RESUMO
North Africa is defined as the geographical region separated from the rest of the continent by the Sahara and from Europe by the Mediterranean Sea. The main demographic features of North African populations are their familial structure and high rates of familial and geographic endogamy, which have a proven impact on health, particularly the occurrence of genetic diseases, with a greater effect on the frequency and spectrum of the rarest forms of autosomal recessive genetic diseases. More than 500 different genetic diseases have been reported in this region, most of which are autosomal recessive. During the last few decades, there has been great interest in the molecular investigation of large consanguineous North African families. The development of local capacities has brought a substantial improvement in the molecular characterization of these diseases, but the genetic bases of half of them remain unknown. Diseases of known molecular etiology are characterized by their genetic and mutational heterogeneity, although some founder mutations are encountered relatively frequently. Some founder mutations are specific to a single country or a specific ethnic or geographic group, and others are shared by all North African countries or worldwide. The impact of consanguinity on common multifactorial diseases is less evident.
Assuntos
Doenças Transmissíveis/genética , Consanguinidade , Doenças Genéticas Inatas/genética , Neoplasias/genética , Doenças Neurodegenerativas/genética , África do Norte/epidemiologia , Doenças Transmissíveis/complicações , Doenças Transmissíveis/etnologia , Doenças Transmissíveis/patologia , Etnicidade , Feminino , Efeito Fundador , Genes Recessivos , Doenças Genéticas Inatas/complicações , Doenças Genéticas Inatas/etnologia , Doenças Genéticas Inatas/patologia , Heterogeneidade Genética , Humanos , Masculino , Mutação , Neoplasias/complicações , Neoplasias/etnologia , Neoplasias/patologia , Doenças Neurodegenerativas/complicações , Doenças Neurodegenerativas/etnologia , Doenças Neurodegenerativas/patologia , Índice de Gravidade de DoençaRESUMO
The spread of COVID-19 caused by the SARS-CoV-2 outbreak has been growing since its first identification in December 2019. The publishing of the first SARS-CoV-2 genome made a valuable source of data to study the details about its phylogeny, evolution, and interaction with the host. Protein-protein binding assays have confirmed that Angiotensin-converting enzyme 2 (ACE2) is more likely to be the cell receptor through which the virus invades the host cell. In the present work, we provide an insight into the interaction of the viral spike Receptor Binding Domain (RBD) from different coronavirus isolates with host ACE2 protein. By calculating the binding energy score between RBD and ACE2, we highlighted the putative jump in the affinity from a progenitor form of SARS-CoV-2 to the current virus responsible for COVID-19 outbreak. Our result was consistent with previously reported phylogenetic analysis and corroborates the opinion that the interface segment of the spike protein RBD might be acquired by SARS-CoV-2 via a complex evolutionary process rather than a progressive accumulation of mutations. We also highlighted the relevance of Q493 and P499 amino acid residues of SARS-CoV-2 RBD for binding to human ACE2 and maintaining the stability of the interface. Moreover, we show from the structural analysis that it is unlikely for the interface residues to be the result of genetic engineering. Finally, we studied the impact of eight different variants located at the interaction surface of ACE2, on the complex formation with SARS-CoV-2 RBD. We found that none of them is likely to disrupt the interaction with the viral RBD of SARS-CoV-2.
Assuntos
Betacoronavirus/química , Peptidil Dipeptidase A/química , Glicoproteína da Espícula de Coronavírus/química , Sequência de Aminoácidos , Enzima de Conversão de Angiotensina 2 , Sítios de Ligação , COVID-19 , Infecções por Coronavirus , Humanos , Simulação de Acoplamento Molecular , Pandemias , Filogenia , Pneumonia Viral , Domínios Proteicos , Estrutura Terciária de Proteína , SARS-CoV-2RESUMO
Molecular diagnosis of rare inherited palmoplantar keratoderma (PPK) is still challenging. We investigated at the clinical and genetic level a consanguineous Tunisian family presenting an autosomal dominant atypical form of transgrediens and progrediens PPK to better characterize this ultrarare disease and to identify its molecular etiology. Whole-exome sequencing (WES), filtering strategies, and bioinformatics analysis have been achieved. Clinical investigation and follow up over 13 years of this Tunisian family with three siblings formerly diagnosed as an autosomal recessive form of Mal de Melela-like conducted us to reconsider its initial phenotype. Indeed, the three patients presented clinical features that overlap both Mal de Meleda and progressive symmetric erythrokeratoderma (PSEK). The mode of inheritance was also reconsidered, since the mother, initially classified as unaffected, exhibited a similar expression of the disease. WES analysis showed the absence of potentially functional rare variants in known PPKs or PSEK-related genes. Results revealed a novel heterozygous nonsynonymous variant in cadherin-12 gene (CDH12, NM_004061, c.1655C > A, p.Thr552Asn) in all affected family members. This variant is absent in dbSNP and in 50 in-house control exomes. In addition, in silico analysis of the mutated 3D domain structure predicted that this variant would result in cadherin-12 protein destabilization and thermal instability. Functional annotation and biological network construction data provide further supporting evidence for the potential role of CDH12 in the maintenance of skin integrity. Taken together, these results suggest that CDH12 gene is a potential candidate gene for an atypical presentation of an autosomal dominant form of transgrediens and progrediens PPK.
Assuntos
Caderinas , Transtornos Cromossômicos , Eritroceratodermia Variável , Genes Dominantes , Mutação de Sentido Incorreto , Adulto , Idoso , Proteínas Relacionadas a Caderinas , Caderinas/química , Caderinas/genética , Transtornos Cromossômicos/genética , Transtornos Cromossômicos/patologia , Simulação por Computador , Eritroceratodermia Variável/genética , Eritroceratodermia Variável/patologia , Feminino , Humanos , Masculino , Domínios Proteicos , Pele/patologia , Sequenciamento do ExomaRESUMO
BACKGROUND: Lynch syndrome (LS) is a highly penetrant inherited cancer predisposition syndrome, characterized by autosomal dominant inheritance and germline mutations in DNA mismatch repair genes. Despite several genetic variations that have been identified in various populations, the penetrance is highly variable and the reasons for this have not been fully elucidated. This study investigates whether, besides pathogenic mutations, environment and low penetrance genetic risk factors may result in phenotype modification in a Tunisian LS family. PATIENTS AND METHODS: A Tunisian family with strong colorectal cancer (CRC) history that fulfill the Amsterdam I criteria for the diagnosis of Lynch syndrome was proposed for oncogenetic counseling. The index case was a man, diagnosed at the age of 33 years with CRC. He has a monozygotic twin diagnosed at the age of 35 years with crohn disease. Forty-seven years-old was the onset age of his paternal uncle withCRC. An immunohistochemical (IHC) labeling for the four proteins (MLH1, MSH2, MSH6 and PMS2) of the MisMatchRepair (MMR) system was performed for the index case. A targeted sequencing of MSH2, MLH1 and a panel of 85 DNA repair genes was performed for the index case and for his unaffected father. RESULTS: The IHC results showed a loss of MSH2 but not MLH1, MSH6 and PMS2 proteins expression. Genomic DNA screening, by targeted DNA repair genes sequencing, revealed an MSH2 pathogenic mutation (c.1552C>T; p.Q518X), confirmed by Sanger sequencing. This mutation was suspected to be a causal mutation associated to the loss of MSH2 expression and it was found in first and second degree relatives. The index case has smoking and alcohol consumption habits. Moreover, he harbors extensive genetic variations in other DNA-repair genes not shared with his unaffected father. CONCLUSION: In our investigated Tunisian family, we confirmed the LS by IHC, molecular and in silico investigations. We identified a novel pathogenic mutation described for the first time in Tunisia. These results come enriching the previously reported pathogenic mutations in LS families. Our study brings new arguments to the interpretation of MMR expression pattern and highlights new risk modifiers genes eventually implicated in CRC. Twins discordance reported in this work underscore that disease penetrance could be influenced by both genetic background and environmental factors.
Assuntos
Neoplasias Colorretais Hereditárias sem Polipose/genética , Reparo de Erro de Pareamento de DNA/genética , Doenças em Gêmeos/genética , Proteína 2 Homóloga a MutS/genética , Mutação , Adulto , Neoplasias Colorretais Hereditárias sem Polipose/patologia , Doenças em Gêmeos/patologia , Família , Predisposição Genética para Doença , Testes Genéticos , Mutação em Linhagem Germinativa , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Polimorfismo de Nucleotídeo Único , TunísiaRESUMO
BACKGROUND: A family history of breast cancer has long been thought to indicate the presence of inherited genetic events that predispose to this disease. In North Africa, many specific epidemio-genetic characteristics have been observed in breast cancer families when compared to Western populations. Despite these specificities, the majority of breast cancer genetics studies performed in North Africa remain restricted to the investigation of the BRCA1 and BRCA2 genes. Thus, comprehensive data at a whole exome or whole genome level from local patients are lacking. METHODS: A whole exome sequencing (WES) of seven breast cancer Tunisian families have been performed using a family-based approach. We focused our analysis on BC-TN-F001 family that included two affected members that have been sequenced using WES. Relevant variants identified in BC-TN-F001 have been confirmed using Sanger sequencing. Then, we conducted an integrative analysis by combining our results with those from other WES studies in order to figure out the genetic transmission model of the newly identified genes. Biological network construction and protein-protein interactions analyses have been performed to decipher the molecular mechanisms likely accounting for the role of these genes in breast cancer risk. RESULTS: Sequencing, filtering strategies, and validation analysis have been achieved. For BC-TN-F001, no deleterious mutations have been identified on known breast cancer genes. However, 373 heterozygous, exonic and rare variants have been identified on other candidate genes. After applying several filters, 12 relevant high-risk variants have been selected. Our results showed that these variants seem to be inherited in a family specific model. This hypothesis has been confirmed following a thorough analysis of the reported WES studies. Enriched biological process and protein-protein interaction networks resulted in the identification of four novel breast cancer candidate genes namely MMS19, DNAH3, POLK and KATB6. CONCLUSIONS: In this first WES application on Tunisian breast cancer patients, we highlighted the impact of next generation sequencing technologies in the identification of novel breast cancer candidate genes which may bring new insights into the biological mechanisms of breast carcinogenesis. Our findings showed that the breast cancer predisposition in non-BRCA families may be ethnic and/or family specific.
Assuntos
Neoplasias da Mama/genética , Sequenciamento do Exoma , Predisposição Genética para Doença , Alelos , Neoplasias da Mama/epidemiologia , Família , Feminino , Genes Neoplásicos , Estudos de Associação Genética , Variação Genética , Humanos , Masculino , Linhagem , Mapas de Interação de Proteínas , TunísiaRESUMO
BACKGROUND: Breast cancer is the most common cancer in women worldwide. Around 50% of breast cancer familial risk has been so far explained by known susceptibility alleles with variable levels of risk and prevalence. The vast majority of these breast cancer associated variations reported to date are from populations of European ancestry. In spite of its heterogeneity and genetic wealth, North-African populations have not been studied by the HapMap and the 1000Genomes projects. Thus, very little is known about the genetic architecture of these populations. METHODS: This study aimed to investigate a subset of common breast cancer loci in the general Tunisian population and to compare their genetic composition to those of other ethnic groups. We undertook a genome-wide haplotype study by genotyping 135 Tunisian subjects using the Affymetrix 6.0-Array. We compared Tunisian allele frequencies and linkage disequilibrium patterns to those of HapMap populations and we performed a comprehensive assessment of the functional effects of several selected variants. RESULTS: Haplotype analyses showed that at risk haplotypes on 2p24, 4q21, 6q25, 9q31, 10q26, 11p15, 11q13 and 14q32 loci are considerably frequent in the Tunisian population (> 20%). Allele frequency comparison showed that the frequency of rs13329835 is significantly different between Tunisian and all other HapMap populations. LD-blocks and Principle Component Analysis revealed that the genetic characteristics of breast cancer variants in the Tunisian, and so probably the North-African populations, are more similar to those of Europeans than Africans. Using eQTl analysis, we characterized rs9911630 as the most strongly expression-associated SNP that seems to affect the expression levels of BRCA1 and two long non coding RNAs (NBR2 and LINC008854). Additional in-silico analysis also suggested a potential functional significance of this variant. CONCLUSIONS: We illustrated the utility of combining haplotype analysis in diverse ethnic groups with functional analysis to explore breast cancer genetic architecture in Tunisia. Results presented in this study provide the first report on a large number of common breast cancer genetic polymorphisms in the Tunisian population which may establish a baseline database to guide future association studies in North Africa.
Assuntos
População Negra/genética , Neoplasias da Mama/genética , Loci Gênicos/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Adulto , Simulação por Computador , Feminino , Frequência do Gene/genética , Haplótipos/genética , Voluntários Saudáveis , Humanos , Desequilíbrio de Ligação/genética , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , TunísiaRESUMO
PURPOSE: Cis-acting regulatory SNPs resulting in differential allelic expression (DAE) may, in part, explain the underlying phenotypic variation associated with many complex diseases. To investigate whether common variants associated with DAE were involved in breast cancer susceptibility among BRCA1 and BRCA2 mutation carriers, a list of 175 genes was developed based of their involvement in cancer-related pathways. METHODS: Using data from a genome-wide map of SNPs associated with allelic expression, we assessed the association of ~320 SNPs located in the vicinity of these genes with breast and ovarian cancer risks in 15,252 BRCA1 and 8211 BRCA2 mutation carriers ascertained from 54 studies participating in the Consortium of Investigators of Modifiers of BRCA1/2. RESULTS: We identified a region on 11q22.3 that is significantly associated with breast cancer risk in BRCA1 mutation carriers (most significant SNP rs228595 p = 7 × 10-6). This association was absent in BRCA2 carriers (p = 0.57). The 11q22.3 region notably encompasses genes such as ACAT1, NPAT, and ATM. Expression quantitative trait loci associations were observed in both normal breast and tumors across this region, namely for ACAT1, ATM, and other genes. In silico analysis revealed some overlap between top risk-associated SNPs and relevant biological features in mammary cell data, which suggests potential functional significance. CONCLUSION: We identified 11q22.3 as a new modifier locus in BRCA1 carriers. Replication in larger studies using estrogen receptor (ER)-negative or triple-negative (i.e., ER-, progesterone receptor-, and HER2-negative) cases could therefore be helpful to confirm the association of this locus with breast cancer risk.
Assuntos
Alelos , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/etiologia , Genes BRCA1 , Genes BRCA2 , Heterozigoto , Mutação , Biomarcadores Tumorais , Cromossomos Humanos Par 11 , Feminino , Expressão Gênica , Predisposição Genética para Doença , Variação Genética , Humanos , Locos de Características Quantitativas , RiscoRESUMO
Introduction: Recent advances in sequencing technologies have significantly increased our capability to acquire large amounts of genetic data. However, the clinical relevance of the generated data continues to be challenging particularly with the identification of Variants of Uncertain Significance (VUSs) whose pathogenicity remains unclear. In the current report, we aim to evaluate the clinical relevance and the pathogenicity of VUSs in DNA repair genes among Tunisian breast cancer families. Methods: A total of 67 unsolved breast cancer cases have been investigated. The pathogenicity of VUSs identified within 26 DNA repair genes was assessed using different in silico prediction tools including SIFT, PolyPhen2, Align-GVGD and VarSEAK. Effects on the 3D structure were evaluated using the stability predictor DynaMut and molecular dynamics simulation with NAMD. Family segregation analysis was also performed. Results: Among a total of 37 VUSs identified, 11 variants are likely deleterious affecting ATM, BLM, CHEK2, ERCC3, FANCC, FANCG, MSH2, PMS2 and RAD50 genes. The BLM variant, c.3254dupT, is novel and seems to be associated with increased risk of breast, endometrial and colon cancer. Moreover, c.6115G>A in ATM and c.592+3A>T in CHEK2 were of keen interest identified in families with multiple breast cancer cases and their familial cosegregation with disease has been also confirmed. In addition, functional in silico analyses revealed that the ATM variant may lead to protein immobilization and rigidification thus decreasing its activity. We have also shown that FANCC and FANCG variants may lead to protein destabilization and alteration of the structure compactness which may affect FANCC and FANCG protein activity. Conclusion: Our findings revealed that VUSs in DNA repair genes might be associated with increased cancer risk and highlight the need for variant reclassification for better disease management. This will help to improve the genetic diagnosis and therapeutic strategies of cancer patients not only in Tunisia but also in neighboring countries.
RESUMO
INTRODUCTION: Cancer management in Africa faces diverse challenges due to limited resources, health system challenges, and other matters. Identifying hereditary cancer syndromic cases is crucial to improve clinical management and preventive care in these settings. This study aims to explore the clinicopathological features and genetic factors associated with hereditary cancer in Tunisia, a North African country with a rising cancer burden MATERIALS AND METHODS: Clinicopathological features and personal/family history of cancer were explored in 521 patients. Genetic analysis using Sanger and next-generation sequencing was performed for a set of patients RESULTS: Hereditary breast and ovarian cancer syndrome was the most frequent cluster in which 36 BRCA mutations were identified. We described a subgroup of patients with likely ''breast cancer-only syndrome'' among this cluster. Two cases of Li-Fraumeni syndrome with distinct TP53 mutations namely c.638G>A and c.733G>A have been identified. Genetic investigation also allowed the identification of a new BLM homozygous mutation (c.3254dupT) in one patient with multiple primary cancers. Phenotype-genotype correlation suggests the diagnosis of Bloom syndrome. A recurrent MUTYH mutation (c.1143_1144dup) was identified in three patients with different phenotypes CONCLUSION: Our study calls for comprehensive genetic education and the implementation of genetic screening in Tunisia and other African countries health systems, to reduce the burden of hereditary diseases and improve cancer outcomes in resource-stratified settings.
RESUMO
BACKGROUND: Key discoveries and innovations in the field of human genetics have led to the foundation of molecular and personalized medicine. Here, we present the Genome Tunisia Project, a two-phased initiative (2022-2035) which aims to deliver the reference sequence of the Tunisian Genome and to support the implementation of personalized medicine in Tunisia, a North African country that represents a central hub of population admixture and human migration between African, European, and Asian populations. The main goal of this initiative is to develop a healthcare system capable of incorporating omics data for use in routine medical practice, enabling medical doctors to better prevent, diagnose, and treat patients. METHODS: A multidisciplinary partnership involving Tunisian experts from different institutions has come to discern all requirements that would be of high priority to fulfill the project's goals. One of the most urgent priorities is to determine the reference sequence of the Tunisian Genome. In addition, extensive situation analysis and revision of the education programs, community awareness, appropriate infrastructure including sequencing platforms and biobanking, as well as ethical and regulatory frameworks, have been undertaken towards building sufficient capacity to integrate personalized medicine into the Tunisian healthcare system. RESULTS: In the framework of this project, an ecosystem with all engaged stakeholders has been implemented including healthcare providers, clinicians, researchers, pharmacists, bioinformaticians, industry, policymakers, and advocacy groups. This initiative will also help to reinforce research and innovation capacities in the field of genomics and to strengthen discoverability in the health sector. CONCLUSIONS: Genome Tunisia is the first initiative in North Africa that seeks to demonstrate the major impact that can be achieved by Human Genome Projects in low- and middle-income countries to strengthen research and to improve disease management and treatment outcomes, thereby reducing the social and economic burden on healthcare systems. Sharing this experience within the African scientific community is a chance to turn a major challenge into an opportunity for dissemination and outreach. Additional efforts are now being made to advance personalized medicine in patient care by educating consumers and providers, accelerating research and innovation, and supporting necessary changes in policy and regulation.
Assuntos
Genoma Humano , Medicina de Precisão , Medicina de Precisão/métodos , Humanos , Tunísia , Genômica/métodos , África do NorteRESUMO
Precision Medicine is being increasingly used in the developed world to improve health care. While several Precision Medicine (PM) initiatives have been launched worldwide, their implementations have proven to be more challenging particularly in low- and middle-income countries. To address this issue, the "Personalized Medicine in North Africa" initiative (PerMediNA) was launched in three North African countries namely Tunisia, Algeria and Morocco. PerMediNA is coordinated by Institut Pasteur de Tunis together with the French Ministry for Europe and Foreign Affairs, with the support of Institut Pasteur in France. The project is carried out along with Institut Pasteur d'Algérie and Institut Pasteur du Maroc in collaboration with national and international leading institutions in the field of PM including Institut Gustave Roussy in Paris. PerMediNA aims to assess the readiness level of PM implementation in North Africa, to strengthen PM infrastructure, to provide workforce training, to generate genomic data on North African populations, to implement cost effective, affordable and sustainable genetic testing for cancer patients and to inform policy makers on how to translate research knowledge into health products and services. Gender equity and involvement of young scientists in this implementation process are other key goals of the PerMediNA project. In this paper, we are describing PerMediNA as the first PM implementation initiative in North Africa. Such initiatives contribute significantly in shortening existing health disparities and inequities between developed and developing countries and accelerate access to innovative treatments for global health.
RESUMO
Mutations in the BRCA1 gene substantially increase a woman's lifetime risk of breast cancer. However, there is great variation in this increase in risk with several genetic and non-genetic modifiers identified. The BRCA1 protein plays a central role in DNA repair, a mechanism that is particularly instrumental in safeguarding cells against tumorigenesis. We hypothesized that polymorphisms that alter the expression and/or function of BRCA1 carried on the wild-type (non-mutated) copy of the BRCA1 gene would modify the risk of breast cancer in carriers of BRCA1 mutations. A total of 9874 BRCA1 mutation carriers were available in the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) for haplotype analyses of BRCA1. Women carrying the rare allele of single nucleotide polymorphism rs16942 on the wild-type copy of BRCA1 were at decreased risk of breast cancer (hazard ratio 0.86, 95% confidence interval 0.77-0.95, P = 0.003). Promoter in vitro assays of the major BRCA1 haplotypes showed that common polymorphisms in the regulatory region alter its activity and that this effect may be attributed to the differential binding affinity of nuclear proteins. In conclusion, variants on the wild-type copy of BRCA1 modify risk of breast cancer among carriers of BRCA1 mutations, possibly by altering the efficiency of BRCA1 transcription.
Assuntos
Alelos , Proteína BRCA1/genética , Neoplasias da Mama/genética , Predisposição Genética para Doença , Heterozigoto , Mutação/genética , Polimorfismo de Nucleotídeo Único/genética , Ensaio de Desvio de Mobilidade Eletroforética , Feminino , Genes Reporter/genética , Estudos de Associação Genética , Haplótipos/genética , Células HeLa , Humanos , Desequilíbrio de Ligação/genética , Luciferases/metabolismo , Fatores de RiscoRESUMO
Modern biomedical research is characterised by its high-throughput and interdisciplinary nature. Multiproject and consortium-based collaborations requiring meaningful analysis of multiple heterogeneous phenotypic datasets have become the norm; however, such analysis remains a challenge in many regions across the world. An increasing number of data harmonisation efforts are being undertaken by multistudy collaborations through either prospective standardised phenotype data collection or retrospective phenotype harmonisation. In this regard, the Phenotype Harmonisation Working Group (PHWG) of the Human Heredity and Health in Africa (H3Africa) consortium aimed to facilitate phenotype standardisation by both promoting the use of existing data collection standards (hosted by PhenX), adapting existing data collection standards for appropriate use in low- and middle-income regions such as Africa, and developing novel data collection standards where relevant gaps were identified. Ultimately, the PHWG produced 11 data collection kits, consisting of 82 protocols, 38 of which were existing protocols, 17 were adapted, and 27 were novel protocols. The data collection kits will facilitate phenotype standardisation and harmonisation not only in Africa but also across the larger research community. In addition, the PHWG aims to feed back adapted and novel protocols to existing reference platforms such as PhenX.
Assuntos
Estudos Prospectivos , Humanos , Estudos Retrospectivos , África , Coleta de Dados , FenótipoRESUMO
Hackathons are collaborative events that bring together diverse groups to solve predefined challenges. The COVID-19 pandemic caused by SARS-CoV-2 has emphasized the need for portable and reproducible genomics analysis pipelines to study the genetic susceptibility of the human host and investigate human-SARS-CoV-2 protein interactions. To build and strengthen institutional capacities in OMICS data analysis applied to host-pathogen interaction (HPI), the PHINDaccess project organized two hackathons in 2020 and 2021. These hackathons are aimed at developing bioinformatics pipelines related to the SARS-CoV-2 viral genome, its phylodynamic transmission, and the identification of human genome host variants, with a focus on addressing global health challenges, particularly in low- and middle-income countries (LMIC). This paper outlines the preparation, proceedings, and lessons learned from these hackathons, including the challenges faced by participants and our recommendations based on our experience for organizing hackathons in LMIC and beyond.
Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , SARS-CoV-2/genética , Países em Desenvolvimento , Pandemias , Interações Hospedeiro-Patógeno/genéticaRESUMO
OBJECTIVES: The introduction of Personalised Medicine (PM) into healthcare systems could benefit from a clearer understanding of the distinct national and regional frameworks around the world. Recent engagement by international regulators on maximising the use of real-world evidence (RWE) has highlighted the scope for improving the exploitation of the treasure-trove of health data that is currently largely neglected in many countries. The European Alliance for Personalised Medicine (EAPM) led an international study aimed at identifying the current status of conditions. METHODS: A literature review examined how far such frameworks exist, with a view to identifying conducive factors - and crucial gaps. This extensive review of key factors across 22 countries and 5 regions revealed a wide variety of attitudes, approaches, provisions and conditions, and permitted the construction of a comprehensive overview of the current status of PM. Based on seven key pillars identified from the literature review and expert panels, the data was quantified, and on the basis of further analysis, an index was developed to allow comparison country by country and region by region. RESULTS: The results show that United States of America is leading according to overall outcome whereas Kenya scored the least in the overall outcome. CONCLUSIONS: Still, common approaches exist that could help accelerate take-up of opportunities even in the less prosperous parts of the world.
Assuntos
Atenção à Saúde , Medicina , Humanos , Estados Unidos , Atenção à Saúde/métodos , Poder PsicológicoRESUMO
Radical new possibilities of improved treatment of cancer are on offer from an advanced medical technology already demonstrating its significance: next-generation sequencing (NGS). This refined testing provides unprecedentedly precise diagnoses and permits the use of focused and highly personalized treatments. However, across regions globally, many cancer patients will continue to be denied the benefits of NGS as long as some of the yawning gaps in its implementation remain unattended. The challenges at the regional and national levels are linked because putting the solutions into effect is highly dependent on cooperation between regional- and national-level cooperation, which could be hindered by shortfalls in interpretation or understanding. The aim of the paper was to define and explore the necessary conditions for NGS and make recommendations for effective implementation based on extensive exchanges with policy makers and stakeholders. As a result, the European Alliance for Personalised Medicine (EAPM) developed a maturity framework structured around demand-side and supply-side issues to enable interested stakeholders in different countries to self-evaluate according to a common matrix. A questionnaire was designed to identify the current status of NGS implementation, and it was submitted to different experts in different institutions globally. This revealed significant variability in the different aspects of NGS uptake. Within different regions globally, to ensure those conditions are right, this can be improved by linking efforts made at the national level, where patients have needs and where care is delivered, and at the global level, where major policy initiatives in the health field are underway or in preparation, many of which offer direct or indirect pathways for building those conditions. In addition, in a period when consensus is still incomplete and catching up is needed at a political level to ensure rational allocation of resources-even within individual countries-to enable the best ways to make the necessary provisions for NGS, a key recommendation is to examine where closer links between national and regional actions could complement, support, and mutually reinforce efforts to improve the situation for patients.
RESUMO
A career in systems science offers exciting prospects as well as challenges around the world, which are often underexplored or unknown. Gender parity, diversity, inclusion, and equity are essential for knowledge production, systems science research, and innovation to be representative, democratic, and critically informed. By virtue of its focus on systems, omics science is ideally poised to understand and respond to systemic and structural issues that hinder gender parity, equity, and democracy in science and society. In this context, voices from women in systems science in resource-limited countries are often inaudible, a gap that this article aims to bridge. We present here some of the pressing issues and possible ways forward for equitable representation of women in science. We highlight emerging frontiers of systems science such as digital transformation, Industry 4.0, and cyber-physical systems where gender parity and equity are crucial. This article also examines some of the challenges faced by women scientists in Africa. All in all, much work is needed across communities and countries worldwide for diversity and gender equity in Science, Technology, Engineering, Mathematics (STEM)-based programs. Adapting a critical lens that examines power asymmetries in STEM in Africa and around the world, and new ways of thinking for bringing women scientists in Africa to leadership positions in traditional STEM fields such as computer science and engineering where large gender equity gaps exist, is a timely and principled necessity in 21st century science and society.
Assuntos
Conhecimento , Tecnologia , África , Feminino , HumanosRESUMO
Significant advances have been made to understand the genetic basis of breast cancer. High, moderate and low penetrance variants have been identified with inter-ethnic variability in mutation frequency and spectrum. Genome wide association studies (GWAS) are widely used to identify disease-associated SNPs. Understanding the functional impact of these risk-SNPs will help the translation of GWAS findings into clinical interventions. Here we aim to characterize the genetic patterns of high and moderate penetrance breast cancer susceptibility genes and to assess the functional impact of non-coding SNPs. We analyzed BRCA1/2, PTEN, STK11, TP53, ATM, BRIP1, CHEK2 and PALB2 genotype data obtained from 135 healthy participants genotyped using Affymetrix Genome-Wide Human SNP-Array 6.0. Haplotype analysis was performed using Haploview.V4.2 and PHASE.V2.1. Population structure and genetic differentiation were assessed using principal component analysis (PCA) and fixation index (FST). Functional annotation was performed using In Silico web-based tools including RegulomeDB and VARAdb. Haplotype analysis showed distinct LD patterns with high levels of recombination and haplotype blocks of moderate to small size. Our findings revealed also that the Tunisian population tends to have a mixed origin with European, South Asian and Mexican footprints. Functional annotation allowed the selection of 28 putative regulatory variants. Of special interest were BRCA1_ rs8176318 predicted to alter the binding sites of a tumor suppressor miRNA hsa-miR-149 and PALB2_ rs120963 located in tumorigenesis-associated enhancer and predicted to strongly affect the binding of P53. Significant differences in allele frequencies were observed with populations of African and European ancestries for rs8176318 and rs120963 respectively. Our findings will help to better understand the genetic basis of breast cancer by guiding upcoming genome wide studies in the Tunisian population. Putative functional SNPs may be used to develop an efficient polygenic risk score to predict breast cancer risk leading to better disease prevention and management.
Assuntos
Neoplasias da Mama , MicroRNAs , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/genética , Feminino , Frequência do Gene , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Penetrância , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Breast cancer has different epidemio-clinical characteristics in Middle East and North-African populations compared to those reported in the Western countries. The aim of this study is to analyze the epidemiological and clinico-pathological features of breast cancer in Tunisia and to determine prognostic factors with special interest to family history, Ki-67 proliferation index and comorbidity. We retrospectively reviewed epidemiological and clinico-pathological data from patients' medical records, treated in the Medical Oncology Department at Abderrahmane Mami Hospital, in the period 2011-2015. Data has been collected on 602 breast cancer patients and analyzed using SPSS software V.23.0. Our study showed high fractions of young breast cancer patients and cases with dense breasts. The most prevalent comorbidities observed in the studied cohort were cardiovascular diseases and diabetes. Familial breast cancer was found in 23.3% of cases and was associated with younger age at diagnosis (p<0.001) and advanced stage (p = 0.015). Ki-67 index >20% was significantly associated with early age at diagnosis, lymph node involvement (p = 0.002), advanced tumor grade (p<0.001) and high risk of relapse (p = 0.007). Ki-67 cut-off 30% predicted survival in luminal cases. Survival was worse in patients with triple negative breast cancer compared to non-triple negative breast cancer, inflammatory breast cancer compared to non-inflammatory breast cancer, moderately to poorly differentiated tumors compared to well-differentiated tumors and with positive lymph nodes compared to pN0 (p<0.05). Our study showed new insights into epidemiological and clinico-pathological characteristics of breast cancer that are not well explored in Tunisian population. Considering our findings along with the implementation of electronic health record system may improve patient health care quality and disease management.