Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-33468477

RESUMO

Dihydroartemisinin-piperaquine is a recommended first-line artemisinin combination therapy for Plasmodium falciparum malaria. Piperaquine is also under consideration for other antimalarial combination therapies. The aim of this study was to develop a pharmacokinetic-pharmacodynamic model that might be useful when optimizing the use of piperaquine in new antimalarial combination therapies. The pharmacokinetic-pharmacodynamic model was developed using data from a previously reported dose-ranging study where 24 healthy volunteers were inoculated with 1,800 blood-stage Plasmodium falciparum parasites. All volunteers received a single oral dose of piperaquine (960 mg, 640 mg, or 480 mg) on day 7 or day 8 after parasite inoculation in separate cohorts. Parasite densities were measured by quantitative PCR (qPCR), and piperaquine levels were measured in plasma samples. We used nonlinear mixed-effect modeling to characterize the pharmacokinetic properties of piperaquine and the parasite dynamics associated with piperaquine exposure. The pharmacokinetics of piperaquine was described by a three-compartment disposition model. A semimechanistic parasite dynamics model was developed to explain the maturation of parasites, sequestration of mature parasites, synchronicity of infections, and multiplication of parasites, as seen in natural clinical infections with P. falciparum malaria. Piperaquine-associated parasite killing was estimated using a maximum effect (Emax) function. Treatment simulations (i.e., 3-day oral dosing of dihydroartemisinin-piperaquine) indicated that to be able to combat multidrug-resistant infections, an ideal additional drug in a new antimalarial triple-combination therapy should have a parasite reduction ratio of ≥102 per life cycle (38.8 h) with a duration of action of ≥2 weeks. The semimechanistic pharmacokinetic-pharmacodynamic model described here offers the potential to be a valuable tool for assessing and optimizing current and new antimalarial drug combination therapies containing piperaquine and the impact of these therapies on killing multidrug-resistant infections. (This study has been registered in the Australian and New Zealand Clinical Trials Registry under no. ANZCTRN12613000565741.).


Assuntos
Antimaláricos , Malária Falciparum , Malária , Quinolinas , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Austrália , Humanos , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Nova Zelândia , Plasmodium falciparum , Quinolinas/uso terapêutico , Voluntários
2.
Artigo em Inglês | MEDLINE | ID: mdl-33526485

RESUMO

When severe malaria is suspected in children, the WHO recommends pretreatment with a single rectal dose of artesunate before referral to an appropriate facility. This was an individually randomized, open-label, 2-arm, crossover clinical trial in 82 Congolese children with severe falciparum malaria to characterize the pharmacokinetics of rectal artesunate. At admission, children received a single dose of rectal artesunate (10 mg/kg of body weight) followed 12 h later by intravenous artesunate (2.4 mg/kg) or the reverse order. All children also received standard doses of intravenous quinine. Artesunate and dihydroartemisinin were measured at 11 fixed intervals, following 0- and 12-h drug administrations. Clinical, laboratory, and parasitological parameters were measured. After rectal artesunate, artesunate and dihydroartemisinin showed large interindividual variability (peak concentrations of dihydroartemisinin ranged from 5.63 to 8,090 nM). The majority of patients, however, reached previously suggested in vivo IC50 and IC90 values (98.7% and 92.5%, respectively) of combined concentrations of artesunate and dihydroartemisinin between 15 and 30 min after drug administration. The median (interquartile range [IQR]) time above IC50 and IC90 was 5.68 h (2.90 to 6.08) and 2.74 h (1.52 to 3.75), respectively. The absolute rectal bioavailability (IQR) was 25.6% (11.7 to 54.5) for artesunate and 19.8% (10.3 to 35.3) for dihydroartemisinin. The initial 12-h parasite reduction ratio was comparable between rectal and intravenous artesunate: median (IQR), 84.3% (50.0 to 95.4) versus 69.2% (45.7 to 93.6), respectively (P = 0.49). Despite large interindividual variability, rectal artesunate can initiate and sustain rapid parasiticidal activity in most children with severe falciparum malaria while they are transferred to a facility where parenteral artesunate is available. (This study has been registered at ClinicalTrials.gov under identifier NCT02492178.).


Assuntos
Antimaláricos , Malária Falciparum , Malária , África , Antimaláricos/uso terapêutico , Artesunato/uso terapêutico , Criança , Humanos , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Quinina
3.
Lancet ; 395(10233): 1345-1360, 2020 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-32171078

RESUMO

BACKGROUND: Artemisinin and partner-drug resistance in Plasmodium falciparum are major threats to malaria control and elimination. Triple artemisinin-based combination therapies (TACTs), which combine existing co-formulated ACTs with a second partner drug that is slowly eliminated, might provide effective treatment and delay emergence of antimalarial drug resistance. METHODS: In this multicentre, open-label, randomised trial, we recruited patients with uncomplicated P falciparum malaria at 18 hospitals and health clinics in eight countries. Eligible patients were aged 2-65 years, with acute, uncomplicated P falciparum malaria alone or mixed with non-falciparum species, and a temperature of 37·5°C or higher, or a history of fever in the past 24 h. Patients were randomly assigned (1:1) to one of two treatments using block randomisation, depending on their location: in Thailand, Cambodia, Vietnam, and Myanmar patients were assigned to either dihydroartemisinin-piperaquine or dihydroartemisinin-piperaquine plus mefloquine; at three sites in Cambodia they were assigned to either artesunate-mefloquine or dihydroartemisinin-piperaquine plus mefloquine; and in Laos, Myanmar, Bangladesh, India, and the Democratic Republic of the Congo they were assigned to either artemether-lumefantrine or artemether-lumefantrine plus amodiaquine. All drugs were administered orally and doses varied by drug combination and site. Patients were followed-up weekly for 42 days. The primary endpoint was efficacy, defined by 42-day PCR-corrected adequate clinical and parasitological response. Primary analysis was by intention to treat. A detailed assessment of safety and tolerability of the study drugs was done in all patients randomly assigned to treatment. This study is registered at ClinicalTrials.gov, NCT02453308, and is complete. FINDINGS: Between Aug 7, 2015, and Feb 8, 2018, 1100 patients were given either dihydroartemisinin-piperaquine (183 [17%]), dihydroartemisinin-piperaquine plus mefloquine (269 [24%]), artesunate-mefloquine (73 [7%]), artemether-lumefantrine (289 [26%]), or artemether-lumefantrine plus amodiaquine (286 [26%]). The median age was 23 years (IQR 13 to 34) and 854 (78%) of 1100 patients were male. In Cambodia, Thailand, and Vietnam the 42-day PCR-corrected efficacy after dihydroartemisinin-piperaquine plus mefloquine was 98% (149 of 152; 95% CI 94 to 100) and after dihydroartemisinin-piperaquine was 48% (67 of 141; 95% CI 39 to 56; risk difference 51%, 95% CI 42 to 59; p<0·0001). Efficacy of dihydroartemisinin-piperaquine plus mefloquine in the three sites in Myanmar was 91% (42 of 46; 95% CI 79 to 98) versus 100% (42 of 42; 95% CI 92 to 100) after dihydroartemisinin-piperaquine (risk difference 9%, 95% CI 1 to 17; p=0·12). The 42-day PCR corrected efficacy of dihydroartemisinin-piperaquine plus mefloquine (96% [68 of 71; 95% CI 88 to 99]) was non-inferior to that of artesunate-mefloquine (95% [69 of 73; 95% CI 87 to 99]) in three sites in Cambodia (risk difference 1%; 95% CI -6 to 8; p=1·00). The overall 42-day PCR-corrected efficacy of artemether-lumefantrine plus amodiaquine (98% [281 of 286; 95% CI 97 to 99]) was similar to that of artemether-lumefantrine (97% [279 of 289; 95% CI 94 to 98]; risk difference 2%, 95% CI -1 to 4; p=0·30). Both TACTs were well tolerated, although early vomiting (within 1 h) was more frequent after dihydroartemisinin-piperaquine plus mefloquine (30 [3·8%] of 794) than after dihydroartemisinin-piperaquine (eight [1·5%] of 543; p=0·012). Vomiting after artemether-lumefantrine plus amodiaquine (22 [1·3%] of 1703) and artemether-lumefantrine (11 [0·6%] of 1721) was infrequent. Adding amodiaquine to artemether-lumefantrine extended the electrocardiogram corrected QT interval (mean increase at 52 h compared with baseline of 8·8 ms [SD 18·6] vs 0·9 ms [16·1]; p<0·01) but adding mefloquine to dihydroartemisinin-piperaquine did not (mean increase of 22·1 ms [SD 19·2] for dihydroartemisinin-piperaquine vs 20·8 ms [SD 17·8] for dihydroartemisinin-piperaquine plus mefloquine; p=0·50). INTERPRETATION: Dihydroartemisinin-piperaquine plus mefloquine and artemether-lumefantrine plus amodiaquine TACTs are efficacious, well tolerated, and safe treatments of uncomplicated P falciparum malaria, including in areas with artemisinin and ACT partner-drug resistance. FUNDING: UK Department for International Development, Wellcome Trust, Bill & Melinda Gates Foundation, UK Medical Research Council, and US National Institutes of Health.


Assuntos
Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Malária Falciparum/tratamento farmacológico , Adolescente , Adulto , Amodiaquina/administração & dosagem , Amodiaquina/uso terapêutico , Antraquinonas/administração & dosagem , Antraquinonas/uso terapêutico , Antimaláricos/administração & dosagem , Combinação Arteméter e Lumefantrina/administração & dosagem , Combinação Arteméter e Lumefantrina/uso terapêutico , Artemisininas/administração & dosagem , Resistência a Medicamentos , Quimioterapia Combinada , Feminino , Humanos , Masculino , Mefloquina/administração & dosagem , Mefloquina/uso terapêutico , Plasmodium falciparum/efeitos dos fármacos , Reação em Cadeia da Polimerase , Quinolinas/administração & dosagem , Quinolinas/uso terapêutico , Resultado do Tratamento , Adulto Jovem
4.
Malar J ; 20(1): 366, 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34503519

RESUMO

BACKGROUND: In many endemic areas, Plasmodium vivax malaria is predominantly a disease of young adults and children. International recommendations for radical cure recommend fixed target doses of 0.25 or 0.5 mg/kg/day of primaquine for 14 days in glucose-6-phosphate dehydrogenase normal patients of all ages. However, for many anti-malarial drugs, including primaquine, there is evidence that children have lower exposures than adults for the same weight-adjusted dose. The aim of the study was to develop 14-day weight-based and age-based primaquine regimens against high-frequency relapsing tropical P. vivax. METHODS: The recommended adult target dose of 0.5 mg/kg/day (30 mg in a 60 kg patient) is highly efficacious against tropical P. vivax and was assumed to produce optimal drug exposure. Primaquine doses were calculated using allometric scaling to derive a weight-based primaquine regimen over a weight range from 5 to 100 kg. Growth curves were constructed from an anthropometric database of 53,467 individuals from the Greater Mekong Subregion (GMS) to define weight-for-age relationships. The median age associated with each weight was used to derive an age-based dosing regimen from the weight-based regimen. RESULTS: The proposed weight-based regimen has 5 dosing bands: (i) 5-7 kg, 5 mg, resulting in 0.71-1.0 mg/kg/day; (ii) 8-16 kg, 7.5 mg, 0.47-0.94 mg/kg/day; (iii) 17-40 kg, 15 mg, 0.38-0.88 mg/kg/day; (iv) 41-80 kg, 30 mg, 0.37-0.73 mg/kg/day; and (v) 81-100 kg, 45 mg, 0.45-0.56 mg/kg/day. The corresponding age-based regimen had 4 dosing bands: 6-11 months, 5 mg, 0.43-1.0 mg/kg/day; (ii) 1-5 years, 7.5 mg, 0.35-1.25 mg/kg/day; (iii) 6-14 years, 15 mg, 0.30-1.36 mg/kg/day; and (iv) ≥ 15 years, 30 mg, 0.35-1.07 mg/kg/day. CONCLUSION: The proposed weight-based regimen showed less variability around the primaquine dose within each dosing band compared to the age-based regimen and is preferred. Increased dose accuracy could be achieved by additional dosing bands for both regimens. The age-based regimen might not be applicable to regions outside the GMS, which must be based on local anthropometric data. Pharmacokinetic data in small children are needed urgently to inform the proposed regimens.


Assuntos
Antimaláricos/administração & dosagem , Esquema de Medicação , Malária Vivax/prevenção & controle , Plasmodium vivax/efeitos dos fármacos , Primaquina/administração & dosagem , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Peso Corporal , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Adulto Jovem
6.
Artigo em Inglês | MEDLINE | ID: mdl-33139294

RESUMO

Optimal dosing of children with tuberculous meningitis (TBM) remains uncertain and is currently based on the treatment of pulmonary tuberculosis in adults. This study aimed to investigate the population pharmacokinetics of isoniazid, rifampin, pyrazinamide, and ethambutol in Vietnamese children with TBM, to propose optimal dosing in these patients, and to determine the relationship between drug exposure and treatment outcome. A total of 100 Vietnamese children with TBM were treated with an 8-month antituberculosis regimen. Nonlinear mixed-effects modeling was used to evaluate the pharmacokinetic properties of the four drugs and to simulate different dosing strategies. The pharmacokinetic properties of rifampin and pyrazinamide in plasma were described successfully by one-compartment disposition models, while those of isoniazid and ethambutol in plasma were described by two-compartment disposition models. All drug models included allometric scaling of body weight and enzyme maturation during the first years of life. Cerebrospinal fluid (CSF) penetration of rifampin was relatively poor and increased with increasing protein levels in CSF, a marker of CSF inflammation. Isoniazid and pyrazinamide showed good CSF penetration. Currently recommended doses of isoniazid and pyrazinamide, but not ethambutol and rifampin, were sufficient to achieve target exposures. The ethambutol dose cannot be increased because of ocular toxicity. Simulation results suggested that rifampin dosing at 50 mg/kg of body weight/day would be required to achieve the target exposure. Moreover, low rifampin plasma exposure was associated with an increased risk of neurological disability. Therefore, higher doses of rifampin could be considered, but further studies are needed to establish the safety and efficacy of increased dosing.


Assuntos
Antituberculosos , Tuberculose Meníngea , Adulto , Antituberculosos/uso terapêutico , Povo Asiático , Criança , Etambutol , Humanos , Isoniazida , Pirazinamida , Tuberculose Meníngea/tratamento farmacológico
7.
Artigo em Inglês | MEDLINE | ID: mdl-31818818

RESUMO

Artemether-lumefantrine antimalarial efficacy in pregnancy could be compromised by reduced drug exposure. Population-based simulations suggested that therapeutic efficacy would be improved if the treatment duration was increased. We assessed the efficacy, tolerability, and pharmacokinetics of an extended 5-day regimen of artemether-lumefantrine compared to the standard 3-day treatment in 48 pregnant women and 48 nonpregnant women with uncomplicated falciparum malaria in an open-label, randomized clinical trial. Babies were assessed at birth and 1, 3, 6, and 12 months. Nonlinear mixed-effects modeling was used to characterize the plasma concentration-time profiles of artemether and lumefantrine and their metabolites. Both regimens were highly efficacious (100% PCR-corrected cure rates) and well tolerated. Babies followed up to 1 year had normal development. Parasite clearance half-lives were longer in pregnant women (median [range], 3.30 h [1.39 to 7.83 h]) than in nonpregnant women (2.43 h [1.05 to 6.00 h]) (P=0.005). Pregnant women had lower exposures to artemether and dihydroartemisinin than nonpregnant women, resulting in 1.2% decreased exposure for each additional week of gestational age. By term, these exposures were reduced by 48% compared to nonpregnant patients. The overall exposure to lumefantrine was improved with the extended regimen, with no significant differences in exposures to lumefantrine or desbutyl-lumefantrine between pregnant and nonpregnant women. The extended artemether-lumefantrine regimen was well tolerated and safe and increased the overall antimalarial drug exposure and so could be a promising treatment option in pregnancy in areas with lower rates of malaria transmission and/or emerging drug resistance. (This study has been registered at ClinicalTrials.gov under identifier NCT01916954.).


Assuntos
Antimaláricos/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Malária Falciparum/tratamento farmacológico , Adulto , África , Artemeter/uso terapêutico , Artemisininas/uso terapêutico , Feminino , Humanos , Gravidez , Adulto Jovem
8.
Artigo em Inglês | MEDLINE | ID: mdl-32071050

RESUMO

Treating malaria in HIV-coinfected individuals should consider potential drug-drug interactions. Artemether-lumefantrine is the most widely recommended treatment for uncomplicated malaria globally. Lumefantrine is metabolized by CYP3A4, an enzyme that commonly used antiretrovirals often induce or inhibit. A population pharmacokinetic meta-analysis was conducted using individual participant data from 10 studies with 6,100 lumefantrine concentrations from 793 nonpregnant adult participants (41% HIV-malaria-coinfected, 36% malaria-infected, 20% HIV-infected, and 3% healthy volunteers). Lumefantrine exposure increased 3.4-fold with coadministration of lopinavir-ritonavir-based antiretroviral therapy (ART), while it decreased by 47% with efavirenz-based ART and by 59% in the patients with rifampin-based antituberculosis treatment. Nevirapine- or dolutegravir-based ART and malaria or HIV infection were not associated with significant effects. Monte Carlo simulations showed that those on concomitant efavirenz or rifampin have 49% and 80% probability of day 7 concentrations <200 ng/ml, respectively, a threshold associated with an increased risk of treatment failure. The risk of achieving subtherapeutic concentrations increases with larger body weight. An extended 5-day and 6-day artemether-lumefantrine regimen is predicted to overcome these drug-drug interactions with efavirenz and rifampin, respectively.


Assuntos
Fármacos Anti-HIV/farmacocinética , Antimaláricos/farmacocinética , Terapia Antirretroviral de Alta Atividade , Lumefantrina/farmacocinética , Adolescente , Adulto , Idoso , Fármacos Anti-HIV/uso terapêutico , Antimaláricos/uso terapêutico , Combinação Arteméter e Lumefantrina/farmacocinética , Combinação Arteméter e Lumefantrina/uso terapêutico , Peso Corporal , Simulação por Computador , Interações Medicamentosas , Feminino , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Humanos , Lopinavir/farmacocinética , Lopinavir/uso terapêutico , Lumefantrina/uso terapêutico , Malária/complicações , Malária/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Método de Monte Carlo , Ritonavir/farmacocinética , Ritonavir/uso terapêutico , Adulto Jovem
9.
Br J Clin Pharmacol ; 85(3): 644-654, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30588647

RESUMO

AIMS: Pharmacokinetic studies in the past have shown inadequate antituberculosis drug levels in children with the currently available dosing regimens. This study attempted to investigate the pharmacokinetics of isoniazid and rifampicin, when used in children, and to optimize their dosing regimens. METHODS: Data were collected from 41 children, aged 2-16 years, who were being treated with antituberculosis drugs for at least 2 months. Concentration measurements were done for 6 h and analysed using a nonlinear, mixed-effects model. RESULTS: Isoniazid pharmacokinetics were described by a one-compartment disposition model with a transit absorption model (fixed, n = 5). A mixture model was used to identify the slow and fast acetylator subgroups. Rifampicin was described by a one-compartment disposition model with a transit absorption model (fixed, n = 9). Body weight was added to the clearance and volume of distribution of both the drugs using an allometric function. Simulations with the isoniazid model showed that 84.9% of the population achieved therapeutic peak serum concentration with the planned fixed-dose combination regimen. Simulations with the rifampicin model showed that only about 28.8% of the simulated population achieve the therapeutic peak serum concentration with the fixed-dose combination regimen. A novel regimen for rifampicin, with an average dose of 35 mg kg-1 , was found to provide adequate drug exposure in most children. CONCLUSIONS: The exposure to isoniazid is adequate with present regimens. For rifampicin, a novel dosing regimen was developed to ensure adequate drug concentrations in children. However, further studies are required to assess the dose-effect relationship of higher doses of rifampicin.


Assuntos
Antituberculosos/farmacocinética , Isoniazida/farmacocinética , Rifampina/farmacocinética , Tuberculose/tratamento farmacológico , Adolescente , Fatores Etários , Antituberculosos/administração & dosagem , Peso Corporal , Criança , Pré-Escolar , Relação Dose-Resposta a Droga , Esquema de Medicação , Cálculos da Dosagem de Medicamento , Feminino , Humanos , Índia , Lactente , Isoniazida/administração & dosagem , Masculino , Taxa de Depuração Metabólica , Modelos Biológicos , Rifampina/administração & dosagem , Tuberculose/sangue
10.
Clin Infect Dis ; 67(7): 1000-1007, 2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-29590311

RESUMO

Background: Primaquine is the only drug providing radical cure of Plasmodium vivax malaria. It is not recommended for breastfeeding women as it causes hemolysis in glucose-6-phosphate dehydrogenase (G6PD)-deficient individuals, and breast milk excretion and thus infant exposure are not known. Methods: Healthy G6PD-normal breastfeeding women with previous P. vivax infection and their healthy G6PD-normal infants between 28 days and 2 years old were enrolled. Mothers took primaquine 0.5 mg/kg/day for 14 days. Primaquine and carboxyprimaquine concentrations were measured in maternal venous plasma, capillary plasma, and breast milk samples and infant capillary plasma samples taken on days 0, 3, 7, and 13. Results: In 20 mother-infant pairs, primaquine concentrations were below measurement thresholds in all but 1 infant capillary plasma sample (that contained primaquine 2.6 ng/mL), and carboxyprimaquine was likewise unmeasurable in the majority of infant samples (maximum value 25.8 ng/mL). The estimated primaquine dose received by infants, based on measured breast milk levels, was 2.98 µg/kg/day (ie, ~0.6% of a hypothetical infant daily dose of 0.5 mg/kg). There was no evidence of drug-related hemolysis in the infants. Maternal levels were comparable to levels in nonlactating patients, and adverse events in mothers were mild. Conclusions: The concentrations of primaquine in breast milk are very low and therefore very unlikely to cause adverse effects in the breastfeeding infant. Primaquine should not be withheld from mothers breastfeeding infants or young children. More information is needed in neonates. Clinical Trials Registration: NCT01780753.


Assuntos
Antimaláricos/farmacocinética , Antimaláricos/uso terapêutico , Malária Vivax/tratamento farmacológico , Leite Humano/química , Primaquina/farmacocinética , Primaquina/uso terapêutico , Adolescente , Adulto , Antimaláricos/sangue , Antimaláricos/química , Área Sob a Curva , Aleitamento Materno , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Lactação , Masculino , Primaquina/análogos & derivados , Primaquina/sangue , Primaquina/química , Primaquina/metabolismo , Adulto Jovem
11.
Malar J ; 17(1): 322, 2018 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-30176888

RESUMO

BACKGROUND: Low mefloquine exposure has been shown to contribute to treatment failure in patients with uncomplicated falciparum malaria following a 3-day artesunate-mefloquine combination. The present study aimed to develop a population pharmacokinetic model for mefloquine based on whole blood concentration-time profiles of this target population for further dose optimization. METHODS: A total of 129 Burmese patients aged above 15 years who presented with typical symptoms of malaria and had a blood smear positive for Plasmodium falciparum were included in the study. All were treated with the standard 3-day combination regimen of artesunate and mefloquine consisting of mefloquine for 2 days and artesunate for 3 days. Blood samples were collected before and at different time points after drug administration from different sub-groups of patients. Mefloquine concentrations were quantified in whole blood using high-performance liquid chromatography. A non-linear mixed-effect modelling approach was applied for population pharmacokinetic analysis using the NONMEM v7.3 software. Covariates investigated (body weight, gender, admission parasitaemia, and molecular markers of mefloquine resistance) were investigated in a step-wise manner using the SCM functionality in Perl-Speaks-NONMEM. RESULTS: Population pharmacokinetic analysis of mefloquine was performed in all patients with a total of 653 samples. Whole blood mefloquine concentration-time profiles were described by a two-compartment disposition model. Of the covariates investigated, none was found to have a significant impact on the pharmacokinetics of mefloquine. Significant differences in maximum concentration (Cmax) and elimination half-life (t1/2) were found in patients who had treatment failure (36 cases) compared to patients with successful treatment (107 cases). CONCLUSION: The study successfully describes the pharmacokinetics of mefloquine following a 2-day treatment of mefloquine as a part of a 3-day artesunate-mefloquine in patients with uncomplicated falciparum malaria from Thailand. A model has been developed which adequately describes the pharmacokinetics of mefloquine. More extensive clinical studies including both adults and children are needed to fully characterize the pharmacokinetics of mefloquine.


Assuntos
Antimaláricos/farmacocinética , Malária Falciparum/tratamento farmacológico , Mefloquina/farmacocinética , Plasmodium falciparum/efeitos dos fármacos , Doença Aguda , Adolescente , Adulto , Antimaláricos/administração & dosagem , Artemisininas/administração & dosagem , Artesunato , Combinação de Medicamentos , Feminino , Humanos , Malária Falciparum/parasitologia , Masculino , Mefloquina/administração & dosagem , Pessoa de Meia-Idade , Mianmar/etnologia , Tailândia , Adulto Jovem
12.
PLoS Med ; 14(1): e1002212, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28072872

RESUMO

BACKGROUND: Artemisinin-based combination therapies (ACTs) are the mainstay of the current treatment of uncomplicated Plasmodium falciparum malaria, but ACT resistance is spreading across Southeast Asia. Dihydroartemisinin-piperaquine is one of the five ACTs currently recommended by the World Health Organization. Previous studies suggest that young children (<5 y) with malaria are under-dosed. This study utilised a population-based pharmacokinetic approach to optimise the antimalarial treatment regimen for piperaquine. METHODS AND FINDINGS: Published pharmacokinetic studies on piperaquine were identified through a systematic literature review of articles published between 1 January 1960 and 15 February 2013. Individual plasma piperaquine concentration-time data from 11 clinical studies (8,776 samples from 728 individuals) in adults and children with uncomplicated malaria and healthy volunteers were collated and standardised by the WorldWide Antimalarial Resistance Network. Data were pooled and analysed using nonlinear mixed-effects modelling. Piperaquine pharmacokinetics were described successfully by a three-compartment disposition model with flexible absorption. Body weight influenced clearance and volume parameters significantly, resulting in lower piperaquine exposures in small children (<25 kg) compared to larger children and adults (≥25 kg) after administration of the manufacturers' currently recommended dose regimens. Simulated median (interquartile range) day 7 plasma concentration was 29.4 (19.3-44.3) ng/ml in small children compared to 38.1 (25.8-56.3) ng/ml in larger children and adults, with the recommended dose regimen. The final model identified a mean (95% confidence interval) increase of 23.7% (15.8%-32.5%) in piperaquine bioavailability between each piperaquine dose occasion. The model also described an enzyme maturation function in very young children, resulting in 50% maturation at 0.575 (0.413-0.711) y of age. An evidence-based optimised dose regimen was constructed that would provide piperaquine exposures across all ages comparable to the exposure currently seen in a typical adult with standard treatment, without exceeding the concentration range observed with the manufacturers' recommended regimen. Limited data were available in infants and pregnant women with malaria as well as in healthy individuals. CONCLUSIONS: The derived population pharmacokinetic model was used to develop a revised dose regimen of dihydroartemisinin-piperaquine that is expected to provide equivalent piperaquine exposures safely in all patients, including in small children with malaria. Use of this dose regimen is expected to prolong the useful therapeutic life of dihydroartemisinin-piperaquine by increasing cure rates and thereby slowing resistance development. This work was part of the evidence that informed the World Health Organization technical guidelines development group in the development of the recently published treatment guidelines (2015).


Assuntos
Malária Falciparum/tratamento farmacológico , Quinolinas/farmacocinética , Quinolinas/uso terapêutico , Antimaláricos/farmacocinética , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Humanos , Plasmodium falciparum/efeitos dos fármacos , Quinolinas/farmacologia
13.
Br J Clin Pharmacol ; 83(12): 2752-2766, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28695570

RESUMO

AIMS: The aims of the present study were to evaluate the pharmacokinetic properties of dihydroartemisinin (DHA) and piperaquine, potential drug-drug interactions with concomitant primaquine treatment, and piperaquine effects on the electrocardiogram in healthy volunteers. METHODS: The population pharmacokinetic properties of DHA and piperaquine were assessed in 16 healthy Thai adults using an open-label, randomized, crossover study. Drug concentration-time data and electrocardiographic measurements were evaluated with nonlinear mixed-effects modelling. RESULTS: The developed models described DHA and piperaquine population pharmacokinetics accurately. Concomitant treatment with primaquine did not affect the pharmacokinetic properties of DHA or piperaquine. A linear pharmacokinetic-pharmacodynamic model described satisfactorily the relationship between the individually corrected QT intervals and piperaquine concentrations; the population mean QT interval increased by 4.17 ms per 100 ng ml-1 increase in piperaquine plasma concentration. Simulations from the final model showed that monthly and bimonthly mass drug administration in healthy subjects would result in median maximum QT interval prolongations of 18.9 ms and 16.8 ms, respectively, and would be very unlikely to result in prolongation of more than 50 ms. A single low dose of primaquine can be added safely to the existing DHA-piperaquine treatment in areas of multiresistant Plasmodium falciparum malaria. CONCLUSIONS: Pharmacokinetic-pharmacodynamic modelling and simulation in healthy adult volunteers suggested that therapeutic doses of DHA-piperaquine in the prevention or treatment of P. falciparum malaria are unlikely to be associated with dangerous QT prolongation.


Assuntos
Antimaláricos/farmacocinética , Eletrocardiografia , Frequência Cardíaca/efeitos dos fármacos , Modelos Biológicos , Adulto , Antimaláricos/administração & dosagem , Antimaláricos/efeitos adversos , Artemisininas/administração & dosagem , Artemisininas/farmacocinética , Simulação por Computador , Estudos Cross-Over , Combinação de Medicamentos , Interações Medicamentosas , Voluntários Saudáveis , Humanos , Modelos Lineares , Síndrome do QT Longo/induzido quimicamente , Síndrome do QT Longo/diagnóstico , Síndrome do QT Longo/fisiopatologia , Pessoa de Meia-Idade , Dinâmica não Linear , Primaquina/administração & dosagem , Primaquina/efeitos adversos , Quinolinas/administração & dosagem , Quinolinas/farmacocinética , Medição de Risco , Tailândia , Adulto Jovem
14.
Br J Clin Pharmacol ; 79(4): 636-49, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25297720

RESUMO

AIM: Drug-drug interactions between antimalarial and antiretroviral drugs may influence antimalarial treatment outcomes. The aim of this study was to investigate the potential drug-drug interactions between the antimalarial drugs, lumefantrine, artemether and their respective metabolites desbutyl-lumefantrine and dihydroartemisinin, and the HIV drugs efavirenz, nevirapine and lopinavir/ritonavir. METHOD: Data from two clinical studies, investigating the influence of the HIV drugs efavirenz, nevirapine and lopinavir/ritonavir on the pharmacokinetics of the antimalarial drugs lumefantrine, artemether and their respective metabolites, in HIV infected patients were pooled and analyzed using a non-linear mixed effects modelling approach. RESULTS: Efavirenz and nevirapine significantly decreased the terminal exposure to lumefantrine (decrease of 69.9% and 25.2%, respectively) while lopinavir/ritonavir substantially increased the exposure (increase of 439%). All antiretroviral drugs decreased the total exposure to dihydroartemisinin (decrease of 71.7%, 41.3% and 59.7% for efavirenz, nevirapine and ritonavir/lopinavir, respectively). Simulations suggest that a substantially increased artemether-lumefantrine dose is required to achieve equivalent exposures when co-administered with efavirenz (250% increase) and nevirapine (75% increase). When co-administered with lopinavir/ritonavir it is unclear if the increased lumefantrine exposure compensates adequately for the reduced dihydroartemisinin exposure and thus whether dose adjustment is required. CONCLUSION: There are substantial drug interactions between artemether-lumefantrine and efavirenz, nevirapine and ritonavir/lopinavir. Given the readily saturable absorption of lumefantrine, the dose adjustments predicted to be necessary will need to be evaluated prospectively in malaria-HIV co-infected patients.


Assuntos
Fármacos Anti-HIV , Antimaláricos , Artemisininas , Etanolaminas , Fluorenos , Modelos Biológicos , Adulto , Idoso , Fármacos Anti-HIV/administração & dosagem , Fármacos Anti-HIV/farmacocinética , Fármacos Anti-HIV/uso terapêutico , Antimaláricos/administração & dosagem , Antimaláricos/farmacocinética , Artemeter , Artemisininas/administração & dosagem , Artemisininas/farmacocinética , Disponibilidade Biológica , Estudos Cross-Over , Relação Dose-Resposta a Droga , Interações Medicamentosas , Etanolaminas/administração & dosagem , Etanolaminas/farmacocinética , Feminino , Fluorenos/administração & dosagem , Fluorenos/farmacocinética , Humanos , Lumefantrina , Masculino , Pessoa de Meia-Idade , Adulto Jovem
15.
CPT Pharmacometrics Syst Pharmacol ; 13(5): 795-811, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38528724

RESUMO

We reported here on the development of a pharmacometric framework to assess patient adherence, by using two population-based approaches - the percentile and the Bayesian method. Three different dosing strategies were investigated in patients prescribed a total of three doses; (1) non-observed therapy, (2) directly observed administration of the first dose, and (3) directly observed administration of the first two doses. The percentile approach used population-based simulations to derive optimal concentration percentile cutoff values from the distribution of simulated drug concentrations at a specific time. This was done for each adherence scenario and compared to full adherence. The Bayesian approach calculated the posterior probability of each adherence scenario at a given drug concentration. The predictive performance (i.e., Youden index, receiver operating characteristic [ROC] curve) of both approaches were highly influenced by sample collection time (early was better) and interindividual variability (smaller was better). The complexity of the structural model and the half-life had a minimal impact on the predictive performance of these methods. The impact of the assay limitation (LOQ) on the predictive performance was relatively small if the fraction of LOQ data was less than 20%. Overall, the percentile method performed similar or better for adherence predictions compared to the Bayesian approach, with the latter showing slightly better results when investigating the adherence to the last dose only. The percentile approach showed acceptable adherence predictions (area under ROC curve > 0.74) when sampling the antimalarial drugs piperaquine at day 7 postdose and lumefantrine at day 3 postdose (i.e., 12 h after the last dose). This could be a highly useful approach when evaluating programmatic implementations of preventive and curative antimalarial treatment programs in endemic areas.


Assuntos
Antimaláricos , Teorema de Bayes , Adesão à Medicação , Humanos , Antimaláricos/farmacocinética , Antimaláricos/administração & dosagem , Adesão à Medicação/estatística & dados numéricos , Malária/tratamento farmacológico , Feminino , Masculino , Adulto , Simulação por Computador , Pessoa de Meia-Idade , Curva ROC
16.
Nat Commun ; 15(1): 3851, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719803

RESUMO

Current guidelines advise against primaquine treatment for breastfeeding mothers to avoid the potential for haemolysis in infants with G6PD deficiency. To predict the haemolytic risk, the amount of drug received from the breast milk and the resulting infant drug exposure need to be characterised. Here, we develop a pharmacokinetic model to describe the drug concentrations in breastfeeding women using venous, capillary, and breast milk data. A mother-to-infant model is developed to mimic the infant feeding pattern and used to predict their drug exposures. Primaquine and carboxyprimaquine exposures in infants are <1% of the exposure in mothers. Therefore, even in infants with the most severe G6PD deficiency variants, it is highly unlikely that standard doses of primaquine (0.25-1 mg base/kg once daily given to the mother for 1-14 days) would cause significant haemolysis. After the neonatal period, primaquine should not be restricted for breastfeeding women (Clinical Trials Registration: NCT01780753).


Assuntos
Antimaláricos , Aleitamento Materno , Lactação , Leite Humano , Primaquina , Humanos , Feminino , Primaquina/farmacocinética , Primaquina/administração & dosagem , Antimaláricos/farmacocinética , Antimaláricos/administração & dosagem , Lactente , Leite Humano/química , Leite Humano/metabolismo , Adulto , Recém-Nascido , Hemólise/efeitos dos fármacos , Modelos Biológicos
17.
NPJ Vaccines ; 9(1): 124, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971837

RESUMO

In preparation for mass vaccinations with R21/Matrix-M™ combined with mass administrations of dihydroartemisinin, piperaquine, and a single low dose primaquine we assessed the tolerability, safety, and potential interactions of this combination affecting immunogenicity or pharmacokinetics. 120 healthy Thai volunteers were randomised to receive either antimalarials combined with vaccinations (n = 50), vaccinations alone (n = 50), or antimalarials only (n = 20). Three rounds of vaccines and antimalarials were administered one month apart. The vaccine was well tolerated alone and in combination with the antimalarials. None of the participants failed completion of the 3-dose vaccine course. There was no significant difference in the vaccine immunogenicity or in the pharmacokinetics of piperaquine given individually or in combination. This study supports proceeding to a large trial of mass vaccinations with R21/Matrix-M™ combined with mass antimalarial administration in Bangladesh.

18.
Elife ; 122023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36622106

RESUMO

Background: World Health Organization has called for research into predictive factors for selecting persons who could be successfully treated with shorter durations of direct-acting antiviral (DAA) therapy for hepatitis C. We evaluated early virological response as a means of shortening treatment and explored host, viral and pharmacokinetic contributors to treatment outcome. Methods: Duration of sofosbuvir and daclatasvir (SOF/DCV) was determined according to day 2 (D2) virologic response for HCV genotype (gt) 1- or 6-infected adults in Vietnam with mild liver disease. Participants received 4- or 8-week treatment according to whether D2 HCV RNA was above or below 500 IU/ml (standard duration is 12 weeks). Primary endpoint was sustained virological response (SVR12). Those failing therapy were retreated with 12 weeks SOF/DCV. Host IFNL4 genotype and viral sequencing was performed at baseline, with repeat viral sequencing if virological rebound was observed. Levels of SOF, its inactive metabolite GS-331007 and DCV were measured on days 0 and 28. Results: Of 52 adults enrolled, 34 received 4 weeks SOF/DCV, 17 got 8 weeks and 1 withdrew. SVR12 was achieved in 21/34 (62%) treated for 4 weeks, and 17/17 (100%) treated for 8 weeks. Overall, 38/51 (75%) were cured with first-line treatment (mean duration 37 days). Despite a high prevalence of putative NS5A-inhibitor resistance-associated substitutions (RASs), all first-line treatment failures cured after retreatment (13/13). We found no evidence treatment failure was associated with host IFNL4 genotype, viral subtype, baseline RAS, SOF or DCV levels. Conclusions: Shortened SOF/DCV therapy, with retreatment if needed, reduces DAA use in patients with mild liver disease, while maintaining high cure rates. D2 virologic response alone does not adequately predict SVR12 with 4-week treatment. Funding: Funded by the Medical Research Council (Grant MR/P025064/1) and The Global Challenges Research 70 Fund (Wellcome Trust Grant 206/296/Z/17/Z).


Hepatitis C is a blood-borne virus that causes thousands of deaths from liver cirrhosis and liver cancer each year. Antiviral therapies can cure most cases of infection in 12 weeks. Unfortunately, treatment is expensive, and sticking with the regimen for 12 weeks can be difficult. It may be especially challenging for unhoused people or those who use injection drugs and who have high rates of hepatitis C infection. Shorter durations of therapy may make it more accessible, especially for high-risk populations. But studies of shorter antiviral treatment durations have yet to produce high enough cure rates. Finding ways to identify patients who would benefit from shorter therapy is a key goal of the World Health Organization. Potential characteristics that may predict a faster treatment response include low virus levels before initiating treatment, patient genetics, drug resistance mutations in the virus, and higher drug levels in the patient's blood during treatment. For example, previous research showed that a rapid decrease in virus levels in a patient's blood two days after starting antiviral therapy with three drugs predicted patient cures after three weeks of treatment. To test if high cure rates could be achieved in just four weeks of treatment, Flower et al. enrolled 52 patients with hepatitis C in a study to receive the most widely accessible dual antiviral treatment (sofosbuvir and daclatasvir). Participants received four or eight weeks of treatment, depending on the amount of viral RNA in their blood after two days of treatment. The results indicate that a rapid decrease in virus levels in the blood does not adequately predict cure rates with four weeks of two-drug combination therapy. However, eight weeks may be highly effective, regardless of viral levels early in treatment. Thirty-four individuals with low virus levels on the second day of treatment received four weeks of therapy, which cured 21 or 62% of them. All seventeen individuals with higher viral levels on day two were cured after eight weeks of treatment. Twelve weeks of retreatment was sufficient to cure the 13 individuals who did not achieve cure with four weeks of therapy. Even patients with drug resistance genes after the first round of therapy responded to a longer second round. Flower et al. show that patient genetics, virus subtype, drug levels in the patient's blood, and viral drug resistance genes before therapy, were not associated with patient cures after four weeks of treatment. Given that retreatment is safe and effective, larger studies are now needed to determine whether eight weeks of therapy with sofosbuvir and daclatasvir may be enough to cure patients with mild liver disease. More studies are also necessary to identify patients that may benefit from shorter therapy durations. Finding ways to shorten antiviral therapy for hepatitis C could help make treatment more accessible and reduce therapy costs for both individuals and governments.


Assuntos
Hepatite C Crônica , Hepatite C , Adulto , Humanos , Sofosbuvir/uso terapêutico , Antivirais , Projetos Piloto , Hepatite C Crônica/tratamento farmacológico , Quimioterapia Combinada , Resultado do Tratamento , Hepacivirus/genética , Genótipo , Ribavirina/uso terapêutico , Interleucinas/genética
19.
Malar J ; 11: 398, 2012 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-23190801

RESUMO

BACKGROUND: Pregnancy is associated with an increased risk of developing a malaria infection and a higher risk of developing severe malaria. The pharmacokinetic properties of many anti-malarials are also altered during pregnancy, often resulting in a decreased drug exposure. Piperaquine is a promising anti-malarial partner drug used in a fixed-dose combination with dihydroartemisinin. The aim of this study was to investigate the population pharmacokinetics of piperaquine in pregnant and non-pregnant Sudanese women with uncomplicated Plasmodium falciparum malaria. METHOD: Symptomatic patients received a standard dose regimen of the fixed dose oral piperaquine-dihydroartemisinin combination treatment. Densely sampled plasma aliquots were collected and analysed using a previously described LC-MS/MS method. Data from 12 pregnant and 12 non-pregnant women were analysed using nonlinear mixed-effects modelling. A Monte Carlo Mapped Power (MCMP) analysis was conducted based on a previously published study to evaluate the power of detecting covariates in this relatively small study. RESULTS: A three-compartment disposition model with a transit-absorption model described the observed data well. Body weight was added as an allometric function on all clearance and volume parameters. A statistically significant decrease in estimated terminal piperaquine half-life in pregnant compared with non-pregnant women was found, but there were no differences in post-hoc estimates of total piperaquine exposure. The MCMP analysis indicated a minimum of 13 pregnant and 13 non-pregnant women were required to identify pregnancy as a covariate on relevant pharmacokinetic parameters (80% power and p=0.05). Pregnancy was, therefore, evaluated as a categorical and continuous covariate (i.e. estimate gestational age) in a full covariate approach. Using this approach pregnancy was not associated with any major change in piperaquine elimination clearance. However, a trend of increasing elimination clearance with increasing gestational age could be seen. CONCLUSIONS: The population pharmacokinetic properties of piperaquine were well described by a three-compartment disposition model in pregnant and non-pregnant women with uncomplicated malaria. The modelling approach showed no major difference in piperaquine exposure between the two groups and data presented here do not warrant a dose adjustment in pregnancy in this vulnerable population.


Assuntos
Antimaláricos/farmacocinética , Malária Falciparum/complicações , Malária Falciparum/tratamento farmacológico , Modelos Biológicos , Complicações Parasitárias na Gravidez/tratamento farmacológico , Quinolinas/farmacocinética , Adolescente , Adulto , Antimaláricos/administração & dosagem , Antimaláricos/sangue , Artemisininas/administração & dosagem , Disponibilidade Biológica , Combinação de Medicamentos , Feminino , Humanos , Malária Falciparum/sangue , Taxa de Depuração Metabólica , Dinâmica não Linear , Gravidez , Complicações Parasitárias na Gravidez/sangue , Quinolinas/administração & dosagem , Quinolinas/sangue , Sudão , Adulto Jovem
20.
Expert Rev Clin Pharmacol ; 15(8): 945-958, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36017624

RESUMO

INTRODUCTION: Developing and evaluating novel compounds for treatment or prophylaxis of emerging infectious diseases is costly and time-consuming. Repurposing of already available marketed compounds is an appealing option as they already have an established safety profile. This approach could substantially reduce cost and time required to make effective treatments available to fight the COVID-19 pandemic. However, this approach is challenging since many drug candidates show efficacy in in vitro experiments, but fail to deliver effect when evaluated in clinical trials. Better approaches to evaluate in vitro data are needed, in order to prioritize drugs for repurposing. AREAS COVERED: This article evaluates potential drugs that might be of interest for repurposing in the treatment of patients with COVID-19 disease. A pharmacometric simulation-based approach was developed to evaluate in vitro activity data in combination with expected clinical drug exposure, in order to evaluate the likelihood of achieving effective concentrations in patients. EXPERT OPINION: The presented pharmacometric approach bridges in vitro activity data to clinically expected drug exposures, and could therefore be a useful compliment to other methods in order to prioritize repurposed drugs for evaluation in prospective randomized controlled clinical trials.


Assuntos
Tratamento Farmacológico da COVID-19 , Antivirais/uso terapêutico , Reposicionamento de Medicamentos/métodos , Humanos , Pandemias , Estudos Prospectivos , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa