Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Neural Comput ; 25(9): 2450-85, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23663143

RESUMO

Ordinal classification refers to classification problems in which the classes have a natural order imposed on them because of the nature of the concept studied. Some ordinal classification approaches perform a projection from the input space to one-dimensional (latent) space that is partitioned into a sequence of intervals (one for each class). Class identity of a novel input pattern is then decided based on the interval its projection falls into. This projection is trained only indirectly as part of the overall model fitting. As with any other latent model fitting, direct construction hints one may have about the desired form of the latent model can prove very useful for obtaining high-quality models. The key idea of this letter is to construct such a projection model directly, using insights about the class distribution obtained from pairwise distance calculations. The proposed approach is extensively evaluated with 8 nominal and ordinal classifiers methods, 10 real-world ordinal classification data sets, and 4 different performance measures. The new methodology obtained the best results in average ranking when considering three of the performance metrics, although significant differences are found for only some of the methods. Also, after observing other methods of internal behavior in the latent space, we conclude that the internal projections do not fully reflect the intraclass behavior of the patterns. Our method is intrinsically simple, intuitive, and easily understandable, yet highly competitive with state-of-the-art approaches to ordinal classification.

2.
Int J Biometeorol ; 57(4): 545-55, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22886343

RESUMO

It is now widely accepted that weather conditions occurring several months prior to the onset of flowering have a major influence on various aspects of olive reproductive phenology, including flowering intensity. Given the variable characteristics of the Mediterranean climate, we analyse its influence on the registered variations in olive flowering intensity in southern Spain, and relate them to previous climatic parameters using a year-clustering approach, as a first step towards an olive flowering phenology model adapted to different year categories. Phenological data from Cordoba province (Southern Spain) for a 30-year period (1982-2011) were analysed. Meteorological and phenological data were first subjected to both hierarchical and "K-means" clustering analysis, which yielded four year-categories. For this classification purpose, three different models were tested: (1) discriminant analysis; (2) decision-tree analysis; and (3) neural network analysis. Comparison of the results showed that the neural-networks model was the most effective, classifying four different year categories with clearly distinct weather features. Flowering-intensity models were constructed for each year category using the partial least squares regression method. These category-specific models proved to be more effective than general models. They are better suited to the variability of the Mediterranean climate, due to the different response of plants to the same environmental stimuli depending on the previous weather conditions in any given year. The present detailed analysis of the influence of weather patterns of different years on olive phenology will help us to understand the short-term effects of climate change on olive crop in the Mediterranean area that is highly affected by it.


Assuntos
Flores/fisiologia , Modelos Teóricos , Olea/fisiologia , Análise por Conglomerados , Árvores de Decisões , Previsões , Pólen , Reprodução , Espanha , Tempo (Meteorologia)
3.
PLoS One ; 16(6): e0252148, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34086705

RESUMO

OBJECTIVE: One of the main problems of lung transplantation is the shortage of organs as well as reduced survival rates. In the absence of an international standardized model for lung donor-recipient allocation, we set out to develop such a model based on the characteristics of past experiences with lung donors and recipients with the aim of improving the outcomes of the entire transplantation process. METHODS: This was a retrospective analysis of 404 lung transplants carried out at the Reina Sofía University Hospital (Córdoba, Spain) over 23 years. We analyzed various clinical variables obtained via our experience of clinical practice in the donation and transplantation process. These were used to create various classification models, including classical statistical methods and also incorporating newer machine-learning approaches. RESULTS: The proposed model represents a powerful tool for donor-recipient matching, which in this current work, exceeded the capacity of classical statistical methods. The variables that predicted an increase in the probability of survival were: higher pre-transplant and post-transplant functional vital capacity (FVC), lower pre-transplant carbon dioxide (PCO2) pressure, lower donor mechanical ventilation, and shorter ischemia time. The variables that negatively influenced transplant survival were low forced expiratory volume in the first second (FEV1) pre-transplant, lower arterial oxygen pressure (PaO2)/fraction of inspired oxygen (FiO2) ratio, bilobar transplant, elderly recipient and donor, donor-recipient graft disproportion requiring a surgical reduction (Tailor), type of combined transplant, need for cardiopulmonary bypass during the surgery, death of the donor due to head trauma, hospitalization status before surgery, and female and male recipient donor sex. CONCLUSIONS: These results show the difficulty of the problem which required the introduction of other variables into the analysis. The combination of classical statistical methods and machine learning can support decision-making about the compatibility between donors and recipients. This helps to facilitate reliable prediction and to optimize the grafts for transplantation, thereby improving the transplanted patient survival rate.


Assuntos
Transplante de Pulmão/métodos , Obtenção de Tecidos e Órgãos/métodos , Feminino , Sobrevivência de Enxerto/fisiologia , Humanos , Masculino , Espanha , Taxa de Sobrevida , Doadores de Tecidos , Transplantados
4.
Neural Netw ; 123: 401-411, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31926464

RESUMO

In Machine Learning, the most common way to address a given problem is to optimize an error measure by training a single model to solve the desired task. However, sometimes it is possible to exploit latent information from other related tasks to improve the performance of the main one, resulting in a learning paradigm known as Multi-Task Learning (MTL). In this context, the high computational capacity of deep neural networks (DNN) can be combined with the improved generalization performance of MTL, by designing independent output layers for every task and including a shared representation for them. In this paper we exploit this theoretical framework on a problem related to Wind Power Ramps Events (WPREs) prediction in wind farms. Wind energy is one of the fastest growing industries in the world, with potential global spreading and deep penetration in developed and developing countries. One of the main issues with the majority of renewable energy resources is their intrinsic intermittency, which makes it difficult to increase the penetration of these technologies into the energetic mix. In this case, we focus on the specific problem of WPREs prediction, which deeply affect the wind speed and power prediction, and they are also related to different turbines damages. Specifically, we exploit the fact that WPREs are spatially-related events, in such a way that predicting the occurrence of WPREs in different wind farms can be taken as related tasks, even when the wind farms are far away from each other. We propose a DNN-MTL architecture, receiving inputs from all the wind farms at the same time to predict WPREs simultaneously in each of the farms locations. The architecture includes some shared layers to learn a common representation for the information from all the wind farms, and it also includes some specification layers, which refine the representation to match the specific characteristics of each location. Finally we modified the Adam optimization algorithm for dealing with imbalanced data, adding costs which are updated dynamically depending on the worst classified class. We compare the proposal against a baseline approach based on building three different independent models (one for each wind farm considered), and against a state-of-the-art reservoir computing approach. The DNN-MTL proposal achieves very good performance in WPREs prediction, obtaining a good balance for all the classes included in the problem (negative ramp, no ramp and positive ramp).


Assuntos
Aprendizado Profundo , Fontes Geradoras de Energia , Vento
5.
Neural Netw ; 21(7): 951-61, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18313261

RESUMO

We propose a multilogistic regression model based on the combination of linear and product-unit models, where the product-unit nonlinear functions are constructed with the product of the inputs raised to arbitrary powers. The estimation of the coefficients of the model is carried out in two phases. First, the number of product-unit basis functions and the exponents' vector are determined by means of an evolutionary neural network algorithm. Afterwards, a standard maximum likelihood optimization method determines the rest of the coefficients in the new space given by the initial variables and the product-unit basis functions previously estimated. We compare the performance of our approach with the logistic regression built on the initial variables and several learning classification techniques. The statistical test carried out on twelve benchmark datasets shows that the proposed model is competitive in terms of the accuracy of the classifier.


Assuntos
Algoritmos , Evolução Biológica , Modelos Logísticos , Redes Neurais de Computação , Animais , Humanos , Armazenamento e Recuperação da Informação/métodos , Aprendizagem , Funções Verossimilhança , Dinâmica não Linear , Processamento de Sinais Assistido por Computador
6.
Neural Netw ; 84: 57-66, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27639724

RESUMO

Ordinal classification considers those classification problems where the labels of the variable to predict follow a given order. Naturally, labelled data is scarce or difficult to obtain in this type of problems because, in many cases, ordinal labels are given by a user or expert (e.g. in recommendation systems). Firstly, this paper develops a new strategy for ordinal classification where both labelled and unlabelled data are used in the model construction step (a scheme which is referred to as semi-supervised learning). More specifically, the ordinal version of kernel discriminant learning is extended for this setting considering the neighbourhood information of unlabelled data, which is proposed to be computed in the feature space induced by the kernel function. Secondly, a new method for semi-supervised kernel learning is devised in the context of ordinal classification, which is combined with our developed classification strategy to optimise the kernel parameters. The experiments conducted compare 6 different approaches for semi-supervised learning in the context of ordinal classification in a battery of 30 datasets, showing (1) the good synergy of the ordinal version of discriminant analysis and the use of unlabelled data and (2) the advantage of computing distances in the feature space induced by the kernel function.


Assuntos
Análise Discriminante , Análise Espacial , Aprendizado de Máquina Supervisionado , Algoritmos
7.
Int J Food Microbiol ; 105(3): 317-32, 2005 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-16054719

RESUMO

The combined effect of temperature (10.5 to 24.5 degrees C), pH level (5.5 to 7.5), sodium chloride level (0.25% to 6.25%) and sodium nitrite level (0 to 200 ppm) on the predicted specific growth rate (Gr), lag-time (Lag) and maximum population density (yEnd) of Leuconostoc mesenteroides under aerobic and anaerobic conditions, was studied using an Artificial Neural Network-based model (ANN) in comparison with Response Surface Methodology (RS). For both aerobic and anaerobic conditions, two types of ANN model were elaborated, unidimensional for each of the growth parameters, and multidimensional in which the three parameters Gr, Lag, and yEnd are combined. Although in general no significant statistical differences were observed between both types of model, we opted for the unidimensional model, because it obtained the lowest mean value for the standard error of prediction for generalisation. The ANN models developed provided reliable estimates for the three kinetic parameters studied; the SEP values in aerobic conditions ranged from between 2.82% for Gr, 6.05% for Lag and 10% for yEnd, a higher degree accuracy than those of the RS model (Gr: 9.54%; Lag: 8.89%; yEnd: 10.27%). Similar results were observed for anaerobic conditions. During external validation, a higher degree of accuracy (Af) and bias (Bf) were observed for the ANN model compared with the RS model. ANN predictive growth models are a valuable tool, enabling swift determination of L. mesenteroides growth parameters.


Assuntos
Leuconostoc/crescimento & desenvolvimento , Modelos Biológicos , Redes Neurais de Computação , Relação Dose-Resposta a Droga , Microbiologia de Alimentos , Concentração de Íons de Hidrogênio , Cinética , Oxigênio/metabolismo , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Cloreto de Sódio/farmacologia , Nitrito de Sódio/farmacologia , Temperatura
8.
Neural Netw ; 15(10): 1259-78, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12425442

RESUMO

In this paper we present a cooperative coevolutive model for the evolution of neural network topology and weights, called MOBNET. MOBNET evolves subcomponents that must be combined in order to form a network, instead of whole networks. The problem of assigning credit to the subcomponents is approached as a multi-objective optimization task. The subcomponents in a cooperative coevolutive model must fulfill different criteria to be useful, these criteria usually conflict with each other. The problem of evaluating the fitness on an individual based on many criteria that must be optimized together can be approached as a multi-criteria optimization problems, so the methods from multi-objective optimization offer the most natural way to solve the problem. In this work we show how using several objectives for every subcomponent and evaluating its fitness as a multi-objective optimization problem, the performance of the model is highly competitive. MOBNET is compared with several standard methods of classification and with other neural network models in solving four real-world problems, and it shows the best overall performance of all classification methods applied. It also produces smaller networks when compared to other models. The basic idea underlying MOBNET is extensible to a more general model of coevolutionary computation, as none of its features are exclusive of neural networks design. There are many applications of cooperative coevolution that could benefit from the multi-objective optimization approach proposed in this paper.


Assuntos
Evolução Biológica , Redes Neurais de Computação
9.
IEEE Trans Neural Netw ; 14(3): 575-96, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-18238040

RESUMO

This paper presents COVNET, a new cooperative coevolutionary model for evolving artificial neural networks. This model is based on the idea of coevolving subnetworks that must cooperate to form a solution for a specific problem, instead of evolving complete networks. The combination of this subnetworks is part of a coevolutionary process. The best combinations of subnetworks must be evolved together with the coevolution of the subnetworks. Several subpopulations of subnetworks coevolve cooperatively and genetically isolated. The individual of every subpopulation are combined to form whole networks. This is a different approach from most current models of evolutionary neural networks which try to develop whole networks. COVNET places as few restrictions as possible over the network structure, allowing the model to reach a wide variety of architectures during the evolution and to be easily extensible to other kind of neural networks. The performance of the model in solving three real problems of classification is compared with a modular network, the adaptive mixture of experts and with the results presented in the bibliography. COVNET has shown better generalization and produced smaller networks than the adaptive mixture of experts and has also achieved results, at least, comparable with the results in the bibliography.

10.
Clin Exp Allergy ; 32(11): 1606-12, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12569982

RESUMO

BACKGROUND: Pollen allergy is a common disease causing hayfever in 15% of the population in Europe. Medical studies report that a prior knowledge of pollen content in the air can be useful in the management of pollen-related diseases. OBJECTIVES: The aim of this work was to forecast daily Poaceae pollen concentrations in the air by using meteorological data and pollen counts from previous days as independent variables. METHODS: Linear regression models and co-evolutive neural network models were used for this study. Pollen was monitored by a Hirst-type spore trap using standard techniques. The data were obtained from the Spanish Aerobiology Network database, University of Cordoba Monitoring Unit. The set of data includes a series of 20 years, from 1982 to 2001. A classification of the years according to their allergenic potential was made using a K-mean cluster analysis with pollen and meteorological parameters. Statistical analysis was applied to all the years of each class with the exception of the most recent year, which was used for model validation. RESULTS: It was observed that cumulative variables and pollen values from previous days are the most important factors in the models. In general, neural network equations produce better results than linear regression equations. CONCLUSION: Co-evolutive neural network models, which obtain the best forecasts (an almost 90% "good" classification), make it possible to predict daily airborne Poaceae pollen concentrations. This new system based on neural network models is a step toward the automation of the pollen forecast process.


Assuntos
Poluição Ambiental , Conceitos Meteorológicos , Redes Neurais de Computação , Pólen , Previsões , Modelos Lineares , Espanha
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa