RESUMO
Antibody effector functions including antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis (ADCP) are mediated through the interaction of the antibody Fc region with Fcγ receptors present on immune cells. Several approaches have been used to modulate antibody Fc-Fcγ interactions with the goal of driving an effective antitumor immune response, including Fc point mutations and glycan modifications. However, robust antibody-Fcγ engagement and immune cell binding of Fc-enhanced antibodies in the periphery can lead to the unwanted induction of systemic cytokine release and other dose-limiting infusion-related reactions. Creating a balance between effective engagement of Fcγ receptors that can induce antitumor activity without incurring systemic immune activation is an ongoing challenge in the field of antibody and immuno-oncology therapeutics. Herein, we describe a method for the reversible chemical modulation of antibody-Fcγ interactions using simple poly(ethylene glycol) (PEG) linkers conjugated to antibody interchain disulfides with maleimide attachments. This method enables dosing of a therapeutic with muted Fcγ engagement that is restored in vivo in a time-dependent manner. The technology was applied to an effector function enhanced agonist CD40 antibody, SEA-CD40, and experiments demonstrate significant reductions in Fc-induced immune activation in vitro and in mice and nonhuman primates despite showing retained efficacy and improved pharmacokinetics compared to the parent antibody. We foresee that this simple, modular system can be rapidly applied to antibodies that suffer from systemic immune activation due to peripheral FcγR binding immediately upon infusion.
Assuntos
Receptores de IgG , Animais , Camundongos , Receptores de IgG/imunologia , Humanos , Polietilenoglicóis/química , Citotoxicidade Celular Dependente de Anticorpos , Fagocitose/efeitos dos fármacosRESUMO
OBJECTIVES: Vitamin D-binding protein (VDBP), a serum transport protein for 25-hydroxyvitamin D [25(OH)D], has three common proteoforms which have co-localized amino acid variations and glycosylation. A monoclonal immunoassay was found to differentially detect VDBP proteoforms and methods using liquid chromatography-tandem mass spectrometry (LC-MS/MS) might be able to overcome this limitation. Previously developed multiple reaction monitoring LC-MS/MS methods for total VDBP quantification represent an opportunity to probe the potential effects of proteoforms on proteolysis, instrument response and quantification accuracy. METHODS: VDBP was purified from homozygous human donors and quantified using proteolysis or acid hydrolysis and LC-MS/MS. An interlaboratory comparison was performed using pooled human plasma [Standard Reference Material® 1950 (SRM 1950) Metabolites in Frozen Human Plasma] and analyses with different LC-MS/MS methods in two laboratories. RESULTS: Several shared peptides from purified proteoforms were found to give reproducible concentrations [≤2.7% coefficient of variation (CV)] and linear instrument responses (R2≥0.9971) when added to human serum. Total VDBP concentrations from proteolysis or amino acid analysis (AAA) of purified proteoforms had ≤1.92% CV. SRM 1950, containing multiple proteoforms, quantified in two laboratories resulted in total VDBP concentrations with 7.05% CV. CONCLUSIONS: VDBP proteoforms were not found to cause bias during quantification by LC-MS/MS, thus demonstrating that a family of proteins can be accurately quantified using shared peptides. A reference value was assigned for total VDBP in SRM 1950, which may be used to standardize methods and improve the accuracy of VDBP quantification in research and clinical samples.
Assuntos
Espectrometria de Massas em Tandem , Proteína de Ligação a Vitamina D , Humanos , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Proteólise , Vitamina D , Proteínas Sanguíneas/metabolismo , Aminoácidos/metabolismoRESUMO
A 58-year-old woman with debilitating ankylosing spondylitis who was born to consanguineous parents was found to have an apparent severe vitamin D deficiency that did not respond to supplementation. Liquid chromatography-tandem mass spectrometry showed the absence of circulating vitamin D-binding protein, and chromosomal microarray confirmed a homozygous deletion of the group-specific component (GC) gene that encodes the protein. Congenital absence of vitamin D-binding protein resulted in normocalcemia and a relatively mild disruption of bone metabolism, in this case complicated by severe autoimmune disease. (Funded by the National Institutes of Health and the University of Washington.).
Assuntos
Doenças Autoimunes/complicações , Deleção de Genes , Hidroxicolecalciferóis/sangue , Espondilite Anquilosante/genética , Deficiência de Vitamina D/genética , Proteína de Ligação a Vitamina D/genética , Cálcio/sangue , Cromatografia Líquida , Feminino , Fraturas Espontâneas/etiologia , Expressão Gênica , Homozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único , Irmãos , Espondilite Anquilosante/complicações , Espectrometria de Massas em Tandem , Vitamina D/metabolismo , Proteína de Ligação a Vitamina D/deficiênciaRESUMO
The need for assay characterization is ubiquitous in quantitative mass spectrometry-based proteomics. Among many assay characteristics, the limit of blank (LOB) and limit of detection (LOD) are two particularly useful figures of merit. LOB and LOD are determined by repeatedly quantifying the observed intensities of peptides in samples with known peptide concentrations and deriving an intensity versus concentration response curve. Most commonly, a weighted linear or logistic curve is fit to the intensity-concentration response, and LOB and LOD are estimated from the fit. Here we argue that these methods inaccurately characterize assays where observed intensities level off at low concentrations, which is a common situation in multiplexed systems. This manuscript illustrates the deficiencies of these methods, and proposes an alternative approach based on nonlinear regression that overcomes these inaccuracies. We evaluated the performance of the proposed method using computer simulations and using eleven experimental data sets acquired in Data-Independent Acquisition (DIA), Parallel Reaction Monitoring (PRM), and Selected Reaction Monitoring (SRM) mode. When the intensity levels off at low concentrations, the nonlinear model changes the estimates of LOB/LOD upwards, in some data sets by 20-40%. In absence of a low concentration intensity leveling off, the estimates of LOB/LOD obtained with nonlinear statistical modeling were identical to those of weighted linear regression. We implemented the nonlinear regression approach in the open-source R-based software MSstats, and advocate its general use for characterization of mass spectrometry-based assays.
Assuntos
Espectrometria de Massas/métodos , Dinâmica não Linear , Sequência de Aminoácidos , Bioensaio , Calibragem , Humanos , Limite de Detecção , Modelos Teóricos , Peptídeos/química , Análise de RegressãoRESUMO
Patients with chronic kidney disease (CKD) exhibit a myriad of metabolic derangements, including dyslipidemia characterized by low plasma concentrations of high-density lipoprotein (HDL)-associated cholesterol. However, the effects of kidney disease on HDL composition have not been comprehensively determined. Here we used a targeted mass spectrometric approach to quantify 38 proteins contained in the HDL particles within a CKD cohort of 509 participants with a broad range of estimated glomerular filtration rates (eGFRs) (CKD stages I-V, and a mean eGFR of 45.5 mL/min/1.73m2). After adjusting for multiple testing, demographics, comorbidities, medications, and other characteristics, eGFR was significantly associated with differences in four HDL proteins. Compared to participants with an eGFR of 60 mL/min/1.73m2 or more, those with an eGFR under 15 mL/min/1.73m2 exhibited 1.89-fold higher retinol-binding protein 4 (95% confidence interval 1.34-2.67), 1.52-fold higher apolipoprotein C-III (1.25-1.84), 0.70-fold lower apolipoprotein L1 (0.55-0.92), and 0.64-fold lower vitronectin (0.48-0.85). Although the HDL apolipoprotein L1 was slightly lower among African Americans than among Caucasian individuals, the relationship to eGFR did not differ by race. After adjustment, no HDL-associated proteins associated with albuminuria. Thus, modest changes in the HDL proteome provide preliminary evidence for an association between HDL proteins and declining kidney function, but this needs to be replicated. Future analyses will determine if HDL proteomics is indeed a clinical predictor of declining kidney function or cardiovascular outcomes.
Assuntos
Dislipidemias/sangue , Lipoproteínas HDL/sangue , Insuficiência Renal Crônica/sangue , Adulto , Negro ou Afro-Americano/estatística & dados numéricos , Idoso , Cromatografia Líquida/métodos , Estudos de Coortes , Dislipidemias/metabolismo , Feminino , Taxa de Filtração Glomerular , Humanos , Masculino , Pessoa de Meia-Idade , Proteômica/métodos , Insuficiência Renal Crônica/metabolismo , Fatores de Risco , Espectrometria de Massas em Tandem/métodos , População Branca/estatística & dados numéricosRESUMO
As compared to conventional high-performance liquid chromatography (HPLC) techniques, nanoflow HPLC exhibits improved sensitivity and limits of detection. However, nanoflow HPLC suffers from low throughput due to instrument failure (e.g., fitting fatigue and trapping column failure), limiting the utility of the technique for clinical and industrial applications. To increase the robustness of nanoflow HPLC, we have developed and tested a trapping column exchanging robot for autonomous interchange of trapping columns. This robot makes reproducible, automated connections between the active trapping column and the rest of the HPLC system. The intertrapping column retention time is shown to be sufficiently reproducible for scheduled selected reaction monitoring assays to be performed on different trapping columns without rescheduling the selection windows.
Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Sequência de Aminoácidos , Automação , Cromatografia Líquida de Alta Pressão/instrumentação , Desenho Assistido por Computador , Teste em Amostras de Sangue Seco , Humanos , Nanotecnologia , Peptídeos/análise , Peptídeos/sangue , Peptídeos/química , Reprodutibilidade dos Testes , Espectrometria de Massas em TandemRESUMO
BACKGROUND: Quantifying the variability of biomarkers is important, as high within-person variability can lead to misclassification of individuals. Short-term variability of important markers of vitamin D metabolism is relatively unknown. METHODS: A repeatability study was conducted in 160 Atherosclerosis Risk in Communities study participants (60% female, 28% black, mean age 76 years). Fasting serum was drawn at 2 time points, a median of 6 (range 3-13) weeks apart. Vitamin D binding protein (VDBP) and 25-hydroxyvitamin D [25(OH)D] were measured by LC-MS, fibroblast growth factor (FGF23) and parathyroid hormone (PTH) by enzyme-linked immunoassay, and calcium and phosphorus by Roche Cobas 6000. Free and bioavailable 25(OH)D were calculated. We calculated the within-person CV (CVW), intraclass correlation coefficient (ICC), Spearman rank correlation coefficient (r), and percent reclassified. RESULTS: The CVW was lowest for calcium (2.0%), albumin (3.6%), 25(OH)D (6.9%), VDBP (7.0%) and phosphorus (7.6%); intermediate for free 25(OH)D (9.0%) and bioavailable 25(OH)D (9.9%); and highest for PTH (16.7%) and FGF23 (17.8%). Reclassification was highest for PTH, VDBP, and phosphorus (all 7.5%). The ICC and r were highest (≥0.80) for 25(OH)D, free 25(OH)D, bioavailable 25(OH)D and PTH, but somewhat lower (approximately 0.60-0.75) for the other biomarkers. CONCLUSIONS: Six-week short-term variability, as assessed by CVW, was quite low for VDBP, calcium and phosphorus, but fairly high for FGF23 and PTH. As such, multiple measurements of FGF23 and PTH may be needed to minimize misclassification. These results provide insight into the extent of potential misclassification of vitamin D markers in research and clinical settings.
Assuntos
Vitamina D/sangue , Vitamina D/metabolismo , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Biomarcadores/metabolismo , Feminino , Fator de Crescimento de Fibroblastos 23 , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
BACKGROUND: Vitamin D deficiency is associated with poor bone health and other adverse health outcomes; however, the associations are greatly attenuated in black vs white individuals. One possible explanation for this attenuation is different concentrations of bioavailable vitamin D metabolites in plasma, which are estimated with equations that include the total concentration of vitamin D binding globulin (VDBG) and haplotype-specific dissociation constants. METHODS: We developed a method to quantify VDBG with LC-MS/MS that could also identify the haplotypes/isoforms of VDBG present. We validated the method according to recent recommendations for publications of biomarker studies. We determined serum VDBG concentrations in samples from the Atherosclerosis Risk in Communities cohort and compared the results with a widely used monoclonal immunoassay. RESULTS: With 10 µL of serum or plasma, the lower limit of quantification for the assay (<20% CV) was 71 µg/mL. The assay was linear from 62 to 434 µg/mL, with total imprecision of 7.3-9.0% CV at approximately 250 µg/mL. Significant hemolysis interfered with quantification. The identification of isoforms was 97% concordant with genotyping (κ coefficient). Method comparison with immunoassay revealed significant isoform-specific effects in the immunoassay. Mean concentrations (SD) of VDBG by mass spectrometry were similar in whites and blacks [262 (25) vs 266 (35) µg/mL, respectively; P = 0.43]. CONCLUSIONS: Validated mass spectrometric methods for the quantification of proteins in human samples can provide additional information beyond immunoassay. Counter to prior observations by immunoassay, VDBG concentrations did not vary by race.
Assuntos
Espectrometria de Massas em Tandem/métodos , Proteína de Ligação a Vitamina D/sangue , População Negra , Cromatografia Líquida , Feminino , Genótipo , Humanos , Imunoensaio , Masculino , Estados Unidos , Proteína de Ligação a Vitamina D/genética , População BrancaRESUMO
Yeast (Saccharomyces cerevisiae) has an innate ability to withstand high levels of ethanol that would prove lethal to or severely impair the physiology of other organisms. Significant efforts have been undertaken to elucidate the biochemical and biophysical mechanisms of how ethanol interacts with lipid bilayers and cellular membranes. This research has implicated the yeast cellular membrane as the primary target of the toxic effects of ethanol. Analysis of model membrane systems exposed to ethanol has demonstrated ethanol's perturbing effect on lipid bilayers, and altering the lipid composition of these model bilayers can mitigate the effect of ethanol. In addition, cell membrane composition has been correlated with the ethanol tolerance of yeast cells. However, the physical phenomena behind this correlation are likely to be complex. Previous work based on often divergent experimental conditions and time-consuming low-resolution methodologies that limit large-scale analysis of yeast fermentations has fallen short of revealing shared mechanisms of alcohol tolerance in Saccharomyces cerevisiae. Lipidomics, a modern mass spectrometry-based approach to analyze the complex physiological regulation of lipid composition in yeast and other organisms, has helped to uncover potential mechanisms for alcohol tolerance in yeast. Recent experimental work utilizing lipidomics methodologies has provided a more detailed molecular picture of the relationship between lipid composition and ethanol tolerance. While it has become clear that the yeast cell membrane composition affects its ability to tolerate ethanol, the molecular mechanisms of yeast alcohol tolerance remain to be elucidated.
Assuntos
Membrana Celular/efeitos dos fármacos , Etanol/farmacologia , Lipídeos de Membrana/química , Saccharomyces cerevisiae/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Etanol/metabolismo , Espectrometria de Massas , Lipídeos de Membrana/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/efeitos dos fármacosRESUMO
Optimizing ethanol yield during fermentation is important for efficient production of fuel alcohol, as well as wine and other alcoholic beverages. However, increasing ethanol concentrations during fermentation can create problems that result in arrested or sluggish sugar-to-ethanol conversion. The fundamental cellular basis for these problem fermentations, however, is not well understood. Small-scale fermentations were performed in a synthetic grape must using 22 industrial Saccharomyces cerevisiae strains (primarily wine strains) with various degrees of ethanol tolerance to assess the correlation between lipid composition and fermentation kinetic parameters. Lipids were extracted at several fermentation time points representing different growth phases of the yeast to quantitatively analyze phospholipids and ergosterol utilizing atmospheric pressure ionization-mass spectrometry methods. Lipid profiling of individual fermentations indicated that yeast lipid class profiles do not shift dramatically in composition over the course of fermentation. Multivariate statistical analysis of the data was performed using partial least-squares linear regression modeling to correlate lipid composition data with fermentation kinetic data. The results indicate a strong correlation (R(2) = 0.91) between the overall lipid composition and the final ethanol concentration (wt/wt), an indicator of strain ethanol tolerance. One potential component of ethanol tolerance, the maximum yeast cell concentration, was also found to be a strong function of lipid composition (R(2) = 0.97). Specifically, strains unable to complete fermentation were associated with high phosphatidylinositol levels early in fermentation. Yeast strains that achieved the highest cell densities and ethanol concentrations were positively correlated with phosphatidylcholine species similar to those known to decrease the perturbing effects of ethanol in model membrane systems.
Assuntos
Membrana Celular/química , Etanol/metabolismo , Lipídeos/análise , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Fermentação , Espectrometria de Massas , Saccharomyces cerevisiae/químicaRESUMO
During alcoholic fermentation, Saccharomyces cerevisiae is exposed to a host of environmental and physiological stresses. Extremes of fermentation temperature have previously been demonstrated to induce fermentation arrest under growth conditions that would otherwise result in complete sugar utilization at "normal" temperatures and nutrient levels. Fermentations were carried out at 15°C, 25°C, and 35°C in a defined high-sugar medium using three Saccharomyces cerevisiae strains with diverse fermentation characteristics. The lipid composition of these strains was analyzed at two fermentation stages, when ethanol levels were low early in stationary phase and in late stationary phase at high ethanol concentrations. Several lipids exhibited dramatic differences in membrane concentration in a temperature-dependent manner. Principal component analysis (PCA) was used as a tool to elucidate correlations between specific lipid species and fermentation temperature for each yeast strain. Fermentations carried out at 35°C exhibited very high concentrations of several phosphatidylinositol species, whereas at 15°C these yeast strains exhibited higher levels of phosphatidylethanolamine and phosphatidylcholine species with medium-chain fatty acids. Furthermore, membrane concentrations of ergosterol were highest in the yeast strain that experienced stuck fermentations at all three temperatures. Fluorescence anisotropy measurements of yeast cell membrane fluidity during fermentation were carried out using the lipophilic fluorophore diphenylhexatriene. These measurements demonstrate that the changes in the lipid composition of these yeast strains across the range of fermentation temperatures used in this study did not significantly affect cell membrane fluidity. However, the results from this study indicate that fermenting S. cerevisiae modulates its membrane lipid composition in a temperature-dependent manner.
Assuntos
Membrana Celular/química , Fosfatidiletanolaminas/análise , Fosfatidilinositóis/análise , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efeitos da radiação , Membrana Celular/fisiologia , Meios de Cultura/química , Ergosterol/análise , Etanol/metabolismo , Fermentação , Fluidez de Membrana , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/fisiologia , TemperaturaRESUMO
OBJECTIVES: Standard implementations of amyloid typing by liquid chromatography-tandem mass spectrometry use capabilities unavailable to most clinical laboratories. To improve accessibility of this testing, we explored easier approaches to tissue sampling and data processing. METHODS: We validated a typing method using manual sampling in place of laser microdissection, pairing the technique with a semiquantitative measure of sampling adequacy. In addition, we created an open-source data processing workflow (Crux Pipeline) for clinical users. RESULTS: Cases of amyloidosis spanning the major types were distinguishable with 100% specificity using measurements of individual amyloidogenic proteins or in combination with the ratio of λ and κ constant regions. Crux Pipeline allowed for rapid, batched data processing, integrating the steps of peptide identification, statistical confidence estimation, and label-free protein quantification. CONCLUSIONS: Accurate mass spectrometry-based amyloid typing is possible without laser microdissection. To facilitate entry into solid tissue proteomics, newcomers can leverage manual sampling approaches in combination with Crux Pipeline and related tools.
Assuntos
Amiloidose , Espectrometria de Massas em Tandem , Amiloide/análise , Proteínas Amiloidogênicas , Amiloidose/diagnóstico , Humanos , Microdissecção , Espectrometria de Massas em Tandem/métodosRESUMO
Background: Despite its clear advantages over immunoassay-based testing, the measurement of serum thyroglobulin by mass spectrometry remains limited to a handful of institutions. Slow adoption by clinical laboratories could reflect limited accessibility to existing methods that have sensitivity comparable to modern immunoassays, as well as a lack of tools for calibration and assay harmonization. Methods: We developed and validated a liquid chromatography-tandem mass spectrometry-based assay for the quantification of serum thyroglobulin. The protocol combined peptide immunoaffinity purification using a commercially available, well-characterized monoclonal antibody and mobile phase modification with dimethylsulfoxide (DMSO) for enhanced sensitivity. To facilitate harmonization with other laboratories, we developed a novel, serum-based 5-point distributable reference material (Husky Ref). Results: The assay demonstrated a lower limit of quantification of 0.15 ng/mL (<20 %CV). Mobile phase DMSO increased signal intensity of the target peptide at least 3-fold, improving quantification at low concentrations. Calibration traceable to Husky Ref enabled harmonization between laboratories in an interlaboratory study. Conclusions: Sensitive mass spectrometry-based thyroglobulin measurement can be achieved using a monoclonal antibody during peptide immunoaffinity purification and the addition of mobile phase DMSO. Laboratories interested in deploying this assay can utilize the provided standard operating procedure and freely-available Husky Ref reference material.
RESUMO
BACKGROUND: The measurement of plasma concentrations of retinol binding protein is a component of nutritional assessment in neonatal intensive care. However, serial testing in newborns is hampered by the limited amount of blood that can be sampled. Limitations are most severe with preterm infants, for whom close monitoring may be most important. METHODS: We developed an assay to quantify retinol binding protein using trypsin digestion and liquid chromatography-tandem mass spectrometry, which requires a serum or plasma volume of 5 µl. Additionally, we validated the method according to current recommendations and performed comparison with a standard nephelometry platform in clinical use. RESULTS: The assay demonstrated linearity from below 1 mg/dL (0.48 µM) to more than 20 mg/dL (9.7 µM), and an imprecision of 11.8% at 0.43 mg/dL (0.21 µM). The distribution of results observed with the new method was different when compared with nephelometry. CONCLUSION: Liquid chromatography-tandem mass spectrometry facilitated testing a smaller sample volume, thereby increasing the ability to monitor key nutritional markers in premature infants. The differences in results compared with a commercially-available nephelometric assay revealed questionable results for lower concentrations by immunoassay.
Assuntos
Avaliação Nutricional , Proteínas de Ligação ao Retinol/metabolismo , Espectrometria de Massas em Tandem , Cromatografia Líquida , Feminino , Humanos , Recém-Nascido , MasculinoRESUMO
BACKGROUND: Genetic variants in apolipoprotein L1 (APOL1), a protein that protects humans from infection with African trypanosomes, explain a substantial proportion of the excess risk of chronic kidney disease affecting individuals with sub-Saharan ancestry. The mechanisms by which risk variants damage kidney cells remain incompletely understood. In preclinical models, APOL1 expressed in podocytes can lead to significant kidney injury. In humans, studies in kidney transplant suggest that the effects of APOL1 variants are predominantly driven by donor genotype. Less attention has been paid to a possible role for circulating APOL1 in kidney injury. METHODS: Using liquid chromatography-tandem mass spectrometry, the concentrations of APOL1 were measured in plasma and urine from participants in the Seattle Kidney Study. Asymmetric flow field-flow fractionation was used to evaluate the size of APOL1-containing lipoprotein particles in plasma. Transgenic mice that express wild-type or risk variant APOL1 from an albumin promoter were treated to cause kidney injury and evaluated for renal disease and pathology. RESULTS: In human participants, urine concentrations of APOL1 were correlated with plasma concentrations and reduced kidney function. Risk variant APOL1 was enriched in larger particles. In mice, circulating risk variant APOL1-G1 promoted kidney damage and reduced podocyte density without renal expression of APOL1. CONCLUSIONS: These results suggest that plasma APOL1 is dynamic and contributes to the progression of kidney disease in humans, which may have implications for treatment of APOL1-associated kidney disease and for kidney transplantation.
Assuntos
Apolipoproteína L1 , Insuficiência Renal Crônica , Humanos , Camundongos , Animais , Apolipoproteína L1/genética , Apolipoproteína L1/metabolismo , Apolipoproteínas/genética , Rim/patologia , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/patologia , Camundongos Transgênicos , Modelos Animais de Doenças , AlbuminasRESUMO
OBJECTIVE: Understanding mechanisms underlying rapid estimated glomerular filtration rate (eGFR) decline is important to predict and treat kidney disease in type 1 diabetes (T1D). RESEARCH DESIGN AND METHODS: We performed a case-control study nested within four T1D cohorts to identify urinary proteins associated with rapid eGFR decline. Case and control subjects were categorized based on eGFR decline ≥3 and <1 mL/min/1.73 m2/year, respectively. We used targeted liquid chromatography-tandem mass spectrometry to measure 38 peptides from 20 proteins implicated in diabetic kidney disease. Significant proteins were investigated in complementary human cohorts and in mouse proximal tubular epithelial cell cultures. RESULTS: The cohort study included 1,270 participants followed a median 8 years. In the discovery set, only cathepsin D peptide and protein were significant on full adjustment for clinical and laboratory variables. In the validation set, associations of cathepsin D with eGFR decline were replicated in minimally adjusted models but lost significance with adjustment for albuminuria. In a meta-analysis with combination of discovery and validation sets, the odds ratio for the association of cathepsin D with rapid eGFR decline was 1.29 per SD (95% CI 1.07-1.55). In complementary human cohorts, urine cathepsin D was associated with tubulointerstitial injury and tubulointerstitial cathepsin D expression was associated with increased cortical interstitial fractional volume. In mouse proximal tubular epithelial cell cultures, advanced glycation end product-BSA increased cathepsin D activity and inflammatory and tubular injury markers, which were further increased with cathepsin D siRNA. CONCLUSIONS: Urine cathepsin D is associated with rapid eGFR decline in T1D and reflects kidney tubulointerstitial injury.
Assuntos
Diabetes Mellitus Tipo 1 , Nefropatias Diabéticas , Albuminúria , Animais , Biomarcadores/metabolismo , Estudos de Casos e Controles , Catepsina D , Estudos de Coortes , Progressão da Doença , Taxa de Filtração Glomerular , Humanos , Camundongos , Proteômica/métodosRESUMO
PURPOSE: Aberrant activation of the Notch signaling pathway is commonly observed in human pancreatic cancer, although the mechanism(s) for this activation has not been elucidated. EXPERIMENTAL DESIGN: A panel of 20 human pancreatic cancer cell lines was profiled for the expression of Notch pathway-related ligands, receptors, and target genes. Disruption of intracellular Notch signaling, either genetically by RNA interference targeting NOTCH1 or pharmacologically by means of the gamma-secretase inhibitor GSI-18, was used for assessing requirement of Notch signaling in pancreatic cancer initiation and maintenance. RESULTS: Striking overexpression of Notch ligand transcripts was detectable in the vast majority of pancreatic cancer cell lines, most prominently JAGGED2 (18 of 20 cases, 90%) and DLL4 (10 of 20 cases, 50%). In two cell lines, genomic amplification of the DLL3 locus was observed, mirrored by overexpression of DLL3 transcripts. In contrast, coding region mutations of NOTCH1 or NOTCH2 were not observed. Genetic and pharmacologic inhibition of Notch signaling mitigated anchorage-independent growth in pancreatic cancer cells, confirming that sustained Notch activation is a requirement for pancreatic cancer maintenance. Further, transient pretreatment of pancreatic cancer cells with GSI-18 resulted in depletion in the proportion of tumor-initiating aldehyde dehydrogenase-expressing subpopulation and was associated with inhibition of colony formation in vitro and xenograft engraftment in vivo, underscoring a requirement for the Notch-dependent aldehyde dehydrogenase-expressing cells in pancreatic cancer initiation. CONCLUSIONS: Our studies confirm that Notch activation is almost always ligand dependent in pancreatic cancer, and inhibition of Notch signaling is a promising therapeutic strategy in this malignancy.
Assuntos
Neoplasias Pancreáticas/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Aldeído Desidrogenase/metabolismo , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Linhagem Celular Tumoral , Proliferação de Células , Inibidores Enzimáticos/farmacologia , Amplificação de Genes , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína Jagged-2 , Ligantes , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Neoplasias Pancreáticas/etiologia , Neoplasias Pancreáticas/genética , Receptor Notch1/genética , Receptor Notch2/genéticaRESUMO
Establishment of the [GAR +] prion in Saccharomyces cerevisiae reduces both transcriptional expression of the HXT3 hexose transporter gene and fermentation capacity in high sugar conditions. We evaluated the impact of deletion of the HXT3 gene on the expression of [GAR +] prion phenotype in a vineyard isolate, UCD932, and found that changes in fermentation capacity were observable even with complete loss of the Hxt3 transporter, suggesting other cellular functions affecting fermentation rate may be impacted in [GAR +] strains. In a comparison of isogenic [GAR +] and [gar -] strains, localization of the Pma1 plasma membrane ATPase showed differences in distribution within the membrane. In addition, plasma membrane lipid composition varied between the two cell types. Oxygen uptake was decreased in prion induced cells suggesting membrane changes affect plasma membrane functionality beyond glucose transport. Thus, multiple cell surface properties are altered upon induction of the [GAR +] prion in addition to changes in expression of the HXT3 gene. We propose a model wherein [GAR +] prion establishment within a yeast population is associated with modulation of plasma membrane functionality, fermentation capacity, niche dominance, and cell physiology to facilitate growth and mitigate cytotoxicity under certain environmental conditions. Down-regulation of expression of the HXT3 hexose transporter gene is only one component of a suite of physiological differences. Our data show the [GAR +] prion state is accompanied by multiple changes in the yeast cell surface that prioritize population survivability over maximizing metabolic capacity and enable progeny to establish an alternative adaptive state while maintaining reversibility.
RESUMO
Programmed ribosomal frameshifting provides a mechanism to decode information located in two overlapping reading frames by diverting a proportion of translating ribosomes into a second open reading frame (ORF). The result is the production of two proteins: the product of standard translation from ORF1 and an ORF1-ORF2 fusion protein. Such programmed frameshifting is commonly utilized as a gene expression mechanism in viruses that infect eukaryotic cells and in a subset of cellular genes. RNA secondary structures, consisting of pseudoknots or stem-loops, located downstream of the shift site often act as cis-stimulators of frameshifting. Here, we demonstrate for the first time that antisense oligonucleotides can functionally mimic these RNA structures to induce +1 ribosomal frameshifting when annealed downstream of the frameshift site, UCC UGA. Antisense-induced shifting of the ribosome into the +1 reading frame is highly efficient in both rabbit reticulocyte lysate translation reactions and in cultured mammalian cells. The efficiency of antisense-induced frameshifting at this site is responsive to the sequence context 5' of the shift site and to polyamine levels.