Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Pharm Dev Technol ; 27(2): 164-174, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35007187

RESUMO

Semisolid extrusion (SSE) 3D printing is an emerging technology in personalized medicine. To address clinical multi-dose requirements, SSE has been explored to manufacture new preparations. In this study, amlodipine besylate (AMB) was the model drug, and SSE was the pharmaceutical strategy. We developed semisolids suitable for SSE and AMB chewable tablets with six strengths (1.5-5 mg) to meet the needs of 2-16-year-old patients. First, the semisolid extrudability was evaluated by texture analyzer, and then the amounts of carboxymethyl cellulose sodium, sodium starch glycolate, and glycerin were optimized by full factorial design. Then, rheological tests were performed to evaluate the properties of the semisolid and the effect of starch sodium glycolate on printability. Finally, the amount of corrigents was optimized using the electronic tongue. Laboratory amplified semisolids and 3D printed tablets can be stored for a few months, and the whole SSE process had no effect on crystal type. This study validated the feasibility of SSE 3D printing, and tablets with appropriate taste and cartoon appearance can meet or even exceed the traditional preparations. Our study provides a new strategy for multi-dose solid preparations and effectively meet the need for personalized amlodipine medicine.


Assuntos
Anlodipino , Excipientes , Adolescente , Criança , Pré-Escolar , Liberação Controlada de Fármacos , Excipientes/química , Estudos de Viabilidade , Hospitais , Humanos , Impressão Tridimensional , Sódio , Comprimidos , Tecnologia Farmacêutica
2.
AAPS PharmSciTech ; 23(5): 143, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35578146

RESUMO

The purpose of this work is to explore the effects of novel absorption enhancers on the nasal absorption of nalmefene hydrochloride (NMF). First, the influence of absorption enhancers with different concentrations and types and drug concentrations on the nasal absorption of NMF was investigated in vivo in rats. The absorption enhancers studied include n-dodecyl-ß-D-maltoside (DDM), hydroxypropyl-ß-cyclodextrin (HP-ß-CD), and polyethylene glycol (15)-hydroxy Stearate (Solutol®HS15). At the same time, the in situ toad palate model and rat nasal mucosa model were used to assess the cilia toxicity. The results showed that all the absorption enhancers investigated significantly promote the nasal absorption of NMF, but with different degrees and trends. Among them, the 0.5% (w/v) DDM had the strongest enhancement effect, followed by 0.5% (w/v) Solutol®HS15, 0.25% (w/v) DDM, 0.25% (w/v) Solutol®HS15, 0.1% (w/v) Solutol®HS15, 0.1% (w/v) DDM, and 0.25% (w/v) HP-ß-CD, with absolute bioavailability of 76.49%, 72.14%, 71.00%, 69.46%, 60.41%, 59.42%, and 55.18%, respectively. All absorption enhancers exhibited good safety profiles in nasal ciliary toxicity tests. From the perspective of enhancing effect and safety, we considered DDM to be a promising nasal absorption enhancer. And in addition to DDM, Solutol®HS15 can also promote intranasal absorption of NMF, which will provide another option for the development of nalmefene hydrochloride nasal spray.


Assuntos
Absorção Nasal , Mucosa Nasal , 2-Hidroxipropil-beta-Ciclodextrina/metabolismo , Administração Intranasal , Animais , Naltrexona/análogos & derivados , Mucosa Nasal/metabolismo , Ratos
3.
AAPS PharmSciTech ; 23(5): 166, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35705726

RESUMO

The demand for personalized medicine has received extensive attention, especially in pediatric preparations. An emerging technology, extrusion-based 3D printing, is highly attractive in the field of personalized medicine. In this study, we prepared propranolol hydrochloride (PR) gummy chewable tablets tailored for children by semisolid extrusion (SSE) 3D printing technology to meet personalized medicine needs in pediatrics. In this study, the effects of critical formulation variables on the rheological properties and printability of gum materials were investigated by constructing a full-factorial design. In addition, the masticatory properties, thermal stability, and disintegration time of the preparations were evaluated. Bitterness inhibitors were used to mask the bitterness of the preparations. The results of the full-factorial design showed that the amount of gelatin and carrageenan were the key factors in the formulation. Gelatin can improve printability and masticatory properties, carrageenan can improve thermal stability, and accelerate the disintegration of preparations; therefore, a reasonable combination of both could satisfactorily meet the demand for high-quality 3D printing. γ-Aminobutyric acid can reduce the bitterness of gummy chewable tablets to improve medication compliance and the determined formulation (F7) met the quality requirements. In conclusion, the gum material has excellent potential as an extrusion material for 3D printing. The dosage can be adjusted flexibly by the model shape and size. 3D printing has broad prospects in pediatric preparations.


Assuntos
Pediatria , Propranolol , Carragenina , Criança , Liberação Controlada de Fármacos , Excipientes , Gelatina , Géis , Humanos , Medicina de Precisão , Impressão Tridimensional , Comprimidos , Tecnologia Farmacêutica/métodos
4.
Pharm Res ; 38(5): 831-842, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33974211

RESUMO

PURPOSE: Proper taste-masking formulation design is a critical issue for instant-dissolving tablets (IDTs). The purpose of this study is to use the electronic tongue to design the additives of the 3D printed IDTs to improve palatability. METHODS: A binder jet 3D printer was used to prepare IDTs of levetiracetam. A texture analyzer and dissolution apparatus were used to predict the oral dispersion time and in vitro drug release of IDTs, respectively. The palatability of different formulations was investigated using the ASTREE electronic tongue in combination with the design of experiment and a model for masking bitter taste. Human gustatory sensation tests were conducted to further evaluate the credibility of the results. RESULTS: The 3D printed tablets exhibited rapid dispersion (<30 s) and drug release (2.5 min > 90%). The electronic tongue had an excellent ability of taste discrimination, and levetiracetam had a good linear sensing performance based on a partial least square regression analysis. The principal component analysis was used to analyze the signal intensities of different formulations and showed that 2% sucralose and 0.5% spearmint flavoring masked the bitterness well and resembled the taste of corresponding placebo. The results of human gustatory sensation test were consistent with the trend of the electronic tongue evaluation. CONCLUSIONS: Owing to its objectivity and reproducibility, this technique is suitable for the design and evaluation of palatability in 3D printed IDT development.


Assuntos
Composição de Medicamentos/instrumentação , Nariz Eletrônico , Excipientes/química , Levetiracetam/química , Paladar , Administração Oral , Composição de Medicamentos/métodos , Humanos , Levetiracetam/administração & dosagem , Impressão Tridimensional , Reprodutibilidade dos Testes , Comprimidos
5.
Mar Drugs ; 19(3)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33668830

RESUMO

α-Conotoxin GeXIVA[1,2] is a highly potent and selective antagonist of the α9α10 nicotinic acetylcholine receptor (nAChR) subtype. It has the advantages of strong efficacy, no tolerance, and no effect on motor function, which has been expected help patients with neuropathic pain. However, drug development for clinical use is severely limited owing to its instability. Lyophilization is applied as the most preferred method to solve this problem. The prepared lyophilized powder is characterized by differential scanning calorimetry (DSC), powder X-ray diffractometry (PXRD), and Fourier transform infrared spectroscopy (FTIR). Molecular simulation is also used to explore the internal distribution and forces formed in the system. The analgesic effect on paclitaxel-induced neuropathic pain following single and 14-day repeated administrations are evaluated by the von Frey test and the tail-flick test. Trehalose combined with mannitol in a ratio of 1:1 is employed as the excipients in the determined formulation, where trehalose acts as the stabilizer and mannitol acts as the bulking agent, according to the results of DSC, PXRD, and FTIR. Both GeXIVA[1,2] (API) and GeXIVA[1,2] lyophilized powder (formulation) could produce stable analgesic effect. These results indicated that GeXIVA[1,2] lyophilized powder could improve the stability and provide an effective strategy to push it into clinical use as a new analgesic drug.


Assuntos
Analgésicos/farmacologia , Conotoxinas/farmacologia , Neuralgia/tratamento farmacológico , Antagonistas Nicotínicos/farmacologia , Dor Aguda/induzido quimicamente , Dor Aguda/tratamento farmacológico , Animais , Modelos Animais de Doenças , Desenvolvimento de Medicamentos , Liofilização , Masculino , Neuralgia/induzido quimicamente , Paclitaxel/toxicidade , Medição da Dor , Ratos , Ratos Sprague-Dawley , Receptores Nicotínicos/efeitos dos fármacos , Receptores Nicotínicos/metabolismo
6.
Mol Ther ; 26(4): 976-985, 2018 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-29503204

RESUMO

Several recent clinical trials have successfully incorporated a costimulatory domain derived from either CD28 or 4-1BB with the original CD3ζ T cell activating domain to form second-generation chimeric antigen receptors (CARs) that can increase the responsiveness and survival of CAR-engineered T (CAR-T) cells. However, a rigorous assessment of the individual benefits of these costimulatory components relative to the in vivo performance of infused T cells in patients is still lacking. Therefore, we have designed a study that allows us to investigate and compare the impact of different costimulatory signal domains on CAR-T cells in vivo. Patients with B cell leukemia were infused with a mixture of two types of CD19-specific CAR-T cells, individually bearing CD28 (28ζ) and 4-1BB (BBζ) costimulatory signaling domains. We found that such a clinical procedure was feasible and safe. Complete remission (CR) was observed in five of seven enrolled patients, with two patients exhibiting durable CR lasting more than 15 months. The in vivo expansion pattern of 28ζ and BBζ CAR-T cells varied significantly among individual patients. These results confirm a feasible method of comparing different CAR designs within individual patients, potentially offering objective insights that may facilitate the development of optimal CAR-T cell-based immunotherapies.


Assuntos
Antígenos CD28/imunologia , Imunoterapia Adotiva , Leucemia Linfocítica Crônica de Células B/imunologia , Leucemia Linfocítica Crônica de Células B/terapia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Adolescente , Adulto , Idoso , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Antígenos CD28/metabolismo , Criança , Pré-Escolar , Terapia Combinada , Modelos Animais de Doenças , Feminino , Vetores Genéticos/genética , Humanos , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/metabolismo , Masculino , Camundongos Transgênicos , Pessoa de Meia-Idade , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos Quiméricos/genética , Retroviridae/genética , Resultado do Tratamento , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Adulto Jovem
7.
Mol Ther ; 25(11): 2466-2476, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28784559

RESUMO

Although chimeric antigen receptor (CAR)-engineered T cell therapy has achieved encouraging clinical trial results for treating hematological cancers, further optimization can likely expand this therapeutic success to more patients and other cancer types. Most CAR constructs used in clinical trials incorporate single chain variable fragment (scFv) as the extracellular antigen recognition domain. The immunogenicity of nonhuman scFv could cause host rejection against CAR T cells and compromise their persistence and efficacy. The limited availability of scFvs and slow discovery of new monoclonal antibodies also limit the development of novel CAR constructs. Adnectin, a class of affinity molecules derived from the tenth type III domain of human fibronectin, can be an alternative to scFv as an antigen-binding moiety in the design of CAR molecules. We constructed adnectin-based CARs targeting epithelial growth factor receptor (EGFR) and found that compared to scFv-based CAR, T cells engineered with adnectin-based CARs exhibited equivalent cell-killing activity against target H292 lung cancer cells in vitro and had comparable antitumor efficacy in xenograft tumor-bearing mice in vivo. In addition, with optimal affinity tuning, adnectin-based CAR showed higher selectivity on target cells with high EGFR expression than on those with low expression. This new design of adnectin CARs can potentially facilitate the development of T cell immunotherapy for cancer and other diseases.


Assuntos
Fibronectinas/imunologia , Imunoterapia Adotiva/métodos , Neoplasias Pulmonares/terapia , Receptores de Antígenos de Linfócitos T/imunologia , Proteínas Recombinantes de Fusão/imunologia , Linfócitos T/imunologia , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Receptores ErbB/genética , Receptores ErbB/imunologia , Feminino , Fibronectinas/genética , Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Transfusão de Linfócitos , Camundongos , Plasmídeos/química , Plasmídeos/metabolismo , Domínios Proteicos , Receptores de Antígenos de Linfócitos T/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/genética , Linfócitos T/citologia , Linfócitos T/transplante , Transdução Genética , Carga Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Mol Ther ; 25(1): 274-284, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-28129121

RESUMO

Adoptive cellular therapy based on chimeric antigen receptor (CAR)-engineered T (CAR-T) cells is a powerful form of cancer immunotherapy. CAR-T cells can be redirected to specifically recognize tumor-associated antigens (TAAs) and induce high levels of antitumor activity. However, they may also display "on-target off-tumor" toxicities, resulting from low-level expression of TAAs in healthy tissues. These adverse effects have raised considerable safety concerns and limited the clinical application of this otherwise promising therapeutic modality. To minimize such side effects, we have designed an epidermal growth factor receptor (EGFR)-specific masked CAR (mCAR), which consists of a masking peptide that blocks the antigen-binding site and a protease-sensitive linker. Proteases commonly active in the tumor microenvironment can cleave the linker and disengage the masking peptide, thereby enabling CAR-T cells to recognize target antigens only at the tumor site. In vitro mCAR showed dramatically reduced antigen binding and antigen-specific activation in the absence of proteases, but normal levels of binding and activity upon treatment with certain proteases. Masked CAR-T cells also showed antitumor efficacy in vivo comparable to that of unmasked CAR. Our study demonstrates the feasibility of improving the safety profile of conventional CARs and may also inspire future design of CAR molecules targeting broadly expressed TAAs.


Assuntos
Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/metabolismo , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Animais , Linhagem Celular Tumoral , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Ordem dos Genes , Vetores Genéticos/genética , Humanos , Imunoterapia Adotiva , Ativação Linfocitária/imunologia , Camundongos , Neoplasias/genética , Ligação Proteica/imunologia , Proteólise , Receptores de Antígenos de Linfócitos T/genética , Proteínas Recombinantes de Fusão/genética , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Int J Mol Sci ; 19(8)2018 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-30049957

RESUMO

Chemoresistance renders current chemotherapy regimens ineffective against advanced epithelial ovarian cancer (EOC). Carboplatin (the first-line chemotherapeutic agent to treat EOC) induces cell death by regulating multiple signaling pathways. The objective of this study is to identify the signaling pathways that contribute to carboplatin resistance in EOC. To this end, we performed a proteome profiler human phospho-kinase array experiment and compared the phosphorylation profiles between the cisplatin-sensitive A2780s versus its derivative cisplatin-resistant A2780cp cells. The phospho-kinase array revealed that A2780s and A2780cp cells displayed different profiles in basal and carboplatin-induced phosphorylation. Phosphorylation of p38 MAPK was increased by carboplatin more markedly in A2780s cells compared to A2780cp cells. Inhibition of p38 MAPK activity by its specific inhibitor SB203580 increased resistance to carboplatin in A2780cp cells, but not in A2780s cells or in ascites-derived high-grade serous EOC cells. Interestingly, SB203580 increased the number of viable cells in the primary EOC cells, which was concomitant with an increase in survivin expression. In conclusion, inhibition of p38 MAPK by SB203580 increases resistance to carboplatin in A2780cp cells and the number of viable cells in the primary EOC cells, suggesting that pharmacological inhibition of p38 MAPK might not be an effective therapeutic strategy for EOC.


Assuntos
Antineoplásicos/farmacologia , Carboplatina/farmacologia , Inibidores Enzimáticos/farmacologia , Imidazóis/farmacologia , Neoplasias Epiteliais e Glandulares/tratamento farmacológico , Neoplasias Ovarianas/tratamento farmacológico , Piridinas/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Carcinoma Epitelial do Ovário , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , Neoplasias Epiteliais e Glandulares/metabolismo , Neoplasias Epiteliais e Glandulares/patologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Fosforilação/efeitos dos fármacos , Células Tumorais Cultivadas , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
10.
Sci Data ; 11(1): 35, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38182611

RESUMO

Meghimatium bilineatum is a notorious pest land slug used as a medicinal resource to treat ailments in China. Although this no-model species is unique in terms of their ecological security and medicinal value, the genome resource of this slug is lacking to date. Here, we used the Illumina, PacBio, and Hi-C sequencing techniques to construct a chromosomal-level genome of M. bilineatum. With the Hi-C correction, the sequencing data from PacBio system generated a 1.61 Gb assembly with a scaffold N50 of 68.08 Mb, and anchored to 25 chromosomes. The estimated assembly completeness at 91.70% was obtained using BUSCO methods. The repeat sequence content in the assembled genome was 72.51%, which mainly comprises 34.08% long interspersed elements. We further identified 18631 protein-coding genes in the assembled genome. A total of 15569 protein-coding genes were successfully annotated. This genome assembly becomes an important resource for studying the ecological adaptation and potential medicinal molecular basis of M. bilineatum.


Assuntos
Gastrópodes , Genoma , Animais , China , Cromossomos
11.
Genes (Basel) ; 15(3)2024 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-38540349

RESUMO

For marine invertebrates, the disruption of organismal physiology and behavior by nanoplastics (NPs) has been extensively reported. Heat shock proteins (Hsps) are important for redundant protein breakdown, environmental changes, and intracellular protein transport. An exhaustive identification of Hsp70 genes and an experiment where different concentrations of NPs were stressed were performed to study how Hsp70 genes respond to NPs stress in Monodonta labio. Our results identified 15 members of Hsp70 within the genome of M. labio and provided insights into their responses to different concentrations of acute NP stress. Phylogenetic analyses revealed extensive amplification of the Hsp70 genes from the Hsc70 subfamily, with gene duplication events. As a result of NP stress, five of fifteen genes showed significant upregulation or downregulation. Three Hsp70 genes were highly expressed at an NP concentration of 0.1 mg/L, and no genes were downregulated. At 10 mg/L, they showed significant upregulation of two genes and significant downregulation of two genes. At 1 mg/L treatment, three genes were significantly downregulated, and no genes were significantly upregulated. Moreover, a purifying selection was revealed using a selection test conducted on duplicate gene pairs, indicating functional redundancy. This work is the first thorough examination of the Hsp70s in Archaeogastropoda. The findings improve knowledge of Hsp70s in molluscan adaptation to NP stress and intertidal living and offer essential data for the biological study of M. labio.


Assuntos
Gastrópodes , Microplásticos , Animais , Filogenia , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/genética , Gastrópodes/genética , Gastrópodes/metabolismo , Perfilação da Expressão Gênica
12.
Genes (Basel) ; 14(9)2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37761919

RESUMO

Heat shock protein 70 kDa (Hsp70) is a highly conserved heat stress protein that is important in biotic processes and responses to abiotic stress. Hsp70 genes may be important in Sebastiscus marmoratus, for it is a kind of nearshore reef fish, and habitat temperature change is more drastic during development. However, genome-wide identification and expression analysis in the Hsp70 gene family of S. marmoratus are still lacking. Here, a total of 15 Hsp70 genes in the genome of S. marmoratus are identified, and their expression patterns were investigated using transcriptomic data from thermal stress experiments. The expansion and gene duplication events of Hsp70 genes from the Hspa4, Hspa8, and Hspa12a subfamilies in S. marmoratus are revealed by phylogenetic analysis. qRT-PCR expression patterns demonstrated that seven Hsp70 genes were significantly up-regulated and none were significantly down-regulated after heat treatment. Only the hsp70 gene was significantly up-regulated after cold treatment. The selection test further showed a purifying selection on the duplicated gene pairs, suggesting that these genes underwent subfunctionalization. Our results add novel insight to aquaculture and biological research on S. marmoratus, providing important information on how Hsp70 genes are regulated in Scorpaeniformes under thermal stress.

13.
Pharmaceutics ; 15(4)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37111703

RESUMO

Currently, there is a shortage of pediatric medicines on the market, and 3D printing technology can more flexibly produce personalized medicines to meet individual needs. The study developed a child-friendly composite gel ink (carrageenan-gelatin), created 3D models by computer-aided design technology, then produced personalized medicines using 3D printing to improve the safety and accuracy of medication for pediatric patients. An in-depth understanding of the printability of different formulations was obtained by analyzing the rheological and textural properties of different gel inks and observing the microstructure of different gel inks, which guided the formulation optimization. Through formulation optimization, the printability and thermal stability of gel ink were improved, and F6 formulation (carrageenan: 0.65%; gelatin: 12%) was selected as the 3D printing inks. Additionally, a personalized dose linear model was established with the F6 formulation for the production of 3D printed personalized tablets. Moreover, the dissolution tests showed that the 3D printed tablets were able to dissolve more than 85% within 30 min and had similar dissolution profiles to the commercially available tablets. This study demonstrates that 3D printing is an effective manufacturing technique that allows for flexible, rapid, and automated production of personalized formulations.

14.
Pharmaceutics ; 15(2)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36839738

RESUMO

Three-dimensional printing technology, also called additive manufacturing technology, is used to prepare personalized 3D-printed drugs through computer-aided model design. In recent years, the use of 3D printing technology in the pharmaceutical field has become increasingly sophisticated. In addition to the successful commercialization of Spritam® in 2015, there has been a succession of Triastek's 3D-printed drug applications that have received investigational new drug (IND) approval from the Food and Drug Administration (FDA). Compared with traditional drug preparation processes, 3D printing technology has significant advantages in personalized drug manufacturing, allowing easy manufacturing of preparations with complex structures or drug release behaviors and rapid manufacturing of small batches of drugs. This review summaries the mechanisms of the most commonly used 3D printing technologies, describes their characteristics, advantages, disadvantages, and applications in the pharmaceutical industry, analyzes the progress of global commercialization of 3D printed drugs and their problems and challenges, reflects the development trends of the 3D printed drug industry, and guides researchers engaged in 3D printed drugs.

15.
3D Print Addit Manuf ; 10(5): 1090-1100, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37886408

RESUMO

Since the first three-dimensional (3D) printed drug was approved by the Food and Drug Administration in 2015, there has been a growing interest in using binder jet 3D printing (BJ-3DP) technology for pharmaceuticals. However, most studies are still at an exploratory stage, lacking micromechanism research, such as the droplet ejection mechanism, the effect of printhead piezoelectric parameters on inkjet smoothness and preparation formability. In this study, based on the inkjet printing and observation platform, the Epson I3200-A1 piezoelectric printhead matched to the self-developed BJ-3DP was selected to analyze the droplet ejection state of self-developed ink at the microlevel with different piezoelectric pulse parameters. The results showed that there was a stable inkjet state with an inkjet pulse width of 3.5 µs, an ink supply pulse width of 4.5 µs, and a jet frequency in the range of 5000-19,000 Hz, ensuring both better droplet pattern and print accuracy, as well as high ejection efficiency. In conclusion, we performed a systematic evaluation of the inkjet behavior under different piezoelectric pulse parameters and provided a good idea and case study for the optimization of printhead piezoelectric parameters when BJ-3DP technology was used in pharmaceuticals.

16.
Animals (Basel) ; 12(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36496907

RESUMO

Uncertainty and controversy exist in the phylogenetic status of the Sciaenidae family because of the limited genetic data availability. In this study, a data set of 69,098 bp, covering 309 shared orthologous genes, was extracted from 18 genomes and 5 transcriptomes of 12 species belonging to the Sciaenidae family and used for phylogenetic analysis. The maximum likelihood (ML) and Bayesian approach (BA) methods were used to reconstruct the phylogenetic trees. The resolved ML and BA trees showed similar topology, thus revealing two major evolutionary lineages within the Sciaenidae family, namely, Western Atlantic (WA) and Eastern Atlantic−Indo−West Pacific (EIP). The WA group included four species belonging to four genera: Cynoscion nebulosus, Equetus punctatus, Sciaenops ocellatus, and Micropogonias undulatus. Meanwhile, the EIP group formed one monophyletic clade, harboring eight species (Argyrosomus regius, A. japonicus, Pennahia anea, Nibea albiflora, Miichthys miiuy, Collichthys lucidus, Larimichthys polyactis, and L. crocea) from six genera. Our results indicated that the Western Atlantic (WA) group was more ancient in the studied species, while the Eastern Atlantic−Indo−West Pacific (EIP) group was a younger group. Within the studied species, the genera Collichthys and Larmichthys were the youngest lineages, and we do not suggest that Collichthys and Larmichthys should be considered as one genus. However, the origin of the Sciaenidae family and problems concerning the basal genus were not resolved because of the lack of genomes. Therefore, further sampling and sequencing efforts are needed.

17.
Pharmaceutics ; 14(12)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36559082

RESUMO

Three-dimensional (3D) printing is an additive manufacturing technique that creates objects under computer control. Owing to the rapid advancement of science and technology, 3D printing technology has been widely utilized in processing and manufacturing but rarely used in the pharmaceutical field. The first commercial form of Spritam® immediate-release tablet was approved by FDA in 2015, which promoted the advancement of 3D printing technology in pharmaceutical development. Three-dimensional printing technology is able to meet individual treatment demands with customized size, shape, and release rate, which overcomes the difficulties of traditional pharmaceutical technology. This paper intends to discuss the critical process parameters of binder jet 3D printing technology, list its application in pharmaceutical manufacturing in recent years, summarize the still-open questions, and demonstrate its great potential in the pharmaceutical industry.

18.
Pharmaceutics ; 13(11)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34834194

RESUMO

Three-dimensional (3D) printing is an emerging technology that has high application potential for individualized medicines and complex solid dosage forms. This study is designed to explore binder jet 3D printing (BJ-3DP) for the development of high-precision and repeatable compound levetiracetam-pyridoxine hydrochloride (LEV-PN) multicompartmental structure dispersible tablets. PN was dissolved in printing ink directly and accurately jetted into the middle, nested layer of the tablet, and precise control of the drug dose was achieved through the design of printing layers. With modification of the drying method, the "coffee ring" effect caused by drug migration during the curing and molding of the tablets was overcome. Furthermore, 3D topography showed that the tablets have a promising surface morphology. Scanning electron microscopy and porosity results indicated that the tablets have a loose interior and tight exterior, which would ensure good mechanical properties while enabling the tablet to disintegrate quickly in the mouth and achieve rapid release of the two drugs. This study used BJ-3DP technology to prepare personalized multicompartmental structures of drug systems and provides a basis for the development of complex preparations.

19.
Polymers (Basel) ; 13(24)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34960946

RESUMO

Since the advent of ion exchange resin, it has been widely used in many fields, including drug delivery systems. The drug binds to the resin through an exchange reaction to form a drug-resin complex, which can gradually release drugs through the exchange of physiological ions in the gastrointestinal tract, to realize functions such as taste masking and regulating release. In this study, the complexes of methylphenidate hydrochloride and Amberlite IRP69 were prepared and evaluated to explore the mechanism of complexation, influencing factors and release mechanism at a molecular level. Firstly, with the properties of the selected complexes, molecular dynamics simulation was innovatively used to find that the intermolecular interaction between drug molecules and ion exchange resin molecules is mainly caused by the stacking effect of π and salt bridges. Secondly, with the drug loading status as an indicator, the factors affecting the compounding process of the drug and resin were explored. Finally, the release mechanism of the drug-resin complex was studied by mathematical model fitting. In summary, a variety of methods were used to study the mechanism of complexation and release between drug and resin, providing a theoretical basis for promoting the marketing of ion-exchange resin-mediated oral preparations.

20.
Children (Basel) ; 8(11)2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34828663

RESUMO

For children, a special population who are continuously developing, a reasonable dosing strategy is the key to clinical therapy. Accurate dose predictions can help maximize efficacy and minimize pain in pediatrics. Methods: This study collected amlodipine pharmacokinetics (PK) data from 236 Chinese male adults and established a physiological pharmacokinetic (PBPK) model for adults using GastroPlus™. A PBPK model of pediatrics is constructed based on hepatic-to-body size and enzyme metabolism, used similar to the AUC0-∞ to deduce the optimal dosage of amlodipine for children aged 1-16 years. A curve of continuous administration for 2-, 6-, 12-, 16-, and 25-year-olds and a personalized administration program for 6-year-olds were developed. Results: The results show that children could not establish uniform allometric amplification rules. The optimal doses were 0.10 mg·kg-1 for ages 2-6 years and -0.0028 × Age + 0.1148 (mg/kg) for ages 7-16 years, r = 0.9941. The trend for continuous administration was consistent among different groups. In a 6-year-old child, a maintenance dose of 2.30 mg was used to increase the initial dose by 2.00 mg and the treatment dose by 1.00 mg to maintain stable plasma concentrations. Conclusions: A PBPK model based on enzyme metabolism can accurately predict the changes in the pharmacokinetic parameters of amlodipine in pediatrics. It can be used to support the optimization of clinical treatment plans in pediatrics.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa