen. Consistent with this, the single high-dose HDM201 regimen resulted in rapid and marked induction of PUMA expression and apoptosis together with downregulation of Bcl-xL in vivo Knockdown of Bcl-xL was identified as the top sensitizer to HDM201 in vitro, and Bcl-xL was enriched in relapsing tumors from mice treated with intermittent high doses of HDM201. These findings define a regimen-dependent mechanism by which disruption of MDM2-p53 elicits therapeutic efficacy when given with infrequent dosing. In an ongoing HDM201 trial, the observed exposure-response relationship indicates that the molecular mechanism elicited by pulse dosing is likely reproducible in patients. These data support the clinical comparison of daily and intermittent regimens of p53-MDM2 inhibitors.Significance: Pulsed high doses versus sustained low doses of the p53-MDM2 inhibitor HDM201 elicit a proapoptotic response from wild-type p53 cancer cells, offering guidance to current clinical trials with this and other drugs that exploit the activity of p53. Cancer Res; 78(21); 6257-67. ©2018 AACR.


Assuntos
Antineoplásicos/administração & dosagem , Imidazóis/administração & dosagem , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Pirimidinas/administração & dosagem , Pirróis/administração & dosagem , Proteína Supressora de Tumor p53/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Apoptose , Área Sob a Curva , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Imidazóis/farmacologia , Estimativa de Kaplan-Meier , Dose Máxima Tolerável , Camundongos , Transplante de Neoplasias , Pirimidinas/farmacologia , Pirróis/farmacologia , RNA Interferente Pequeno/metabolismo , Fatores de Tempo , Proteína bcl-X/metabolismo
19.
Elife ; 62017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28425916

RESUMO

The efficacy of ALK inhibitors in patients with ALK-mutant neuroblastoma is limited, highlighting the need to improve their effectiveness in these patients. To this end, we sought to develop a combination strategy to enhance the antitumor activity of ALK inhibitor monotherapy in human neuroblastoma cell lines and xenograft models expressing activated ALK. Herein, we report that combined inhibition of ALK and MDM2 induced a complementary set of anti-proliferative and pro-apoptotic proteins. Consequently, this combination treatment synergistically inhibited proliferation of TP53 wild-type neuroblastoma cells harboring ALK amplification or mutations in vitro, and resulted in complete and durable responses in neuroblastoma xenografts derived from these cells. We further demonstrate that concurrent inhibition of MDM2 and ALK was able to overcome ceritinib resistance conferred by MYCN upregulation in vitro and in vivo. Together, combined inhibition of ALK and MDM2 may provide an effective treatment for TP53 wild-type neuroblastoma with ALK aberrations.


Assuntos
Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Neuroblastoma/tratamento farmacológico , Neuroblastoma/patologia , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Quinase do Linfoma Anaplásico , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Xenoenxertos , Humanos , Camundongos Nus , Transplante de Neoplasias , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Sulfonas/farmacologia , Sulfonas/uso terapêutico
20.
Cell Rep ; 21(7): 1953-1967, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29141225

RESUMO

Therapy of advanced melanoma is changing dramatically. Following mutational and biological subclassification of this heterogeneous cancer, several targeted and immune therapies were approved and increased survival significantly. To facilitate further advancements through pre-clinical in vivo modeling, we have established 459 patient-derived xenografts (PDX) and live tissue samples from 384 patients representing the full spectrum of clinical, therapeutic, mutational, and biological heterogeneity of melanoma. PDX have been characterized using targeted sequencing and protein arrays and are clinically annotated. This exhaustive live tissue resource includes PDX from 57 samples resistant to targeted therapy, 61 samples from responders and non-responders to immune checkpoint blockade, and 31 samples from brain metastasis. Uveal, mucosal, and acral subtypes are represented as well. We show examples of pre-clinical trials that highlight how the PDX collection can be used to develop and optimize precision therapies, biomarkers of response, and the targeting of rare genetic subgroups.


Assuntos
Xenoenxertos/patologia , Melanoma/patologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Animais , Células Cultivadas , Xenoenxertos/metabolismo , Humanos , Melanoma/classificação , Melanoma/genética , Camundongos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa