Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Dairy Sci ; 103(7): 6332-6345, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32359983

RESUMO

Organic dairy production differs from conventional dairy production in many aspects. However, breeding programs for the 2 production systems are the same in most countries. Breeding goals (BG) might be different for the 2 production systems and genotype × environment interaction may exist between organic and conventional dairy production, both of which have an effect on genetic gain in different breeding strategies. Other aspects also need to be considered, such as the application of multiple ovulation and embryo transfer (MOET), which is not allowed in organic dairy production. The general aim of this research was to assess different environment-specific breeding strategies for organic dairy production. The specific aim was to study differences in BG weights and include the effect of genotype × environment interaction, MOET, and the selection of breeding bulls from the conventional environment. Different scenarios were simulated. In the current scenario, the present-day situation for dairy production in Denmark was emulated as much as possible. The BG was based on a conventional dairy production system, MOET was applied in both environments, and conventional bulls could be selected as breeding bulls in the organic environment. Four alternative scenarios were simulated, all with a specific organic BG in the organic breeding program but differences in the usage of MOET and the selection of conventional bulls as breeding bulls. Implementation of a specific BG in organic dairy production slightly increased genetic gain in the aggregate genotype compared with the breeding program that is currently implemented in organic dairy production. Not using embryo transfer or only selecting breeding bulls from the organic environment decreased genetic gain in the aggregate genotype by as much as 24%. However, the use of embryo transfer is debatable because this is not allowed according to current regulations for organic dairy production. Assessing genetic gain on trait levels showed that a significant increase for functional traits was possible compared with the current breeding program in the organic environment without a decrease in genetic gain in the aggregate genotype. This difference on trait level was even more present when selection of conventional bulls as breeding bulls in the organic environment was not possible. This finding is very relevant when breeding for the desired cow in organic dairy production.


Assuntos
Bovinos/fisiologia , Laticínios , Indústria de Laticínios , Seleção Artificial , Animais , Bovinos/genética , Dinamarca , Transferência Embrionária , Feminino , Genótipo , Masculino , Seleção Genética
2.
J Dairy Sci ; 101(12): 11086-11096, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30316587

RESUMO

In Denmark, Finland, and Sweden, the Nordic Total Merit index is used as the breeding selection tool for both organic and conventional dairy farmers based on common economic models for conventional dairy farming. Organic farming is based on the principles of organic agriculture (POA) defined by the International Federation of Organic Agriculture Movements. These principles are not set up with an economic point of view, and therefore it may be questionable to use a breeding goal (BG) for organic dairy production based on economic models. In addition to economics and the principles of organic agriculture, it is important to look at farmers' preferences for improving BG traits when setting up a BG for organic farming. The aim of this research was to set up, simulate, and compare long-term effects of different BG for organic and conventional dairy production systems based on economic models, farmers' preferences, and POA, with particular emphasis on disease resistance or on roughage consumption and feed efficiency. The BG based on economic models and on farmers' preferences were taken from previous studies. The other BG were desired gains indices, set up by means of a questionnaire about relatedness between the POA and BG traits. Each BG was simulated in the stochastic simulation program ADAM. The BG based on POA, with particular emphasis on disease resistance or on roughage consumption and feed efficiency, caused favorable genetic gain in all 12 traits included in this study compared with 6 traits for the other BG. The BG based on POA, with particular emphasis on disease resistance or on roughage consumption and feed efficiency, were very different from BG for organic and conventional production based on economic models and farmers' preferences in both simulated genetic change and correlations between BG. The BG that was created based on the principles of organic agriculture could be used as a specific index for organic dairy farming in Denmark, but this index was economically not very sustainable. Hence, an intermediate breeding goal could be developed by breeding companies to address both economics and the principles of organic agriculture.


Assuntos
Cruzamento/normas , Bovinos/genética , Agricultura Orgânica/normas , Ração Animal/análise , Animais , Cruzamento/economia , Cruzamento/métodos , Bovinos/crescimento & desenvolvimento , Bovinos/metabolismo , Laticínios/análise , Laticínios/economia , Laticínios/normas , Dinamarca , Fibras na Dieta/metabolismo , Feminino , Finlândia , Masculino , Modelos Econômicos , Agricultura Orgânica/economia , Agricultura Orgânica/métodos , Suécia
3.
J Dairy Sci ; 100(5): 4161-4171, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28237584

RESUMO

Dairy farmers can increase the number of dairy heifer calves born in their herd by using sexed semen. They can reduce the number of both dairy bull and heifer calves by using beef semen. Long before sexed semen became commercially available, it was believed that it would provide opportunities for increasing genetic level in both herds and populations. In this study, we studied the potential for increasing the genetic level of a herd by using beef semen in combination with sexed semen. We tested the hypothesis that the potential of increasing the genetic level and the overall net return would depend on herd management. To test this hypothesis, we simulated 7 scenarios using beef semen and sexed semen in 5 herds at different management levels. We combined the results of 2 stochastic simulation models, SimHerd and ADAM. SimHerd simulated the effects of the scenarios and management levels on economic outcomes (i.e., operational return) and on technical outcomes such as the parity distribution of the dams of heifer calves, but it disregarded genetic progress. The ADAM model quantified genetic level by using the dams' parity distributions and the frequency of sexed and beef semen to estimate genetic return per year. We calculated the annual net return per slot as the sum of the operational return and the genetic return, divided by the total number of slots. Net return increased up to €18 per slot when using sexed semen in 75% genetically superior heifers and beef semen in 70% genetically inferior, multiparous cows. The assumed reliability of selection was 0.84. These findings were for a herd with overall high management for reproductive performance, longevity, and calf survival. The same breeding strategy reduced net return by €55 per slot when management levels were average. The main reason for the large reduction in net return was the heifer shortage that arose in this scenario. Our hypothesis that the potential for beef semen to increase genetic level would be herd-specific was supported. None of the scenarios were profitable under Danish circumstances when the value of the increased genetic level was not included. A comparable improvement in genetic level could be realized by selectively selling dairy heifer calves rather than using beef semen.


Assuntos
Indústria de Laticínios , Sêmen , Pré-Seleção do Sexo/veterinária , Animais , Bovinos , Feminino , Inseminação Artificial/veterinária , Masculino , Reprodutibilidade dos Testes
4.
J Dairy Sci ; 99(12): 9845-9856, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27692711

RESUMO

The overall aim of this research was to characterize the preferences of Danish dairy farmers for improvements in breeding goal traits. The specific aims were (1) to investigate the presence of heterogeneity in farmers' preferences by means of cluster analysis, and (2) to associate these clusters with herd characteristics and production systems (organic or conventional). We established a web-based survey to characterize the preferences of farmers for improvements in 10 traits, by means of pairwise rankings. We also collected a considerable number of herd characteristics. Overall, 106 organic farmers and 290 conventional farmers answered the survey, all with Holstein cows. The most preferred trait improvement was cow fertility, and the least preferred was calving difficulty. By means of cluster analysis, we identified 4 distinct clusters of farmers and named them according to the trait improvements that were most preferred: Health and Fertility, Production and Udder Health, Survival, and Fertility and Production. Some herd characteristics differed between clusters; for example, farmers in the Survival cluster had twice the percentage of dead cows in their herds compared with the other clusters, and farmers that gave the highest ranking to cow and heifer fertility had the lowest conception rate in their herds. This finding suggests that farmers prefer to improve traits that are more problematic in their herd. The proportion of organic and conventional farmers also differed between clusters; we found a higher proportion of organic farmers in the production-based clusters. When we analyzed organic and conventional data separately, we found that organic farmers ranked production traits higher than conventional farmers. The herds of organic farmers had lower milk yields and lower disease incidences, which might explain the high ranking of milk production and the low ranking of disease traits. This study shows that heterogeneity exists in farmers' preferences for improvements in breeding goal traits, that organic and conventional farmers differ in their preferences, and that herd characteristics can be linked to different farmer clusters. The results of this study could be used for the future development of breeding goals in Danish Holstein cows and for the development of customized total merit indices based on farmer preferences.


Assuntos
Indústria de Laticínios , Fazendeiros , Agricultura , Animais , Cruzamento , Bovinos , Feminino , Leite
5.
J Dairy Sci ; 98(1): 646-58, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25465627

RESUMO

Until now, genomic information has mainly been used to improve the accuracy of genomic breeding values for breeding animals at a population level. However, we hypothesize that the use of information from genotyped females also opens up the possibility of reducing genetic lag in a dairy herd, especially if genomic tests are used in combination with sexed semen or a high management level for reproductive performance, because both factors provide the opportunity for generating a reproductive surplus in the herd. In this study, sexed semen is used in combination with beef semen to produce high-value crossbred beef calves. Thus, on average there is no surplus of and selection among replacement heifers whether to go into the herd or to be sold. In this situation, the selection opportunities arise when deciding which cows to inseminate with sexed semen, conventional semen, or beef semen. We tested the hypothesis by combining the results of 2 stochastic simulation programs, SimHerd and ADAM. SimHerd estimates the economic effect of different strategies for use of sexed semen and beef semen at 3 levels of reproductive performance in a dairy herd. Besides simulating the operational return, SimHerd also simulates the parity distribution of the dams of heifer calves. The ADAM program estimates genetic merit per year in a herd under different strategies for use of sexed semen and genomic tests. The annual net return per slot was calculated as the sum of operational return and value of genetic lag minus costs of genomic tests divided by the total number of slots. Our results showed that the use of genomic tests for decision making decreases genetic lag by as much as 0.14 genetic standard deviation units of the breeding goal and that genetic lag decreases even more (up to 0.30 genetic standard deviation units) when genomic tests are used in combination with strategies for increasing and using a reproductive surplus. Thus, our hypothesis was supported. We also observed that genomic tests are used most efficiently to decrease genetic lag when the genomic information is used more than once in the lifetime of an animal and when as many selection decisions as possible are based on genomic information. However, all breakeven prices were lower than or equal to €50, which is the current price of low-density chip genotyping in Denmark, Finland, and Sweden, so in the vast majority of cases, it is not profitable to genotype routinely for management purposes under the present price assumptions.


Assuntos
Bovinos/fisiologia , Indústria de Laticínios/economia , Indústria de Laticínios/métodos , Testes Genéticos/veterinária , Inseminação Artificial/veterinária , Sêmen/química , Animais , Bovinos/genética , Tomada de Decisões , Dinamarca , Finlândia , Testes Genéticos/economia , Genótipo , Masculino , Suécia
6.
J Dairy Sci ; 97(12): 7879-88, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25306270

RESUMO

Within a group of cooperating countries, all breeding animals are judged according to the same criteria if a joint breeding goal is applied in these countries. This makes it easier for dairy farmers to compare national and foreign elite bulls and may lead to more selection across borders. However, a joint breeding goal is only an advantage if the countries share the same production environment. In this study, we investigated whether the development of a joint breeding goal for each of the major dairy cattle breeds across Denmark, Finland, and Sweden would be an advantage compared with national breeding goals. For that purpose, economic values for all breeding goal traits in the 3 countries were derived, and estimated rank correlations between bulls selected for a national breeding goal and a joint breeding goal were compared. The economic values within country were derived by means of an objective bio-economic model, and the basic situation in each of the 3 production environments was based on an average dairy cattle herd with regard to production system, production level, and management strategy. The common Nordic economic values for each trait were calculated as the average of that specific trait in each of the 3 production environments. Balanced breeding goals were obtained in all situations because the derived economic values for traits related to health, fertility, milk production, and longevity were sizeable. For both Nordic Red Dairy Cattle and Nordic Holstein, the estimated rank correlations between bulls selected for a national breeding goal and a joint breeding goal were very high. Thus, a joint breeding goal within breed is feasible for Denmark, Finland, and Sweden.


Assuntos
Cruzamento/economia , Bovinos/genética , Fertilidade , Leite/metabolismo , Modelos Econômicos , Animais , Bovinos/fisiologia , Indústria de Laticínios , Dinamarca , Meio Ambiente , Estudos de Viabilidade , Feminino , Finlândia , Inseminação Artificial/veterinária , Cooperação Internacional , Lactação , Longevidade , Masculino , Fenótipo , Gravidez , Suécia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa