Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Tidsskr Nor Laegeforen ; 144(4)2024 Mar 19.
Artigo em Inglês, Norueguês | MEDLINE | ID: mdl-38506004

RESUMO

This clinical review examines the treatment of status epilepticus, a condition in which epileptic seizures are prolonged and pose a significant risk of brain damage and death. International guidelines recommend the use of benzodiazepines as first-line treatment, and these should be administered promptly and in appropriate doses. Second-line treatment involves the use of high-dose anti-seizure medications to stop and prevent seizures. If seizure activity persists, general anaesthesia should be administered as soon as possible. All neurological hospital departments should have established and rehearsed protocols for treating status epilepticus.


Assuntos
Epilepsia , Estado Epiléptico , Adulto , Humanos , Anticonvulsivantes/uso terapêutico , Estado Epiléptico/tratamento farmacológico , Estado Epiléptico/prevenção & controle , Epilepsia/tratamento farmacológico , Benzodiazepinas/uso terapêutico
2.
Tidsskr Nor Laegeforen ; 143(2)2023 01 31.
Artigo em Inglês, Norueguês | MEDLINE | ID: mdl-36718887

RESUMO

The temporal lobes are the part of the brain most likely to give rise to epileptic seizures. Seizures originating in the temporal lobes vary greatly in character; some may be so unusual that they are not even recognised as epileptic. For patients who have been diagnosed with hippocampal sclerosis and whose seizures cannot be controlled with drugs, epilepsy surgery may be a good treatment option. In this brief clinical review, we summarise the key features of epilepsy and highlight the importance of accurate and early diagnosis for achieving good clinical outcomes.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Humanos , Epilepsia do Lobo Temporal/diagnóstico , Epilepsia do Lobo Temporal/tratamento farmacológico , Epilepsia do Lobo Temporal/cirurgia , Convulsões , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/cirurgia , Encéfalo , Hipocampo/diagnóstico por imagem , Eletroencefalografia
3.
J Neurosci Res ; 99(10): 2669-2687, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34173259

RESUMO

Understanding and diagnosing cognitive impairment in epilepsy remains a prominent challenge. New etiological models suggest that cognitive difficulties might not be directly linked to seizure activity, but are rather a manifestation of a broader brain pathology. Consequently, treating seizures is not sufficient to alleviate cognitive symptoms, highlighting the need for novel diagnostic tools. Here, we investigated whether the organization of three intrinsic, resting-state functional connectivity networks was correlated with domain-specific cognitive test performance. Using individualized EEG source reconstruction and graph theory, we examined the association between network small worldness and cognitive test performance in 23 patients with focal epilepsy and 17 healthy controls, who underwent a series of standardized pencil-and-paper and digital cognitive tests. We observed that the specific networks robustly correlated with test performance in distinct cognitive domains. Specifically, correlations were evident between the default mode network and memory in patients, the central-executive network and executive functioning in controls, and the salience network and social cognition in both groups. Interestingly, the correlations were evident in both groups, but in different domains, suggesting an alteration in these functional neurocognitive networks in focal epilepsy. The present findings highlight the potential clinical relevance of functional brain network dysfunction in cognitive impairment.


Assuntos
Encéfalo/diagnóstico por imagem , Cognição , Epilepsias Parciais/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/diagnóstico por imagem , Testes Neuropsicológicos , Encéfalo/fisiologia , Cognição/fisiologia , Epilepsias Parciais/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Rede Nervosa/fisiologia
4.
Epilepsy Behav ; 116: 107771, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33545650

RESUMO

OBJECTIVE: To evaluate whether cognitive performance is affected in newly diagnosed temporal lobe epilepsy (TLE) and to determine the most vulnerable cognitive domains. METHODS: In this baseline longitudinal study, differences in memory and non-memory cognitive functions were assessed using comprehensive neuropsychological test batteries in 21 adult patients with newly diagnosed non-lesional TLE and individually matched controls. In addition, the analyses included ratings of self-perceived emotional status. RESULTS: The patients performed more poorly than the control group regarding delayed visual memory (p = 0.013) and executive function tasks related to switching (Trail Making Test and verbal fluency shifting; p = 0.025 and p = 0.03, respectively). We found no differences in verbal learning and memory, attention/working memory/processing speed, and other executive functions. SIGNIFICANCE: Our results show that patients with TLE often have specific cognitive deficits at time of diagnosis, even in the absence of structural brain abnormalities. This supports the hypothesis that memory dysfunction is linked to an underlying pathology rather than to the effect of recurrent seizures, long-term use of anti-seizure medication, or other epilepsy-related factors. As certain executive functions are affected at an early stage, the pathology may involve brain regions beyond the temporal lobe and may comprise larger brain networks. These results indicate the need for greater awareness of cognition at the time of diagnosis of TLE and before initiation of treatment, and integration of neuropsychological assessment into early routine clinical care.


Assuntos
Epilepsia do Lobo Temporal , Adulto , Cognição , Epilepsia do Lobo Temporal/complicações , Função Executiva , Humanos , Estudos Longitudinais , Testes Neuropsicológicos
5.
Epilepsy Behav ; 111: 107193, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32759060

RESUMO

INTRODUCTION: Status epilepticus (SE) is a neurological emergency in which immediate intervention is required to prevent permanent brain damage and death. Intravenous (IV) valproic acid (VPA) is often used for the treatment of SE. However, IV VPA frequently increases the blood ammonia level. In this study, we explore the impact of IV VPA-induced hyperammonemia (HA) on treatment management of SE and discuss the challenges related to this particular condition. METHODS: We used data from medical records of 31 adult patients (≥18 years) treated with IV VPA for SE at Oslo University Hospital between January 2006 and October 2019. Clinical and blood sample data and information about the influence of HA on treatment were collected. Correlations between ammonia levels and other continuous or categorical variables were tested using the Pearson's correlation coefficient. The Kruskal-Wallis H-test was used to analyze associations between different variables and treatment decisions. RESULTS: Thirty of 31 patients had increased ammonia level during IV VPA treatment. In 16/30 patients, VPA was discontinued, and in 6/30 patients, the dose was reduced. We found a difference in the median peak ammonia level among the groups where VPA was discontinued (99 µmol/l), reduced (71 µmol/l), and continued (55.5 µmol/l) (P = 0.008). Also clinical status, measured by West Haven Criteria, varied among the groups where VPA was discontinued (3.5), reduced (2.5), and continued (2.0) (P = 0.01). Treatment decisions at peak ammonia were not associated with the level of liver enzymes and bilirubin. CONCLUSION: Hyperammonemia had a substantial impact on further management. To date, no recommendations exist on how to manage VPA-induced HA in SE. We call for systematic prospective studies and evidence-based guidelines.


Assuntos
Anticonvulsivantes/efeitos adversos , Tomada de Decisão Clínica/métodos , Hiperamonemia/induzido quimicamente , Estado Epiléptico/tratamento farmacológico , Ácido Valproico/efeitos adversos , Adulto , Idoso , Anticonvulsivantes/uso terapêutico , Estudos de Coortes , Feminino , Humanos , Hiperamonemia/sangue , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Estudos Retrospectivos , Estado Epiléptico/sangue , Ácido Valproico/uso terapêutico
6.
Cereb Cortex ; 28(11): 4036-4048, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30169757

RESUMO

Epileptic seizures are associated with increased astrocytic Ca2+ signaling, but the fine spatiotemporal kinetics of the ictal astrocyte-neuron interplay remains elusive. By using 2-photon imaging of awake head-fixed mice with chronic hippocampal windows we demonstrate that astrocytic Ca2+ signals precede neuronal Ca2+ elevations during the initial bout of kainate-induced seizures. On average, astrocytic Ca2+ elevations preceded neuronal activity in CA1 by about 8 s. In subsequent bouts of epileptic seizures, astrocytes and neurons were activated simultaneously. The initial astrocytic Ca2+ elevation was abolished in mice lacking the type 2 inositol-1,4,5-trisphosphate-receptor (Itpr2-/-). Furthermore, we found that Itpr2-/- mice exhibited 60% less epileptiform activity compared with wild-type mice when assessed by telemetric EEG monitoring. In both genotypes we also demonstrate that spreading depression waves may play a part in seizure termination. Our findings imply a role for astrocytic Ca2+ signals in ictogenesis.


Assuntos
Astrócitos/fisiologia , Sinalização do Cálcio , Epilepsia/fisiopatologia , Hipocampo/fisiopatologia , Neurônios/fisiologia , Convulsões/fisiopatologia , Animais , Epilepsia/induzido quimicamente , Agonistas de Aminoácidos Excitatórios/administração & dosagem , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/fisiologia , Ácido Caínico/administração & dosagem , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Convulsões/induzido quimicamente
9.
Tidsskr Nor Laegeforen ; 136(1): 36-8, 2016 Jan 12.
Artigo em Norueguês | MEDLINE | ID: mdl-26757658

RESUMO

Febrile convulsions affect 2-5% of children in the age group from 6 months to 5 years. The convulsions seldom have negative consequences for the child's development, but may in rare cases constitute a debut symptom of epilepsy.


Assuntos
Convulsões Febris/etiologia , Fatores Etários , Pré-Escolar , Epilepsia/diagnóstico , Humanos , Lactente , Fatores de Risco , Convulsões Febris/diagnóstico , Convulsões Febris/genética
11.
Tidsskr Nor Laegeforen ; 141(10)2021 06 29.
Artigo em Inglês, Norueguês | MEDLINE | ID: mdl-34182721

RESUMO

Can COVID-19 cause epilepsy, or increase the tendency to seizures in those with epilepsy? Is it safe for persons with epilepsy to be vaccinated against COVID-19?


Assuntos
COVID-19 , Epilepsia , Humanos , SARS-CoV-2 , Convulsões
12.
Tidsskr Nor Laegeforen ; 134(1): 37-41, 2014 Jan 14.
Artigo em Inglês, Norueguês | MEDLINE | ID: mdl-24429754

RESUMO

BACKGROUND: Brain research in the last century was mainly directed at neurons, with the role of glia assumed to be limited to repair, supplying nutrients and above all acting as a packing material between neurons. In recent years, the importance of glial cells for normal brain function has been recognised. This article summarizes knowledge of glial cells of relevance to epilepsy. METHOD: The article is based on a literature search in PubMed as well as the authors' clinical and research experience. RESULTS: Astrocytes are the largest subgroup of glial cells and, in common with neurons, have diverse membrane transporters, ion channels and receptors. Among the most important roles of astrocytes are the uptake and redistribution of ions and water, glucose metabolism and communication with nerve cells. Disturbances in all of these functions have been associated with epilepsy. INTERPRETATION: Epilepsy has previously been regarded as exclusively a disturbance in the functioning of neurons and especially of their contact points, the synapses. The mechanisms of action of today's anti-epileptic drugs are therefore primarily directed at neuronal channels and receptors. New knowledge of the role played by glial cells could increase our understanding of how epilepsy arises and could lead to new treatment strategies.


Assuntos
Astrócitos/fisiologia , Epilepsia/fisiopatologia , Aquaporina 4/metabolismo , Aquaporina 4/fisiologia , Astrócitos/metabolismo , Sinalização do Cálcio/fisiologia , Epilepsia/metabolismo , Junções Comunicantes/metabolismo , Junções Comunicantes/fisiologia , Ácido Glutâmico/metabolismo , Ácido Glutâmico/fisiologia , Humanos , Neuroglia/metabolismo , Neuroglia/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Transmissão Sináptica/fisiologia , Equilíbrio Hidroeletrolítico/fisiologia
13.
Tidsskr Nor Laegeforen ; 134(1): 42-6, 2014 Jan 14.
Artigo em Norueguês | MEDLINE | ID: mdl-24429755

RESUMO

BACKGROUND: There are currently around 25 antiepileptic drugs in use in Norway, of which 15 have entered the market in the last 20 years. All have somewhat different effect- and adverse effect profiles and mechanisms of action. Here we present a brief overview of current knowledge regarding the basic mechanisms of action of these drugs. METHOD: The review is based on a discretionary selection of relevant articles found through a literature search in PubMed and our own clinical and research experience. RESULTS: There are, roughly speaking, four main mechanisms; 1) modulation of ion channels (sodium and calcium channel blockers, potassium channel openers), 2) potentiation of GABAergic inhibition, 3) reduction of glutamatergic excitation and 4) modulation of presynaptic neurotransmitter release. Some of the drugs have several mechanisms of action, and for some of them it is unclear which mechanism is clinically most important. To some extent, the drugs' mechanisms of action predict their effect against different types of epilepsy and seizures. For instance, sodium channel blockers work best against focal seizures, while calcium channel blockers work best against absences, a type of generalised seizure. INTERPRETATION: Optimal treatment of patients with epilepsy requires not only thorough knowledge of seizure- and epilepsy classification, but also insight into the mechanisms of action of antiepileptic drugs.


Assuntos
Anticonvulsivantes/farmacologia , Epilepsia/tratamento farmacológico , GABAérgicos/farmacologia , Humanos , Moduladores de Transporte de Membrana/farmacologia , Receptores Ionotrópicos de Glutamato/antagonistas & inibidores , Receptores Pré-Sinápticos/efeitos dos fármacos
14.
Front Netw Physiol ; 4: 1360297, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38405021

RESUMO

Spreading depolarizations (SD) are slow waves of complete depolarization of brain tissue followed by neuronal silencing that may play a role in seizure termination. Even though SD was first discovered in the context of epilepsy research, the link between SD and epileptic activity remains understudied. Both seizures and SD share fundamental pathophysiological features, and recent evidence highlights the frequent occurrence of SD in experimental seizure models. Human data on co-occurring seizures and SD are limited but suggestive. This mini-review addresses possible roles of SD during epileptiform activity, shedding light on SD as a potential mechanism for terminating epileptiform activity. A common denominator for many forms of epilepsy is reactive astrogliosis, a process characterized by morphological and functional changes to astrocytes. Data suggest that SD mechanisms are potentially perturbed in reactive astrogliosis and we propose that this may affect seizure pathophysiology.

15.
medRxiv ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38585944

RESUMO

Objective: Cognitive impairment is prevalent among individuals with epilepsy, and it is possible that genetic factors can underlie this relationship. Here, we investigated the potential shared genetic basis of common epilepsies and general cognitive ability (COG). Methods: We applied linkage disequilibrium score (LDSC) regression, MiXeR and conjunctional false discovery rate (conjFDR) to analyze different aspects of genetic overlap between COG and epilepsies. We used the largest available genome-wide association study data on COG (n = 269,867) and common epilepsies (n = 27,559 cases, 42,436 controls), including the broad phenotypes 'all epilepsy', focal epilepsies and genetic generalized epilepsies (GGE), and as well as specific subtypes. We functionally annotated the identified loci using a variety of biological resources and validated the results in independent samples. Results: Using MiXeR, COG (11.2k variants) was estimated to be almost four times more polygenic than 'all epilepsy', GGE, juvenile myoclonic epilepsy (JME), and childhood absence epilepsy (CAE) (2.5k - 2.9k variants). The other epilepsy phenotypes were insufficiently powered for analysis. We show extensive genetic overlap between COG and epilepsies with significant negative genetic correlations (-0.23 to -0.04). COG was estimated to share 2.9k variants with both GGE and 'all epilepsy', and 2.3k variants with both JME and CAE. Using conjFDR, we identified 66 distinct loci shared between COG and epilepsies, including novel associations for GGE (27), 'all epilepsy' (5), JME (5) and CAE (5). The implicated genes were significantly expressed in multiple brain regions. The results were validated in independent samples (COG: p = 1.0 × 10-14; 'all epilepsy': p = 5.6 × 10-3). Significance: Our study demonstrates a substantial genetic basis shared between epilepsies and COG and identifies novel overlapping genomic loci. Enhancing our understanding of the relationship between epilepsies and COG may lead to the development of novel comorbidity-targeted epilepsy treatments.

16.
Neurol Genet ; 10(3): e200143, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38817246

RESUMO

Background and Objectives: Epilepsies are associated with differences in cortical thickness (TH) and surface area (SA). However, the mechanisms underlying these relationships remain elusive. We investigated the extent to which these phenotypes share genetic influences. Methods: We analyzed genome-wide association study data on common epilepsies (n = 69,995) and TH and SA (n = 32,877) using Gaussian mixture modeling MiXeR and conjunctional false discovery rate (conjFDR) analysis to quantify their shared genetic architecture and identify overlapping loci. We biologically interrogated the loci using a variety of resources and validated in independent samples. Results: The epilepsies (2.4 k-2.9 k variants) were more polygenic than both SA (1.8 k variants) and TH (1.3 k variants). Despite absent genome-wide genetic correlations, there was a substantial genetic overlap between SA and genetic generalized epilepsy (GGE) (1.1 k), all epilepsies (1.1 k), and juvenile myoclonic epilepsy (JME) (0.7 k), as well as between TH and GGE (0.8 k), all epilepsies (0.7 k), and JME (0.8 k), estimated with MiXeR. Furthermore, conjFDR analysis identified 15 GGE loci jointly associated with SA and 15 with TH, 3 loci shared between SA and childhood absence epilepsy, and 6 loci overlapping between SA and JME. 23 loci were novel for epilepsies and 11 for cortical morphology. We observed a high degree of sign concordance in the independent samples. Discussion: Our findings show extensive genetic overlap between generalized epilepsies and cortical morphology, indicating a complex genetic relationship with mixed-effect directions. The results suggest that shared genetic influences may contribute to cortical abnormalities in epilepsies.

17.
Front Neurol ; 14: 1153975, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37638185

RESUMO

Approximately one-third of patients with epilepsy are drug-refractory, necessitating novel treatment approaches. Chronopharmacology, which adjusts pharmacological treatment to physiological variations in seizure susceptibility and drug responsiveness, offers a promising strategy to enhance efficacy and tolerance. This narrative review provides an overview of the biological foundations for rhythms in seizure activity, clinical implications of seizure patterns through case reports, and the potential of chronopharmacological strategies to improve treatment. Biological rhythms, including circadian and infradian rhythms, play an important role in epilepsy. Understanding seizure patterns may help individualize treatment decisions and optimize therapeutic outcomes. Altering drug concentrations based on seizure risk periods, adjusting administration times, and exploring hormone therapy are potential strategies. Large-scale randomized controlled trials are needed to evaluate the efficacy and safety of differential and intermittent treatment approaches. By tailoring treatment to individual seizure patterns and pharmacological properties, chronopharmacology offers a personalized approach to improve outcomes in patients with epilepsy.

18.
Nat Commun ; 14(1): 953, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36806170

RESUMO

Perivascular spaces are important highways for fluid and solute transport in the brain enabling efficient waste clearance during sleep. However, the underlying mechanisms augmenting perivascular flow in sleep are unknown. Using two-photon imaging of naturally sleeping male mice we demonstrate sleep cycle-dependent vascular dynamics of pial arteries and penetrating arterioles: slow, large-amplitude oscillations in NREM sleep, a vasodilation in REM sleep, and a vasoconstriction upon awakening at the end of a sleep cycle and microarousals in NREM and intermediate sleep. These vascular dynamics are mirrored by changes in the size of the perivascular spaces of the penetrating arterioles: slow fluctuations in NREM sleep, reduction in REM sleep and an enlargement upon awakening after REM sleep and during microarousals in NREM and intermediate sleep. By biomechanical modeling we demonstrate that these sleep cycle-dependent perivascular dynamics likely enhance fluid flow and solute transport in perivascular spaces to levels comparable to cardiac pulsation-driven oscillations.


Assuntos
Sono de Ondas Lentas , Sono , Masculino , Animais , Camundongos , Sono REM , Artérias , Vasodilatação
19.
Clin Neurophysiol ; 150: 1-16, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36972647

RESUMO

OBJECTIVE: Using EEG to characterise functional brain networks through graph theory has gained significant interest in clinical and basic research. However, the minimal requirements for reliable measures remain largely unaddressed. Here, we examined functional connectivity estimates and graph theory metrics obtained from EEG with varying electrode densities. METHODS: EEG was recorded with 128 electrodes in 33 participants. The high-density EEG data were subsequently subsampled into three sparser montages (64, 32, and 19 electrodes). Four inverse solutions, four measures of functional connectivity, and five graph theory metrics were tested. RESULTS: The correlation between the results obtained with 128-electrode and the subsampled montages decreased as a function of the number of electrodes. As a result of decreased electrode density, the network metrics became skewed: mean network strength and clustering coefficient were overestimated, while characteristic path length was underestimated. CONCLUSIONS: Several graph theory metrics were altered when electrode density was reduced. Our results suggest that, for optimal balance between resource demand and result precision, a minimum of 64 electrodes should be utilised when graph theory metrics are used to characterise functional brain networks in source-reconstructed EEG data. SIGNIFICANCE: Characterisation of functional brain networks derived from low-density EEG warrants careful consideration.


Assuntos
Encéfalo , Eletroencefalografia , Humanos , Eletroencefalografia/métodos , Mapeamento Encefálico/métodos , Cabeça , Eletrodos , Rede Nervosa
20.
Glia ; 60(7): 1172-81, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22535546

RESUMO

Emerging evidence points to monocarboxylates as key players in the pathophysiology of temporal lobe epilepsy (TLE) with hippocampal sclerosis (mesial temporal lobe epilepsy, MTLE). Monocarboxylate transporters (MCTs) 1 and 2, which are abundantly present on brain endothelial cells and perivascular astrocyte endfeet, respectively, facilitate the transport of monocarboxylates and protons across cell membranes. Recently, we reported that the density of MCT1 protein is reduced on endothelial cells and increased on astrocyte plasma membranes in the hippocampal formation in patients with MTLE and in several animal models of the disorder. Because the perivascular astrocyte endfeet comprise an important part of the neurovascular unit, we now assessed the distribution of the MCT2 in hippocampal formations in TLE patients with (MTLE) or without hippocampal sclerosis (non-MTLE). Light microscopic immunohistochemistry revealed significantly less perivascular MCT2 immunoreactivity in the hippocampal formation in MTLE (n = 6) than in non-MTLE (n = 6) patients, and to a lesser degree in non-MTLE than in nonepilepsy patients (n = 4). Immunogold electron microscopy indicated that the loss of MCT2 protein occurred on perivascular astrocyte endfeet. Interestingly, the loss of MCT2 on astrocyte endfeet in MTLE (n = 3) was accompanied by an upregulation of the protein on astrocyte membranes facing synapses in the neuropil, when compared with non-MTLE (n = 3). We propose that the altered distribution of MCT1 and MCT2 in TLE (especially MTLE) limits the flux of monocarboxylates across the blood-brain barrier and enhances the exchange of monocarboxylates within the brain parenchyma.


Assuntos
Astrócitos/metabolismo , Epilepsia do Lobo Temporal/metabolismo , Hipocampo/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Adolescente , Adulto , Idoso , Barreira Hematoencefálica/metabolismo , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neurópilo/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa