Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Development ; 149(2)2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-35005776

RESUMO

The location and regulation of fusion events within skeletal muscles during development remain unknown. Using the fusion marker myomaker (Mymk), named TMEM8C in chicken, as a readout of fusion, we identified a co-segregation of TMEM8C-positive cells and MYOG-positive cells in single-cell RNA-sequencing datasets of limbs from chicken embryos. We found that TMEM8C transcripts, MYOG transcripts and the fusion-competent MYOG-positive cells were preferentially regionalized in central regions of foetal muscles. We also identified a similar regionalization for the gene encoding the NOTCH ligand JAG2 along with an absence of NOTCH activity in TMEM8C+ fusion-competent myocytes. NOTCH function in myoblast fusion had not been addressed so far. We analysed the consequences of NOTCH inhibition for TMEM8C expression and myoblast fusion during foetal myogenesis in chicken embryos. NOTCH inhibition increased myoblast fusion and TMEM8C expression and released the transcriptional repressor HEYL from the TMEM8C regulatory regions. These results identify a regionalization of TMEM8C-dependent fusion and a molecular mechanism underlying the fusion-inhibiting effect of NOTCH in foetal myogenesis. The modulation of NOTCH activity in the fusion zone could regulate the flux of fusion events.


Assuntos
Proteínas Aviárias/metabolismo , Desenvolvimento Muscular , Proteínas Musculares/metabolismo , Mioblastos/metabolismo , Receptores Notch/metabolismo , Animais , Células Cultivadas , Embrião de Galinha , Proteínas de Membrana/metabolismo , Mioblastos/citologia , Transdução de Sinais
2.
Int J Mol Sci ; 21(5)2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32121305

RESUMO

Although the transcription factor EGR1 is known as NGF1-A, TIS8, Krox24, zif/268, and ZENK, it still has many fewer names than biological functions. A broad range of signals induce Egr1 gene expression via numerous regulatory elements identified in the Egr1 promoter. EGR1 is also the target of multiple post-translational modifications, which modulate EGR1 transcriptional activity. Despite the myriad regulators of Egr1 transcription and translation, and the numerous biological functions identified for EGR1, the literature reveals a recurring theme of EGR1 transcriptional activity in connective tissues, regulating genes related to the extracellular matrix. Egr1 is expressed in different connective tissues, such as tendon (a dense connective tissue), cartilage and bone (supportive connective tissues), and adipose tissue (a loose connective tissue). Egr1 is involved in the development, homeostasis, and healing processes of these tissues, mainly via the regulation of extracellular matrix. In addition, Egr1 is often involved in the abnormal production of extracellular matrix in fibrotic conditions, and Egr1 deletion is seen as a target for therapeutic strategies to fight fibrotic conditions. This generic EGR1 function in matrix regulation has little-explored implications but is potentially important for tendon repair.


Assuntos
Tecido Conjuntivo/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Matriz Extracelular/metabolismo , Tendões/metabolismo , Animais , Tecido Conjuntivo/patologia , Fibrose , Humanos , Modelos Biológicos , Tendões/patologia
3.
Development ; 143(20): 3839-3851, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27624906

RESUMO

The molecular programme underlying tendon development has not been fully identified. Interactions with components of the musculoskeletal system are important for limb tendon formation. Limb tendons initiate their development independently of muscles; however, muscles are required for further tendon differentiation. We show that both FGF/ERK MAPK and TGFß/SMAD2/3 signalling pathways are required and sufficient for SCX expression in chick undifferentiated limb cells, whereas the FGF/ERK MAPK pathway inhibits Scx expression in mouse undifferentiated limb mesodermal cells. During differentiation, muscle contraction is required to maintain SCX, TNMD and THBS2 expression in chick limbs. The activities of FGF/ERK MAPK and TGFß/SMAD2/3 signalling pathways are decreased in tendons under immobilisation conditions. Application of FGF4 or TGFß2 ligands prevents SCX downregulation in immobilised limbs. TGFß2 but not FGF4 prevent TNMD and THBS2 downregulation under immobilisation conditions. We did not identify any intracellular crosstalk between both signalling pathways in their positive effect on SCX expression. Independently of each other, both FGF and TGFß promote tendon commitment of limb mesodermal cells and act downstream of mechanical forces to regulate tendon differentiation during chick limb development.


Assuntos
Extremidades/embriologia , Fatores de Crescimento de Fibroblastos/metabolismo , Tendões/citologia , Tendões/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Embrião de Galinha , Fatores de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Camundongos , Morfogênese/genética , Morfogênese/fisiologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Tendões/embriologia , Fator de Crescimento Transformador beta/genética
4.
Muscle Nerve ; 58(2): 251-260, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29406624

RESUMO

INTRODUCTION: Peripheral nerve damage is associated with high long-term morbidity. Because of beneficial secretome, immunomodulatory effects, and ease of clinical translation, transplantation with adipose-derived stem cells (ASC) represents a promising therapeutic modality. METHODS: Effect of ASC delivery in poloxamer hydrogel was assessed in a rat sciatic nerve model of critical-sized (1.5 cm) peripheral nerve injury. Nerve/muscle unit regeneration was assessed via immunostaining explanted nerve, quantitative polymerase chain reaction (qPCR), and histological analysis of reinnervating gastrocnemius muscle. RESULTS: On the basis of viability data, 10% poloxamer hydrogel was selected for in vivo study. Six weeks after transection and repair, the group treated with poloxamer delivered ASCs demonstrated longest axonal regrowth. The qPCR results indicated that the inclusion of ASCs appeared to result in expression of factors that aid in reinnervating muscle tissue. DISCUSSION: Delivery of ASCs in poloxamer addresses multiple facets of the complexity of nerve/muscle unit regeneration, representing a promising avenue for further study. Muscle Nerve 58: 251-260, 2018.


Assuntos
Adipócitos/transplante , Hidrogéis , Regeneração Nervosa/fisiologia , Nervos Periféricos/crescimento & desenvolvimento , Poloxâmero , Transplante de Células-Tronco/métodos , Adulto , Animais , Axônios/ultraestrutura , Feminino , Humanos , Imuno-Histoquímica , Neurônios Motores , Fibras Musculares Esqueléticas , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/inervação , Ratos , Nervo Isquiático/lesões , Neuropatia Ciática/terapia
5.
J Surg Res ; 229: 243-253, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29936997

RESUMO

BACKGROUND: Adipose-derived stem cells (ASCs) are capable of secreting regenerative growth factors and replacing multiple tissue types. Although current literature suggests that ASCs accelerate wound healing and reduce scarring, the dose-response relationship has not been adequately investigated in large animals. We sought to establish a porcine model to optimize dose and delivery. METHODS: Four-centimeter circular, full thickness excisional wounds were created on the backs of Yorkshire pigs. Fluorescently labeled allogeneic porcine ASCs were injected into the superficial wound bed and around the wound perimeter at high (3.0 × 106 cells/cm2; n = 8), medium (1.0 × 106 cells/cm2; n = 8), and low (0.3 × 106 cells/cm2; n = 8) doses. Control wounds received saline injections (n = 8) or no treatment (n = 8). Dressings were changed twice per week, and wound closure was tracked by surface area tracing. Animals were sacrificed at 1 and 2 wk. Wounds were harvested for real-time quantitative reverse transcriptase polymerase chain reaction, immunohistochemistry, and ASC tracking. RESULTS: Labeled ASCs integrated into treated wounds by 1 wk in a dose-dependent fashion. Epithelial coverage was achieved by 14 d in all wounds. Wounds receiving high-dose ASCs exhibited thicker granulating neodermis at 7 d and greater wound contraction at 14 d. real-time quantitative reverse transcriptase polymerase chain reaction revealed improved collagen 1:collagen 3 (Col1:Col3) ratio in the medium-dose group and enhanced α-smooth muscle actin in the high-dose group at 14 d. Western blot demonstrated increased cluster of differentiation 31 protein at 2 wk in wounds receiving >106 cells/cm2. CONCLUSIONS: Doses up to 3.0 × 106 cells/cm2 were well-tolerated. High-dose ASCs accelerate wound contraction, enhance neovascularization, and may improve scar quality in excisional wounds healing by secondary intention. Doses greater than those previously used may be necessary to achieve desired effects.


Assuntos
Tecido Adiposo/citologia , Transplante de Células-Tronco/métodos , Células-Tronco/fisiologia , Cicatrização/fisiologia , Ferimentos Penetrantes/terapia , Animais , Diferenciação Celular , Cicatriz/etiologia , Cicatriz/prevenção & controle , Modelos Animais de Doenças , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neovascularização Fisiológica/fisiologia , Regeneração/fisiologia , Pele/irrigação sanguínea , Pele/lesões , Sus scrofa , Ferimentos Penetrantes/complicações
6.
Development ; 141(19): 3683-96, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25249460

RESUMO

The molecular signals driving tendon development are not fully identified. We have undertaken a transcriptome analysis of mouse limb tendon cells that were isolated at different stages of development based on scleraxis (Scx) expression. Microarray comparisons allowed us to establish a list of genes regulated in tendon cells during mouse limb development. Bioinformatics analysis of the tendon transcriptome showed that the two most strongly modified signalling pathways were TGF-ß and MAPK. TGF-ß/SMAD2/3 gain- and loss-of-function experiments in mouse limb explants and mesenchymal stem cells showed that TGF-ß signalling was sufficient and required via SMAD2/3 to drive mouse mesodermal stem cells towards the tendon lineage ex vivo and in vitro. TGF-ß was also sufficient for tendon gene expression in late limb explants during tendon differentiation. FGF does not have a tenogenic effect and the inhibition of the ERK MAPK signalling pathway was sufficient to activate Scx in mouse limb mesodermal progenitors and mesenchymal stem cells.


Assuntos
Extremidades/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Transdução de Sinais/fisiologia , Tendões/citologia , Transcriptoma/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Biologia Computacional , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/genética , Hibridização In Situ , Células-Tronco Mesenquimais/metabolismo , Camundongos , Análise em Microsséries , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Tendões/metabolismo , Transcriptoma/genética , Fator de Crescimento Transformador beta/metabolismo
7.
J Neurosci ; 34(39): 13208-21, 2014 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-25253865

RESUMO

In higher vertebrates, the primordium of the nervous system, the neural tube, is shaped along the rostrocaudal axis through two consecutive, radically different processes referred to as primary and secondary neurulation. Failures in neurulation lead to severe anomalies of the nervous system, called neural tube defects (NTDs), which are among the most common congenital malformations in humans. Mechanisms causing NTDs in humans remain ill-defined. Of particular interest, the thoracolumbar region, which encompasses many NTD cases in the spine, corresponds to the junction between primary and secondary neurulations. Elucidating which developmental processes operate during neurulation in this region is therefore pivotal to unraveling the etiology of NTDs. Here, using the chick embryo as a model, we show that, at the junction, the neural tube is elaborated by a unique developmental program involving concerted movements of elevation and folding combined with local cell ingression and accretion. This process ensures the topological continuity between the primary and secondary neural tubes while supplying all neural progenitors of both the junctional and secondary neural tubes. Because it is distinct from the other neurulation events, we term this phenomenon junctional neurulation. Moreover, the planar-cell-polarity member, Prickle-1, is recruited specifically during junctional neurulation and its misexpression within a limited time period suffices to cause anomalies that phenocopy lower spine NTDs in human. Our study thus provides a molecular and cellular basis for understanding the causality of NTD prevalence in humans and ascribes to Prickle-1 a critical role in lower spinal cord formation.


Assuntos
Defeitos do Tubo Neural/metabolismo , Neurulação , Medula Espinal/embriologia , Animais , Embrião de Galinha , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/metabolismo , Placa Neural/embriologia , Placa Neural/metabolismo , Células-Tronco Neurais/metabolismo , Tubo Neural/embriologia , Tubo Neural/metabolismo , Defeitos do Tubo Neural/embriologia , Defeitos do Tubo Neural/genética , Medula Espinal/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
8.
Development ; 139(11): 1910-20, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22513369

RESUMO

The basic helix-loop-helix transcription factor MyoD is a central actor that triggers the skeletal myogenic program. Cell-autonomous and non-cell-autonomous regulatory pathways must tightly control MyoD expression to ensure correct initiation of the muscle program at different places in the embryo and at different developmental times. In the present study, we have addressed the involvement of Sim2 (single-minded 2) in limb embryonic myogenesis. Sim2 is a bHLH-PAS transcription factor that inhibits transcription by active repression and displays enhanced expression in ventral limb muscle masses during chick and mouse embryonic myogenesis. We have demonstrated that Sim2 is expressed in muscle progenitors that have not entered the myogenic program, in different experimental conditions. MyoD expression is transiently upregulated in limb muscle masses of Sim2(-/-) mice. Conversely, Sim2 gain-of-function experiments in chick and Xenopus embryos showed that Sim2 represses MyoD expression. In addition, we show that Sim2 represses the activity of the mouse MyoD promoter in primary myoblasts and is recruited to the MyoD core enhancer in embryonic mouse limbs. Sim2 expression is non-autonomously and negatively regulated by the dorsalising factor Lmx1b. We propose that Sim2 represses MyoD transcription in limb muscle masses, through Sim2 recruitment to the MyoD core enhancer, in order to prevent premature entry into the myogenic program. This MyoD repression is predominant in ventral limb regions and is likely to contribute to the differential increase of the global mass of ventral muscles versus dorsal muscles.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Extremidades/embriologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Desenvolvimento Muscular/fisiologia , Proteína MyoD/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células Cultivadas , Embrião de Galinha , Imunoprecipitação da Cromatina , Eletroporação , Regulação da Expressão Gênica no Desenvolvimento/genética , Imuno-Histoquímica , Hibridização In Situ , Camundongos , Camundongos Knockout , Desenvolvimento Muscular/genética , Tubo Neural/embriologia , Tubo Neural/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Somitos/embriologia , Somitos/metabolismo , Células-Tronco/metabolismo , Xenopus
9.
Diabetes ; 73(2): 211-224, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37963392

RESUMO

In humans, glucocorticoids (GCs) are commonly prescribed because of their anti-inflammatory and immunosuppressive properties. However, high doses of GCs often lead to side effects, including diabetes and lipodystrophy. We recently reported that adipocyte glucocorticoid receptor (GR)-deficient (AdipoGR-KO) mice under corticosterone (CORT) treatment exhibited a massive adipose tissue (AT) expansion associated with a paradoxical improvement of metabolic health compared with control mice. However, whether GR may control adipose development remains unclear. Here, we show a specific induction of hypoxia-inducible factor 1α (HIF-1α) and proangiogenic vascular endothelial growth factor A (VEGFA) expression in GR-deficient adipocytes of AdipoGR-KO mice compared with control mice, together with an increased adipose vascular network, as assessed by three-dimensional imaging. GR activation reduced HIF-1α recruitment to the Vegfa promoter resulting from Hif-1α downregulation at the transcriptional and posttranslational levels. Importantly, in CORT-treated AdipoGR-KO mice, the blockade of VEGFA by a soluble decoy receptor prevented AT expansion and the healthy metabolic phenotype. Finally, in subcutaneous AT from patients with Cushing syndrome, higher VEGFA expression was associated with a better metabolic profile. Collectively, these results highlight that adipocyte GR negatively controls AT expansion and metabolic health through the downregulation of the major angiogenic effector VEGFA and inhibition of vascular network development.


Assuntos
Glucocorticoides , Receptores de Glucocorticoides , Humanos , Camundongos , Animais , Glucocorticoides/farmacologia , Glucocorticoides/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Angiogênese , Adipócitos/metabolismo , Obesidade/metabolismo , Corticosterona/farmacologia , Corticosterona/metabolismo , Tecido Adiposo/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
10.
J Biol Chem ; 286(7): 5855-67, 2011 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-21173153

RESUMO

The molecules involved in vertebrate tendon formation during development remain largely unknown. To date, only two DNA-binding proteins have been identified as being involved in vertebrate tendon formation, the basic helix-loop-helix transcription factor Scleraxis and, recently, the Mohawk homeobox gene. We investigated the involvement of the early growth response transcription factors Egr1 and Egr2 in vertebrate tendon formation. We established that Egr1 and Egr2 expression in tendon cells was correlated with the increase of collagen expression during tendon cell differentiation in embryonic limbs. Vertebrate tendon differentiation relies on a muscle-derived FGF (fibroblast growth factor) signal. FGF4 was able to activate the expression of Egr genes and that of the tendon-associated collagens in chick limbs. Egr gene misexpression experiments using the chick model allowed us to establish that either Egr gene has the ability to induce de novo expression of the reference tendon marker scleraxis, the main tendon collagen Col1a1, and other tendon-associated collagens Col3a1, Col5a1, Col12a1, and Col14a1. Mouse mutants for Egr1 or Egr2 displayed reduced amounts of Col1a1 transcripts and a decrease in the number of collagen fibrils in embryonic tendons. Moreover, EGR1 and EGR2 trans-activated the mouse Col1a1 proximal promoter and were recruited to the tendon regulatory regions of this promoter. These results identify EGRs as novel DNA-binding proteins involved in vertebrate tendon differentiation by regulating type I collagen production.


Assuntos
Diferenciação Celular/fisiologia , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Proteína 2 de Resposta de Crescimento Precoce/metabolismo , Embrião de Mamíferos/embriologia , Tendões/embriologia , Animais , Proteínas Aviárias/biossíntese , Proteínas Aviárias/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Embrião de Galinha , Galinhas , Colágeno/biossíntese , Colágeno/genética , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 2 de Resposta de Crescimento Precoce/genética , Embrião de Mamíferos/citologia , Fator 4 de Crescimento de Fibroblastos/genética , Fator 4 de Crescimento de Fibroblastos/metabolismo , Camundongos , Camundongos Knockout , Tendões/citologia
11.
Dev Biol ; 327(2): 566-77, 2009 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-19152797

RESUMO

Patterning of the vertebrate hindbrain involves a segmentation process leading to the formation of seven rhombomeres along the antero-posterior axis. While recent studies have shed light on the mechanisms underlying progressive subdivision of the posterior hindbrain into individual rhombomeres, the early events involved in anterior hindbrain patterning are still largely unknown. In this paper we demonstrate that two zebrafish Iroquois transcription factors, Irx7 and Irx1b, are required for the proper formation and specification of rhombomeres 1 to 4 and, in particular, for krox20 activation in r3. We also show that Irx7 functionally interacts with Meis factors to activate the expression of anterior hindbrain markers, such as hoxb1a, hoxa2 and krox20, ectopically in the anterior neural plate. Then, focusing on krox20 expression, we show that the effect of Irx7 and Meis1.1 is mediated by element C, a conserved cis-regulatory element involved in krox20 activation in the hindbrain. Together, our data point to an essential function of Iroquois transcription factors in krox20 activation and, more generally, in anterior hindbrain specification.


Assuntos
Padronização Corporal/fisiologia , Proteína 2 de Resposta de Crescimento Precoce/metabolismo , Proteínas de Homeodomínio/metabolismo , Rombencéfalo , Fatores de Transcrição/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra , Animais , Biomarcadores/metabolismo , Proteína 2 de Resposta de Crescimento Precoce/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Hibridização In Situ , Proteína Meis1 , Placa Neural/anatomia & histologia , Placa Neural/fisiologia , Elementos Reguladores de Transcrição , Rombencéfalo/anatomia & histologia , Rombencéfalo/embriologia , Fatores de Transcrição/genética , Peixe-Zebra/anatomia & histologia , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
12.
Sci Rep ; 10(1): 15842, 2020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-32985557

RESUMO

In mice, exercise, cold exposure and fasting lead to the differentiation of inducible-brown adipocytes, called beige adipocytes, within white adipose tissue and have beneficial effects on fat burning and metabolism, through heat production. This browning process is associated with an increased expression of the key thermogenic mitochondrial uncoupling protein 1, Ucp1. Egr1 transcription factor has been described as a regulator of white and beige differentiation programs, and Egr1 depletion is associated with a spontaneous increase of subcutaneous white adipose tissue browning, in absence of external stimulation. Here, we demonstrate that Egr1 mutant mice exhibit a restrained Ucp1 expression specifically increased in subcutaneous fat, resulting in a metabolic shift to a more brown-like, oxidative metabolism, which was not observed in other fat depots. In addition, Egr1 is necessary and sufficient to promote white and alter beige adipocyte differentiation of mouse stem cells. These results suggest that modulation of Egr1 expression could represent a promising therapeutic strategy to increase energy expenditure and to restrain obesity-associated metabolic disorders.


Assuntos
Adipócitos Bege/metabolismo , Tecido Adiposo Branco/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Gordura Subcutânea/metabolismo , Adipócitos Bege/fisiologia , Tecido Adiposo Branco/fisiologia , Animais , Diferenciação Celular , Proteína 1 de Resposta de Crescimento Precoce/fisiologia , Feminino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxirredução , Gordura Subcutânea/fisiologia
13.
Front Immunol ; 9: 1642, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30087676

RESUMO

BACKGROUND: Vascularized composite allotransplantation opens new possibilities in reconstructive transplantation such as hand or face transplants. Lifelong immunosuppression and its side-effects are the main drawbacks of this procedure. Mesenchymal stem cells (MSCs) have clinically useful immunomodulatory effects and may be able to reduce the burden of chronic immunosuppression. Herein, we assess and compare characteristics and immunomodulatory capacities of bone marrow- and adipose tissue-derived MSCs isolated from the same human individual across defined human leukocyte antigen (HLA) barriers. MATERIALS AND METHODS: Samples of omental (o.) adipose tissue, subcutaneous (s.c.) adipose tissue, and bone marrow aspirate from 10 human organ donors were retrieved and MSCs isolated. Cells were characterized by flow cytometry and differentiated in three lineages: adipogenic, osteogenic, and chondrogenic. In mixed lymphocyte reactions, the ability of adipose-derived mesenchymal stem cells (ASCs) and bone marrow-derived mesenchymal stem cells (BMSCs) to suppress the immune response was assessed and compared within individual donors. HLA mismatched or mitogen stimulations were analyzed in co-culture with different MSC concentrations. Supernatants were analyzed for cytokine contents. RESULTS: All cell types, s.c.ASC, o.ASC, and BMSC demonstrated individual differentiation potential and cell surface markers. Immunomodulating effects were dependent on dose and cell passage. Proliferation of responder cells was most effectively suppressed by s.c.ASCs and combination with BMSC resulted in highly efficient immunomodulation. Immunomodulation was not cell contact-dependent and cells demonstrated a specific cytokine secretion. CONCLUSION: When human ASCs and BMSCs are isolated from the same individual, both show effective immunomodulation across defined HLA barriers in vitro. We demonstrate a synergistic effect when cells from the same biologic system were combined. This cell contact-independent function underlines the potential of clinical systemic application of MSCs.

14.
Mol Cell Biol ; 22(24): 8527-38, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12446772

RESUMO

Thyroid hormone receptors (TR) act as activators of transcription in the presence of the thyroid hormone (T(3)) and as repressors in its absence. While many in vitro approaches have been used to study the molecular mechanisms of TR action, their physiological relevance has not been addressed. Here we investigate how TR regulates gene expression during vertebrate postembryonic development by using T(3)-dependent amphibian metamorphosis as a model. Earlier studies suggest that TR acts as a repressor during premetamorphosis when T(3) is absent. We hypothesize that corepressor complexes containing the nuclear receptor corepressor (N-CoR) are key factors in this TR-dependent gene repression, which is important for premetamorphic tadpole growth. To test this hypothesis, we isolated Xenopus laevis N-CoR (xN-CoR) and showed that it was present in pre- and metamorphic tadpoles. Using a chromatin immunoprecipitation assay, we demonstrated that xN-CoR was recruited to the promoters of T(3) response genes during premetamorphosis and released upon T(3) treatment, accompanied by a local increase in histone acetylation. Furthermore, overexpression of a dominant-negative N-CoR in tadpole tail muscle led to increased transcription from a T(3)-dependent promoter. Our data indicate that N-CoR is recruited by unliganded TR to repress target gene expression during premetamorphic animal growth, an important process that prepares the tadpole for metamorphosis.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas Nucleares/metabolismo , Receptores dos Hormônios Tireóideos/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/crescimento & desenvolvimento , Sequência de Aminoácidos , Animais , Clonagem Molecular , Genes Reporter , Membro Posterior/fisiologia , Humanos , Intestinos/fisiologia , Larva/anatomia & histologia , Larva/fisiologia , Ligantes , Metamorfose Biológica/fisiologia , Dados de Sequência Molecular , Proteínas Nucleares/genética , Correpressor 1 de Receptor Nuclear , Oócitos/fisiologia , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/genética , Cauda/fisiologia , Tri-Iodotironina/metabolismo , Proteínas de Xenopus/genética , Xenopus laevis/genética
15.
Sci Rep ; 7(1): 16153, 2017 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-29170465

RESUMO

Beige adipocyte differentiation within white adipose tissue, referred to as browning, is seen as a possible mechanism for increasing energy expenditure. The molecular regulation underlying the thermogenic browning process has not been entirely elucidated. Here, we identify the zinc finger transcription factor EGR1 as a negative regulator of the beige fat program. Loss of Egr1 in mice promotes browning in the absence of external stimulation and leads to an increase of Ucp1 expression, which encodes the key thermogenic mitochondrial uncoupling protein-1. Moreover, EGR1 is recruited to the proximal region of the Ucp1 promoter in subcutaneous inguinal white adipose tissue. Transcriptomic analysis of subcutaneous inguinal white adipose tissue in the absence of Egr1 identifies the molecular signature of white adipocyte browning downstream of Egr1 deletion and highlights a concomitant increase of beige differentiation marker and a decrease in extracellular matrix gene expression. Conversely, Egr1 overexpression in mesenchymal stem cells decreases beige adipocyte differentiation, while increasing extracellular matrix production. These results reveal a role for Egr1 in blocking energy expenditure via direct Ucp1 transcription repression and highlight Egr1 as a therapeutic target for counteracting obesity.


Assuntos
Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/deficiência , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Gordura Subcutânea/metabolismo , Animais , Metabolismo Energético/fisiologia , Feminino , Hibridização In Situ , Camundongos , Camundongos Knockout
16.
PLoS One ; 11(3): e0150639, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26959238

RESUMO

Early patterning of the vertebrate neural plate involves a complex hierarchy of inductive interactions orchestrated by signalling molecules and their antagonists. The morphogen retinoic acid, together with the Cyp26 enzymes which degrade it, play a central role in this process. The cyp26a1 gene expressed in the anterior neural plate thus contributes to the fine modulation of the rostrocaudal retinoic acid gradient. Despite this important role of cyp26a1 in early brain formation, the mechanisms that control its expression in the anterior neural plate are totally unknown. Here, we present the isolation of a 310-base-pair DNA element adjacent to cyp26a1 promoter, displaying enhancer activity restricted to the anterior neural plate of the zebrafish gastrula. We show that unlike that of cyp26a1, expression driven by this cyp26a1 anterior neural plate element (cANE) is independent of retinoic acid. Through deletion analysis, we identify a 12-nucleotide motif essential for cANE activity. A consensus bipartite binding site for SoxB:Oct transcription factors overlaps with this motif. Mutational analysis suggests that SoxB binding is essential for its activity. We discuss the contribution of this study to the elucidation of the regulatory hierarchy involved in early neural plate patterning.


Assuntos
Placa Neural/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Proteínas de Peixe-Zebra/genética
17.
J Clin Invest ; 123(8): 3564-76, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23863709

RESUMO

Tendon formation and repair rely on specific combinations of transcription factors, growth factors, and mechanical parameters that regulate the production and spatial organization of type I collagen. Here, we investigated the function of the zinc finger transcription factor EGR1 in tendon formation, healing, and repair using rodent animal models and mesenchymal stem cells (MSCs). Adult tendons of Egr1-/- mice displayed a deficiency in the expression of tendon genes, including Scx, Col1a1, and Col1a2, and were mechanically weaker compared with their WT littermates. EGR1 was recruited to the Col1a1 and Col2a1 promoters in postnatal mouse tendons in vivo. Egr1 was required for the normal gene response following tendon injury in a mouse model of Achilles tendon healing. Forced Egr1 expression programmed MSCs toward the tendon lineage and promoted the formation of in vitro-engineered tendons from MSCs. The application of EGR1-producing MSCs increased the formation of tendon-like tissues in a rat model of Achilles tendon injury. We provide evidence that the ability of EGR1 to promote tendon differentiation is partially mediated by TGF-ß2. This study demonstrates EGR1 involvement in adult tendon formation, healing, and repair and identifies Egr1 as a putative target in tendon repair strategies.


Assuntos
Tendão do Calcâneo/fisiopatologia , Diferenciação Celular , Proteína 1 de Resposta de Crescimento Precoce/fisiologia , Cicatrização , Tendão do Calcâneo/metabolismo , Tendão do Calcâneo/patologia , Animais , Linhagem Celular , Embrião de Galinha , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Colágeno Tipo II/genética , Colágeno Tipo II/metabolismo , Módulo de Elasticidade , Regulação da Expressão Gênica , Humanos , Masculino , Células-Tronco Mesenquimais/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Regiões Promotoras Genéticas , Ratos , Ratos Wistar , Regeneração , Transdução de Sinais , Transcriptoma , Fator de Crescimento Transformador beta2/fisiologia
18.
PLoS One ; 7(1): e30677, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22303449

RESUMO

The LIM homeodomain gene Islet-1 (ISL1) encodes a transcription factor that has been associated with the multipotency of human cardiac progenitors, and in mice enables the correct deployment of second heart field (SHF) cells to become the myocardium of atria, right ventricle and outflow tract. Other markers have been identified that characterize subdomains of the SHF, such as the fibroblast growth factor Fgf10 in its anterior region. While functional evidence of its essential contribution has been demonstrated in many vertebrate species, SHF expression of Isl1 has been shown in only some models. We examined the relationship between human ISL1 and FGF10 within the embryonic time window during which the linear heart tube remodels into four chambers. ISL1 transcription demarcated an anatomical region supporting the conserved existence of a SHF in humans, and transcription factors of the GATA family were co-expressed therein. In conjunction, we identified a novel enhancer containing a highly conserved ISL1 consensus binding site within the FGF10 first intron. ChIP and EMSA demonstrated its direct occupation by ISL1. Transcription mediated by ISL1 from this FGF10 intronic element was enhanced by the presence of GATA4 and TBX20 cardiac transcription factors. Finally, transgenic mice confirmed that endogenous factors bound the human FGF10 intronic enhancer to drive reporter expression in the developing cardiac outflow tract. These findings highlight the interest of examining developmental regulatory networks directly in human tissues, when possible, to assess candidate non-coding regions that may be responsible for congenital malformations.


Assuntos
Fator 10 de Crescimento de Fibroblastos/genética , Coração/embriologia , Proteínas com Homeodomínio LIM/metabolismo , Organogênese/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Animais , Sequência de Bases , Biologia Computacional , Ensaio de Desvio de Mobilidade Eletroforética , Elementos Facilitadores Genéticos/genética , Éxons/genética , Feminino , Fator 10 de Crescimento de Fibroblastos/metabolismo , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA4/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Membro Posterior/embriologia , Membro Posterior/metabolismo , Humanos , Íntrons/genética , Proteínas com Homeodomínio LIM/genética , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Miocárdio/citologia , Miocárdio/metabolismo , Gravidez , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas com Domínio T/metabolismo , Fatores de Transcrição/genética
20.
Mol Endocrinol ; 25(2): 225-37, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21239616

RESUMO

The diversity of thyroid hormone T(3) effects in vivo makes their molecular analysis particularly challenging. Indeed, the current model of the action of T(3) and its receptors on transcription does not reflect this diversity. Here, T(3)-dependent amphibian metamorphosis was exploited to investigate, in an in vivo developmental context, how T(3) directly regulates gene expression. Two, direct positively regulated T(3)-response genes encoding transcription factors were analyzed: thyroid hormone receptor ß (TRß) and TH/bZIP. Reverse transcription-real-time quantitative PCR analysis on Xenopus tropicalis tadpole brain and tail fin showed differences in expression levels in premetamorphic tadpoles (lower for TH/bZIP than for TRß) and differences in induction after T(3) treatment (lower for TRß than for TH/bZIP). To dissect the mechanisms underlying these differences, chromatin immunoprecipitation was used. T(3) differentially induced RNA polymerase II and histone tail acetylation as a function of transcriptional level. Gene-specific patterns of TR binding were found on the different T(3) -responsive elements (higher for TRß than for TH/bZIP), correlated with gene-specific modifications of H3K4 methylation (higher for TRß than for TH/bZIP). Moreover, tissue-specific modifications of H3K27 were found (lower in brain than in tail fin). This first in vivo analysis of the association of histone modifications and TR binding/gene activation during vertebrate development for any nuclear receptor indicate that chromatin context of thyroid-responsive elements loci controls the capacity to bind TR through variations in histone H3K4 methylation, and that the histone code, notably H3, contributes to the fine tuning of gene expression that underlies complex physiological T(3) responses.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/genética , Receptores beta dos Hormônios Tireóideos/metabolismo , Tri-Iodotironina/metabolismo , Acetilação , Animais , Animais Geneticamente Modificados , Imunoprecipitação da Cromatina , Regulação da Expressão Gênica no Desenvolvimento , Histonas/genética , Histonas/metabolismo , Larva/genética , Metilação , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo , Receptores beta dos Hormônios Tireóideos/genética , Transcrição Gênica , Xenopus
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa