Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Am J Hum Genet ; 110(2): 215-227, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36586412

RESUMO

Neurodevelopmental disorders (NDDs) result from highly penetrant variation in hundreds of different genes, some of which have not yet been identified. Using the MatchMaker Exchange, we assembled a cohort of 27 individuals with rare, protein-altering variation in the transcriptional coregulator ZMYM3, located on the X chromosome. Most (n = 24) individuals were males, 17 of which have a maternally inherited variant; six individuals (4 male, 2 female) harbor de novo variants. Overlapping features included developmental delay, intellectual disability, behavioral abnormalities, and a specific facial gestalt in a subset of males. Variants in almost all individuals (n = 26) are missense, including six that recurrently affect two residues. Four unrelated probands were identified with inherited variation affecting Arg441, a site at which variation has been previously seen in NDD-affected siblings, and two individuals have de novo variation resulting in p.Arg1294Cys (c.3880C>T). All variants affect evolutionarily conserved sites, and most are predicted to damage protein structure or function. ZMYM3 is relatively intolerant to variation in the general population, is widely expressed across human tissues, and encodes a component of the KDM1A-RCOR1 chromatin-modifying complex. ChIP-seq experiments on one variant, p.Arg1274Trp, indicate dramatically reduced genomic occupancy, supporting a hypomorphic effect. While we are unable to perform statistical evaluations to definitively support a causative role for variation in ZMYM3, the totality of the evidence, including 27 affected individuals, recurrent variation at two codons, overlapping phenotypic features, protein-modeling data, evolutionary constraint, and experimentally confirmed functional effects strongly support ZMYM3 as an NDD-associated gene.


Assuntos
Deficiência Intelectual , Malformações do Sistema Nervoso , Transtornos do Neurodesenvolvimento , Humanos , Masculino , Feminino , Transtornos do Neurodesenvolvimento/genética , Deficiência Intelectual/genética , Fenótipo , Regulação da Expressão Gênica , Face , Proteínas Nucleares/genética , Histona Desmetilases/genética
2.
Am J Hum Genet ; 108(5): 857-873, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33961779

RESUMO

The ALF transcription factor paralogs, AFF1, AFF2, AFF3, and AFF4, are components of the transcriptional super elongation complex that regulates expression of genes involved in neurogenesis and development. We describe an autosomal dominant disorder associated with de novo missense variants in the degron of AFF3, a nine amino acid sequence important for its binding to ubiquitin ligase, or with de novo deletions of this region. The sixteen affected individuals we identified, along with two previously reported individuals, present with a recognizable pattern of anomalies, which we named KINSSHIP syndrome (KI for horseshoe kidney, NS for Nievergelt/Savarirayan type of mesomelic dysplasia, S for seizures, H for hypertrichosis, I for intellectual disability, and P for pulmonary involvement), partially overlapping the AFF4-associated CHOPS syndrome. Whereas homozygous Aff3 knockout mice display skeletal anomalies, kidney defects, brain malformations, and neurological anomalies, knockin animals modeling one of the microdeletions and the most common of the missense variants identified in affected individuals presented with lower mesomelic limb deformities like KINSSHIP-affected individuals and early lethality, respectively. Overexpression of AFF3 in zebrafish resulted in body axis anomalies, providing some support for the pathological effect of increased amount of AFF3. The only partial phenotypic overlap of AFF3- and AFF4-associated syndromes and the previously published transcriptome analyses of ALF transcription factors suggest that these factors are not redundant and each contributes uniquely to proper development.


Assuntos
Encefalopatias/genética , Epilepsia/genética , Rim Fundido/genética , Deficiência Intelectual/genética , Mutação de Sentido Incorreto , Proteínas Nucleares/genética , Osteocondrodisplasias/genética , Adolescente , Sequência de Aminoácidos , Animais , Encefalopatias/etiologia , Criança , Pré-Escolar , Epilepsia/complicações , Evolução Molecular , Feminino , Frequência do Gene , Humanos , Lactente , Masculino , Camundongos , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/deficiência , Fenótipo , Estabilidade Proteica , Síndrome , Fatores de Elongação da Transcrição/química , Fatores de Elongação da Transcrição/genética , Adulto Jovem , Peixe-Zebra/genética
3.
Genet Med ; 25(8): 100884, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37161864

RESUMO

PURPOSE: Neurodevelopmental disorders (NDDs) often result from rare genetic variation, but genomic testing yield for NDDs remains below 50%, suggesting that clinically relevant variants may be missed by standard analyses. Here, we analyze "poison exons" (PEs), which are evolutionarily conserved alternative exons often absent from standard gene annotations. Variants that alter PE inclusion can lead to loss of function and may be highly penetrant contributors to disease. METHODS: We curated published RNA sequencing data from developing mouse cortex to define 1937 conserved PE regions potentially relevant to NDDs, and we analyzed variants found by genome sequencing in multiple NDD cohorts. RESULTS: Across 2999 probands, we found 6 novel clinically relevant variants in PE regions. Five of these variants are in genes that are part of the sodium voltage-gated channel alpha subunit family (SCN1A, SCN2A, and SCN8A), which is associated with epilepsies. One variant is in SNRPB, associated with cerebrocostomandibular syndrome. These variants have moderate to high computational impact assessments, are absent from population variant databases, and in genes with gene-phenotype associations consistent with each probands reported features. CONCLUSION: With a very minimal increase in variant analysis burden (average of 0.77 variants per proband), annotation of PEs can improve diagnostic yield for NDDs and likely other congenital conditions.


Assuntos
Epilepsia , Animais , Camundongos , Humanos , Éxons/genética , Epilepsia/diagnóstico , Epilepsia/genética , Fenótipo , Sequência de Bases , Genômica
4.
Genet Med ; 25(11): 100922, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37403762

RESUMO

PURPOSE: RPH3A encodes a protein involved in the stabilization of GluN2A subunit of N-methyl-D-aspartate (NMDA)-type glutamate receptors at the cell surface, forming a complex essential for synaptic plasticity and cognition. We investigated the effect of variants in RPH3A in patients with neurodevelopmental disorders. METHODS: By using trio-based exome sequencing, GeneMatcher, and screening of 100,000 Genomes Project data, we identified 6 heterozygous variants in RPH3A. In silico and in vitro models, including rat hippocampal neuronal cultures, have been used to characterize the effect of the variants. RESULTS: Four cases had a neurodevelopmental disorder with untreatable epileptic seizures [p.(Gln73His)dn; p.(Arg209Lys); p.(Thr450Ser)dn; p.(Gln508His)], and 2 cases [p.(Arg235Ser); p.(Asn618Ser)dn] showed high-functioning autism spectrum disorder. Using neuronal cultures, we demonstrated that p.(Thr450Ser) and p.(Asn618Ser) reduce the synaptic localization of GluN2A; p.(Thr450Ser) also increased the surface levels of GluN2A. Electrophysiological recordings showed increased GluN2A-dependent NMDA ionotropic glutamate receptor currents for both variants and alteration of postsynaptic calcium levels. Finally, expression of the Rph3AThr450Ser variant in neurons affected dendritic spine morphology. CONCLUSION: Overall, we provide evidence that missense gain-of-function variants in RPH3A increase GluN2A-containing NMDA ionotropic glutamate receptors at extrasynaptic sites, altering synaptic function and leading to a clinically variable neurodevelopmental presentation ranging from untreatable epilepsy to autism spectrum disorder.


Assuntos
Transtorno do Espectro Autista , Epilepsia , Animais , Humanos , Ratos , Transtorno do Espectro Autista/genética , Epilepsia/genética , Mutação de Sentido Incorreto/genética , N-Metilaspartato/metabolismo , Neurônios/metabolismo , Rabfilina-3A
5.
Am J Hum Genet ; 104(4): 701-708, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30879638

RESUMO

Developmental delay and intellectual disability (DD and ID) are heterogeneous phenotypes that arise in many rare monogenic disorders. Because of this rarity, developing cohorts with enough individuals to robustly identify disease-associated genes is challenging. Social-media platforms that facilitate data sharing among sequencing labs can help to address this challenge. Through one such tool, GeneMatcher, we identified nine DD- and/or ID-affected probands with a rare, heterozygous variant in the gene encoding the serine/threonine-protein kinase BRSK2. All probands have a speech delay, and most present with intellectual disability, motor delay, behavioral issues, and autism. Six of the nine variants are predicted to result in loss of function, and computational modeling predicts that the remaining three missense variants are damaging to BRSK2 structure and function. All nine variants are absent from large variant databases, and BRSK2 is, in general, relatively intolerant to protein-altering variation among humans. In all six probands for whom parents were available, the mutations were found to have arisen de novo. Five of these de novo variants were from cohorts with at least 400 sequenced probands; collectively, the cohorts span 3,429 probands, and the observed rate of de novo variation in these cohorts is significantly higher than the estimated background-mutation rate (p = 2.46 × 10-6). We also find that exome sequencing provides lower coverage and appears less sensitive to rare variation in BRSK2 than does genome sequencing; this fact most likely reduces BRSK2's visibility in many clinical and research sequencing efforts. Altogether, our results implicate damaging variation in BRSK2 as a source of neurodevelopmental disease.


Assuntos
Deficiências do Desenvolvimento/genética , Deleção de Genes , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Proteínas Serina-Treonina Quinases/genética , Adolescente , Transtorno Autístico/genética , Criança , Transtornos do Comportamento Infantil/genética , Pré-Escolar , Exoma , Feminino , Predisposição Genética para Doença , Variação Genética , Heterozigoto , Humanos , Masculino , Transtornos das Habilidades Motoras/genética , Mutação , Fenótipo , Sequenciamento do Exoma , Adulto Jovem
6.
Am J Hum Genet ; 104(2): 319-330, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30639322

RESUMO

ZMIZ1 is a coactivator of several transcription factors, including p53, the androgen receptor, and NOTCH1. Here, we report 19 subjects with intellectual disability and developmental delay carrying variants in ZMIZ1. The associated features include growth failure, feeding difficulties, microcephaly, facial dysmorphism, and various other congenital malformations. Of these 19, 14 unrelated subjects carried de novo heterozygous single-nucleotide variants (SNVs) or single-base insertions/deletions, 3 siblings harbored a heterozygous single-base insertion, and 2 subjects had a balanced translocation disrupting ZMIZ1 or involving a regulatory region of ZMIZ1. In total, we identified 13 point mutations that affect key protein regions, including a SUMO acceptor site, a central disordered alanine-rich motif, a proline-rich domain, and a transactivation domain. All identified variants were absent from all available exome and genome databases. In vitro, ZMIZ1 showed impaired coactivation of the androgen receptor. In vivo, overexpression of ZMIZ1 mutant alleles in developing mouse brains using in utero electroporation resulted in abnormal pyramidal neuron morphology, polarization, and positioning, underscoring the importance of ZMIZ1 in neural development and supporting mutations in ZMIZ1 as the cause of a rare neurodevelopmental syndrome.


Assuntos
Deficiências do Desenvolvimento/genética , Deficiência Intelectual/genética , Mutação Puntual , Fatores de Transcrição/genética , Alelos , Animais , Criança , Pré-Escolar , Deficiências do Desenvolvimento/patologia , Feminino , Humanos , Lactente , Deficiência Intelectual/patologia , Masculino , Camundongos , Síndrome , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
7.
Genet Med ; 24(4): 851-861, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34930662

RESUMO

PURPOSE: SouthSeq is a translational research study that undertook genome sequencing (GS) for infants with symptoms suggestive of a genetic disorder. Recruitment targeted racial/ethnic minorities and rural, medically underserved areas in the Southeastern United States, which are historically underrepresented in genomic medicine research. METHODS: GS and analysis were performed for 367 infants to detect disease-causal variation concurrent with standard of care evaluation and testing. RESULTS: Definitive diagnostic (DD) or likely diagnostic (LD) genetic findings were identified in 30% of infants, and 14% of infants harbored an uncertain result. Only 43% of DD/LD findings were identified via concurrent clinical genetic testing, suggesting that GS testing is better for obtaining early genetic diagnosis. We also identified phenotypes that correlate with the likelihood of receiving a DD/LD finding, such as craniofacial, ophthalmologic, auditory, skin, and hair abnormalities. We did not observe any differences in diagnostic rates between racial/ethnic groups. CONCLUSION: We describe one of the largest-to-date GS cohorts of ill infants, enriched for African American and rural patients. Our results show the utility of GS because it provides early-in-life detection of clinically relevant genetic variations not detected by current clinical genetic testing, particularly for infants exhibiting certain phenotypic features.


Assuntos
Testes Diagnósticos de Rotina , Testes Genéticos , Sequência de Bases , Mapeamento Cromossômico , Testes Genéticos/métodos , Genômica , Humanos
8.
PLoS Genet ; 14(11): e1007671, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30500825

RESUMO

Mutations that alter signaling of RAS/MAPK-family proteins give rise to a group of Mendelian diseases known as RASopathies. However, among RASopathies, the matrix of genotype-phenotype relationships is still incomplete, in part because there are many RAS-related proteins and in part because the phenotypic consequences may be variable and/or pleiotropic. Here, we describe a cohort of ten cases, drawn from six clinical sites and over 16,000 sequenced probands, with de novo protein-altering variation in RALA, a RAS-like small GTPase. All probands present with speech and motor delays, and most have intellectual disability, low weight, short stature, and facial dysmorphism. The observed rate of de novo RALA variants in affected probands is significantly higher (p = 4.93 x 10(-11)) than expected from the estimated random mutation rate. Further, all de novo variants described here affect residues within the GTP/GDP-binding region of RALA; in fact, six alleles arose at only two codons, Val25 and Lys128. The affected residues are highly conserved across both RAL- and RAS-family genes, are devoid of variation in large human population datasets, and several are homologous to positions at which disease-associated variants have been observed in other GTPase genes. We directly assayed GTP hydrolysis and RALA effector-protein binding of the observed variants, and found that all but one tested variant significantly reduced both activities compared to wild-type. The one exception, S157A, reduced GTP hydrolysis but significantly increased RALA-effector binding, an observation similar to that seen for oncogenic RAS variants. These results show the power of data sharing for the interpretation and analysis of rare variation, expand the spectrum of molecular causes of developmental disability to include RALA, and provide additional insight into the pathogenesis of human disease caused by mutations in small GTPases.


Assuntos
Deficiências do Desenvolvimento/genética , Deficiência Intelectual/genética , Proteínas Mitocondriais/genética , Mutação , Domínios e Motivos de Interação entre Proteínas/genética , Proteínas ral de Ligação ao GTP/genética , Proteínas ras/genética , Fácies , Genótipo , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Proteínas Mitocondriais/química , Modelos Moleculares , Mutação de Sentido Incorreto , Fenótipo , Conformação Proteica , Proteínas ral de Ligação ao GTP/química , Proteínas ras/química
9.
Hum Mutat ; 41(5): 921-925, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31999386

RESUMO

The bromodomain adjacent to zinc finger 2B gene (BAZ2B) encodes a protein involved in chromatin remodeling. Loss of BAZ2B function has been postulated to cause neurodevelopmental disorders. To determine whether BAZ2B deficiency is likely to contribute to the pathogenesis of these disorders, we performed bioinformatics analyses that demonstrated a high level of functional convergence during fetal cortical development between BAZ2B and genes known to cause autism spectrum disorder (ASD) and neurodevelopmental disorder. We also found an excess of de novo BAZ2B loss-of-function variants in exome sequencing data from previously published cohorts of individuals with neurodevelopmental disorders. We subsequently identified seven additional individuals with heterozygous deletions, stop-gain, or de novo missense variants affecting BAZ2B. All of these individuals have developmental delay (DD), intellectual disability (ID), and/or ASD. Taken together, our findings suggest that haploinsufficiency of BAZ2B causes a neurodevelopmental disorder, whose cardinal features include DD, ID, and ASD.


Assuntos
Transtorno do Espectro Autista/genética , Predisposição Genética para Doença , Haploinsuficiência , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Fatores Genéricos de Transcrição/genética , Alelos , Substituição de Aminoácidos , Transtorno do Espectro Autista/diagnóstico , Expressão Gênica , Estudos de Associação Genética , Genótipo , Humanos , Deficiência Intelectual/diagnóstico , Transtornos do Neurodesenvolvimento/diagnóstico , Deleção de Sequência
10.
Am J Hum Genet ; 100(1): 117-127, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-28017373

RESUMO

From a GeneMatcher-enabled international collaboration, we identified ten individuals affected by intellectual disability, speech delay, ataxia, and facial dysmorphism and carrying a deleterious EBF3 variant detected by whole-exome sequencing. One 9-bp duplication and one splice-site, five missense, and two nonsense variants in EBF3 were found; the mutations occurred de novo in eight individuals, and the missense variant c.625C>T (p.Arg209Trp) was inherited by two affected siblings from their healthy mother, who is mosaic. EBF3 belongs to the early B cell factor family (also known as Olf, COE, or O/E) and is a transcription factor involved in neuronal differentiation and maturation. Structural assessment predicted that the five amino acid substitutions have damaging effects on DNA binding of EBF3. Transient expression of EBF3 mutant proteins in HEK293T cells revealed mislocalization of all but one mutant in the cytoplasm, as well as nuclear localization. By transactivation assays, all EBF3 mutants showed significantly reduced or no ability to activate transcription of the reporter gene CDKN1A, and in situ subcellular fractionation experiments demonstrated that EBF3 mutant proteins were less tightly associated with chromatin. Finally, in RNA-seq and ChIP-seq experiments, EBF3 acted as a transcriptional regulator, and mutant EBF3 had reduced genome-wide DNA binding and gene-regulatory activity. Our findings demonstrate that variants disrupting EBF3-mediated transcriptional regulation cause intellectual disability and developmental delay and are present in ∼0.1% of individuals with unexplained neurodevelopmental disorders.


Assuntos
Ataxia/genética , Face/anormalidades , Deficiência Intelectual/genética , Transtornos do Desenvolvimento da Linguagem/genética , Mutação , Transtornos do Neurodesenvolvimento/genética , Fatores de Transcrição/genética , Transcrição Gênica/genética , Adolescente , Adulto , Substituição de Aminoácidos , Criança , Pré-Escolar , Cromatina/genética , Cromatina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Deficiências do Desenvolvimento/genética , Exoma/genética , Feminino , Regulação da Expressão Gênica/genética , Genes Reporter , Células HEK293 , Humanos , Masculino , Modelos Moleculares , Mosaicismo , Transporte Proteico/genética , Síndrome , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
11.
Brain ; 142(9): 2617-2630, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31327001

RESUMO

The underpinnings of mild to moderate neurodevelopmental delay remain elusive, often leading to late diagnosis and interventions. Here, we present data on exome and genome sequencing as well as array analysis of 13 individuals that point to pathogenic, heterozygous, mostly de novo variants in WDFY3 (significant de novo enrichment P = 0.003) as a monogenic cause of mild and non-specific neurodevelopmental delay. Nine variants were protein-truncating and four missense. Overlapping symptoms included neurodevelopmental delay, intellectual disability, macrocephaly, and psychiatric disorders (autism spectrum disorders/attention deficit hyperactivity disorder). One proband presented with an opposing phenotype of microcephaly and the only missense-variant located in the PH-domain of WDFY3. Findings of this case are supported by previously published data, demonstrating that pathogenic PH-domain variants can lead to microcephaly via canonical Wnt-pathway upregulation. In a separate study, we reported that the autophagy scaffolding protein WDFY3 is required for cerebral cortical size regulation in mice, by controlling proper division of neural progenitors. Here, we show that proliferating cortical neural progenitors of human embryonic brains highly express WDFY3, further supporting a role for this molecule in the regulation of prenatal neurogenesis. We present data on Wnt-pathway dysregulation in Wdfy3-haploinsufficient mice, which display macrocephaly and deficits in motor coordination and associative learning, recapitulating the human phenotype. Consequently, we propose that in humans WDFY3 loss-of-function variants lead to macrocephaly via downregulation of the Wnt pathway. In summary, we present WDFY3 as a novel gene linked to mild to moderate neurodevelopmental delay and intellectual disability and conclude that variants putatively causing haploinsufficiency lead to macrocephaly, while an opposing pathomechanism due to variants in the PH-domain of WDFY3 leads to microcephaly.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Relacionadas à Autofagia/genética , Encéfalo/embriologia , Encéfalo/patologia , Variação Genética/genética , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Proteínas Adaptadoras de Transdução de Sinal/química , Adolescente , Animais , Proteínas Relacionadas à Autofagia/química , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Tamanho do Órgão , Estrutura Secundária de Proteína
12.
Genet Med ; 21(9): 2036-2042, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30739909

RESUMO

PURPOSE: To define the clinical characteristics of patients with variants in TCF20, we describe 27 patients, 26 of whom were identified via exome sequencing. We compare detailed clinical data with 17 previously reported patients. METHODS: Patients were ascertained through molecular testing laboratories performing exome sequencing (and other testing) with orthogonal confirmation; collaborating referring clinicians provided detailed clinical information. RESULTS: The cohort of 27 patients all had novel variants, and ranged in age from 2 to 68 years. All had developmental delay/intellectual disability. Autism spectrum disorders/autistic features were reported in 69%, attention disorders or hyperactivity in 67%, craniofacial features (no recognizable facial gestalt) in 67%, structural brain anomalies in 24%, and seizures in 12%. Additional features affecting various organ systems were described in 93%. In a majority of patients, we did not observe previously reported findings of postnatal overgrowth or craniosynostosis, in comparison with earlier reports. CONCLUSION: We provide valuable data regarding the prognosis and clinical manifestations of patients with variants in TCF20.


Assuntos
Transtorno do Espectro Autista/genética , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Fatores de Transcrição/genética , Adolescente , Adulto , Idoso , Transtorno do Espectro Autista/epidemiologia , Transtorno do Espectro Autista/patologia , Criança , Pré-Escolar , Exoma/genética , Feminino , Humanos , Deficiência Intelectual/epidemiologia , Deficiência Intelectual/patologia , Masculino , Pessoa de Meia-Idade , Mutação , Transtornos do Neurodesenvolvimento/epidemiologia , Transtornos do Neurodesenvolvimento/patologia , Sequenciamento do Exoma , Adulto Jovem
13.
Ann Neurol ; 84(5): 788-795, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30269351

RESUMO

NBEA is a candidate gene for autism, and de novo variants have been reported in neurodevelopmental disease (NDD) cohorts. However, NBEA has not been rigorously evaluated as a disease gene, and associated phenotypes have not been delineated. We identified 24 de novo NBEA variants in patients with NDD, establishing NBEA as an NDD gene. Most patients had epilepsy with onset in the first few years of life, often characterized by generalized seizure types, including myoclonic and atonic seizures. Our data show a broader phenotypic spectrum than previously described, including a myoclonic-astatic epilepsy-like phenotype in a subset of patients. Ann Neurol 2018;84:796-803.


Assuntos
Proteínas de Transporte/genética , Proteínas do Tecido Nervoso/genética , Transtornos do Neurodesenvolvimento/genética , Adolescente , Criança , Pré-Escolar , Epilepsia Generalizada/genética , Feminino , Genótipo , Humanos , Masculino , Mutação , Fenótipo
14.
Hum Genet ; 137(5): 375-388, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29740699

RESUMO

Many genetic causes of developmental delay and/or intellectual disability (DD/ID) are extremely rare, and robust discovery of these requires both large-scale DNA sequencing and data sharing. Here we describe a GeneMatcher collaboration which led to a cohort of 13 affected individuals harboring protein-altering variants, 11 of which are de novo, in MED13; the only inherited variant was transmitted to an affected child from an affected mother. All patients had intellectual disability and/or developmental delays, including speech delays or disorders. Other features that were reported in two or more patients include autism spectrum disorder, attention deficit hyperactivity disorder, optic nerve abnormalities, Duane anomaly, hypotonia, mild congenital heart abnormalities, and dysmorphisms. Six affected individuals had mutations that are predicted to truncate the MED13 protein, six had missense mutations, and one had an in-frame-deletion of one amino acid. Out of the seven non-truncating mutations, six clustered in two specific locations of the MED13 protein: an N-terminal and C-terminal region. The four N-terminal clustering mutations affect two adjacent amino acids that are known to be involved in MED13 ubiquitination and degradation, p.Thr326 and p.Pro327. MED13 is a component of the CDK8-kinase module that can reversibly bind Mediator, a multi-protein complex that is required for Polymerase II transcription initiation. Mutations in several other genes encoding subunits of Mediator have been previously shown to associate with DD/ID, including MED13L, a paralog of MED13. Thus, our findings add MED13 to the group of CDK8-kinase module-associated disease genes.


Assuntos
Sequência de Aminoácidos , Complexo Mediador/genética , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento/genética , Deleção de Sequência , Adulto , Criança , Pré-Escolar , Quinase 8 Dependente de Ciclina/genética , Quinase 8 Dependente de Ciclina/metabolismo , Feminino , Humanos , Masculino , Complexo Mediador/metabolismo , Transtornos do Neurodesenvolvimento/metabolismo , Iniciação da Transcrição Genética , Ubiquitinação/genética , Reino Unido
16.
Genet Med ; 20(12): 1635-1643, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29790872

RESUMO

PURPOSE: Clinically relevant secondary variants were identified in parents enrolled with a child with developmental delay and intellectual disability. METHODS: Exome/genome sequencing and analysis of 789 "unaffected" parents was performed. RESULTS: Pathogenic/likely pathogenic variants were identified in 21 genes within 25 individuals (3.2%), with 11 (1.4%) participants harboring variation in a gene defined as clinically actionable by the American College of Medical Genetics and Genomics. These 25 individuals self-reported either relevant clinical diagnoses (5); relevant family history or symptoms (13); or no relevant family history, symptoms, or clinical diagnoses (7). A limited carrier screen was performed yielding 15 variants in 48 (6.1%) parents. Parents were also analyzed as mate pairs (n = 365) to identify cases in which both parents were carriers for the same recessive disease, yielding three such cases (0.8%), two of which had children with the relevant recessive disease. Four participants had two findings (one carrier and one noncarrier variant). In total, 71 of the 789 enrolled parents (9.0%) received secondary findings. CONCLUSION: We provide an overview of the rates and types of clinically relevant secondary findings, which may be useful in the design and implementation of research and clinical sequencing efforts to identify such findings.


Assuntos
Sequenciamento do Exoma , Exoma/genética , Doenças Genéticas Inatas/genética , Testes Genéticos , Adulto , Mapeamento Cromossômico , Feminino , Triagem de Portadores Genéticos , Doenças Genéticas Inatas/classificação , Doenças Genéticas Inatas/fisiopatologia , Variação Genética , Genoma Humano/genética , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Pais , Sequenciamento Completo do Genoma
17.
Nucleic Acids Res ; 42(Database issue): D756-63, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24259432

RESUMO

The National Center for Biotechnology Information (NCBI) Reference Sequence (RefSeq) database is a collection of annotated genomic, transcript and protein sequence records derived from data in public sequence archives and from computation, curation and collaboration (http://www.ncbi.nlm.nih.gov/refseq/). We report here on growth of the mammalian and human subsets, changes to NCBI's eukaryotic annotation pipeline and modifications affecting transcript and protein records. Recent changes to NCBI's eukaryotic genome annotation pipeline provide higher throughput, and the addition of RNAseq data to the pipeline results in a significant expansion of the number of transcripts and novel exons annotated on mammalian RefSeq genomes. Recent annotation changes include reporting supporting evidence for transcript records, modification of exon feature annotation and the addition of a structured report of gene and sequence attributes of biological interest. We also describe a revised protein annotation policy for alternatively spliced transcripts with more divergent predicted proteins and we summarize the current status of the RefSeqGene project.


Assuntos
Bases de Dados Genéticas , Genômica , Mamíferos/genética , Animais , Eucariotos/genética , Éxons , Genoma , Genômica/normas , Humanos , Internet , Anotação de Sequência Molecular , Proteínas/química , Proteínas/genética , RNA/química , Padrões de Referência
18.
Nucleic Acids Res ; 42(Database issue): D865-72, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24217909

RESUMO

The Consensus Coding Sequence (CCDS) project (http://www.ncbi.nlm.nih.gov/CCDS/) is a collaborative effort to maintain a dataset of protein-coding regions that are identically annotated on the human and mouse reference genome assemblies by the National Center for Biotechnology Information (NCBI) and Ensembl genome annotation pipelines. Identical annotations that pass quality assurance tests are tracked with a stable identifier (CCDS ID). Members of the collaboration, who are from NCBI, the Wellcome Trust Sanger Institute and the University of California Santa Cruz, provide coordinated and continuous review of the dataset to ensure high-quality CCDS representations. We describe here the current status and recent growth in the CCDS dataset, as well as recent changes to the CCDS web and FTP sites. These changes include more explicit reporting about the NCBI and Ensembl annotation releases being compared, new search and display options, the addition of biologically descriptive information and our approach to representing genes for which support evidence is incomplete. We also present a summary of recent and future curation targets.


Assuntos
Bases de Dados Genéticas , Proteínas/genética , Animais , Éxons , Genômica , Humanos , Internet , Camundongos , Anotação de Sequência Molecular , Análise de Sequência
19.
medRxiv ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38585854

RESUMO

Variant detection from long-read genome sequencing (lrGS) has proven to be considerably more accurate and comprehensive than variant detection from short-read genome sequencing (srGS). However, the rate at which lrGS can increase molecular diagnostic yield for rare disease is not yet precisely characterized. We performed lrGS using Pacific Biosciences "HiFi" technology on 96 short-read-negative probands with rare disease that were suspected to be genetic. We generated hg38-aligned variants and de novo phased genome assemblies, and subsequently annotated, filtered, and curated variants using clinical standards. New disease-relevant or potentially relevant genetic findings were identified in 16/96 (16.7%) probands, eight of which (8/96, 8.33%) harbored pathogenic or likely pathogenic variants. Newly identified variants were visible in both srGS and lrGS in nine probands (~9.4%) and resulted from changes to interpretation mostly from recent gene-disease association discoveries. Seven cases included variants that were only interpretable in lrGS, including copy-number variants, an inversion, a mobile element insertion, two low-complexity repeat expansions, and a 1 bp deletion. While evidence for each of these variants is, in retrospect, visible in srGS, they were either: not called within srGS data, were represented by calls with incorrect sizes or structures, or failed quality-control and filtration. Thus, while reanalysis of older data clearly increases diagnostic yield, we find that lrGS allows for substantial additional yield (7/96, 7.3%) beyond srGS. We anticipate that as lrGS analysis improves, and as lrGS datasets grow allowing for better variant frequency annotation, the additional lrGS-only rare disease yield will grow over time.

20.
bioRxiv ; 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36711854

RESUMO

Purpose: Neurodevelopmental disorders (NDDs) often result from rare genetic variation, but genomic testing yield for NDDs remains around 50%, suggesting some clinically relevant rare variants may be missed by standard analyses. Here we analyze "poison exons" (PEs) which, while often absent from standard gene annotations, are alternative exons whose inclusion results in a premature termination codon. Variants that alter PE inclusion can lead to loss-of-function and may be highly penetrant contributors to disease. Methods: We curated published RNA-seq data from developing mouse cortex to define 1,937 PE regions conserved between humans and mice and potentially relevant to NDDs. We then analyzed variants found by genome sequencing in multiple NDD cohorts. Results: Across 2,999 probands, we found six clinically relevant variants in PE regions that were previously overlooked. Five of these variants are in genes that are part of the sodium voltage-gated channel alpha subunit family ( SCN1A, SCN2A , and SCN8A ), associated with epilepsies. One variant is in SNRPB , associated with Cerebrocostomandibular Syndrome. These variants have moderate to high computational impact assessments, are absent from population variant databases, and were observed in probands with features consistent with those reported for the associated gene. Conclusion: With only a minimal increase in variant analysis burden (most probands had zero or one candidate PE variants in a known NDD gene, with an average of 0.77 per proband), annotation of PEs can improve diagnostic yield for NDDs and likely other congenital conditions.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa