Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
FASEB J ; 34(2): 1970-1982, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31909538

RESUMO

Osterix is a critical transcription factor of mesenchymal stem cell fate, where its loss or loss of Wnt signaling diverts differentiation to a chondrocytic lineage. Intervertebral disc (IVD) degeneration activates the differentiation of prehypertrophic chondrocyte-like cells and inactivates Wnt signaling, but its interactive role with osterix is unclear. First, compared to young-adult (5 mo), mechanical compression of old (18 mo) IVD induced greater IVD degeneration. Aging (5 vs 12 mo) and/or compression reduced the transcription of osterix and notochordal marker T by 40-75%. Compression elevated the transcription of hypertrophic chondrocyte marker MMP13 and pre-osterix transcription factor RUNX2, but less so in 12 mo IVD. Next, using an Ai9/td reporter and immunohistochemical staining, annulus fibrosus and nucleus pulposus cells of young-adult IVD expressed osterix, but aging and compression reduced its expression. Lastly, in vivo LRP5-deficiency in osterix-expressing cells inactivated Wnt signaling in the nucleus pulposus by 95%, degenerated the IVD to levels similar to aging and compression, reduced the biomechanical properties by 45-70%, and reduced the transcription of osterix, notochordal markers and chondrocytic markers by 60-80%. Overall, these data indicate that age-related inactivation of Wnt signaling in osterix-expressing cells may limit regeneration by depleting the progenitors and attenuating the expansion of chondrocyte-like cells.


Assuntos
Envelhecimento/metabolismo , Condrócitos/metabolismo , Condrogênese , Subunidade alfa 1 de Fator de Ligação ao Core/biossíntese , Proteínas Fetais/biossíntese , Degeneração do Disco Intervertebral/metabolismo , Fator de Transcrição Sp7/biossíntese , Proteínas com Domínio T/biossíntese , Envelhecimento/genética , Envelhecimento/patologia , Animais , Antígenos de Diferenciação/biossíntese , Antígenos de Diferenciação/genética , Condrócitos/patologia , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Proteínas Fetais/genética , Regulação da Expressão Gênica , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/patologia , Camundongos , Camundongos Transgênicos , Fator de Transcrição Sp7/genética , Proteínas com Domínio T/genética
2.
Proc Natl Acad Sci U S A ; 113(41): E6199-E6208, 2016 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-27681622

RESUMO

Osteoarthritis (OA) is a major cause of disability and morbidity in the aging population. Joint injury leads to cartilage damage, a known determinant for subsequent development of posttraumatic OA, which accounts for 12% of all OA. Understanding the early molecular and cellular responses postinjury may provide targets for therapeutic interventions that limit articular degeneration. Using a murine model of controlled knee joint impact injury that allows the examination of cartilage responses to injury at specific time points, we show that intraarticular delivery of a peptidic nanoparticle complexed to NF-κB siRNA significantly reduces early chondrocyte apoptosis and reactive synovitis. Our data suggest that NF-κB siRNA nanotherapy maintains cartilage homeostasis by enhancing AMPK signaling while suppressing mTORC1 and Wnt/ß-catenin activity. These findings delineate an extensive crosstalk between NF-κB and signaling pathways that govern cartilage responses postinjury and suggest that delivery of NF-κB siRNA nanotherapy to attenuate early inflammation may limit the chronic consequences of joint injury. Therapeutic benefits of siRNA nanotherapy may also apply to primary OA in which NF-κB activation mediates chondrocyte catabolic responses. Additionally, a critical barrier to the successful development of OA treatment includes ineffective delivery of therapeutic agents to the resident chondrocytes in the avascular cartilage. Here, we show that the peptide-siRNA nanocomplexes are nonimmunogenic, are freely and deeply penetrant to human OA cartilage, and persist in chondrocyte lacunae for at least 2 wk. The peptide-siRNA platform thus provides a clinically relevant and promising approach to overcoming the obstacles of drug delivery to the highly inaccessible chondrocytes.

3.
JBMR Plus ; 8(6): ziae048, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38706880

RESUMO

Low back pain derived from intervertebral disc (IVD) degeneration is a debilitating spinal condition that, despite its prevalence, does not have any intermediary guidelines for pharmacological treatment between palliative care and invasive surgery. The development of treatments for the IVD is complicated by the variety of resident cell types needed to maintain the regionally distinct structural properties of the IVD that permit the safe, complex motions of the spine. Osteoporosis of the spine increases the risk of vertebral bone fracture that can increase the incidence of back pain. Fortunately, there are a variety of pharmacological treatments for osteoporosis that target osteoblasts, osteoclasts and/or osteocytes to build bone and prevent vertebral fracture. Of particular note, clinical and preclinical studies suggest that commonly prescribed osteoporosis drugs like bisphosphonates, intermittent parathyroid hormone, anti-sclerostin antibody, selective estrogen receptor modulators and anti-receptor activator of nuclear factor-kappa B ligand inhibitor denosumab may also relieve back pain. Here, we cite clinical and preclinical studies and include unpublished data to support the argument that a subset of these therapeutics for osteoporosis may alleviate low back pain by also targeting the IVD.

4.
Calcif Tissue Int ; 93(3): 211-21, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23708853

RESUMO

Tibial compression can increase murine bone mass. However, loading protocols and mouse strains differ between studies, which may contribute to conflicting results. We hypothesized that bone accrual is influenced more by loading history than by mouse strain or animal handling. The right tibiae of 4-month-old C57BL/6 and BALB/c mice were subjected to axial compression (10 N, 3 days/week, 6 weeks). Left tibiae served as contralateral controls to calculate relative changes: (loaded - control)/control. The WashU protocol applied 60 cycles/day, at 2 Hz, with a 10-s rest-insertion between cycles; the Cornell/HSS protocol applied 1,200 cycles/day, at 6.7 Hz, with a 0.1-s rest-insertion. Because sham loading, sedation, and transportation did not affect tibial morphology, unhandled mice served as age-matched controls (AC). Both loading protocols were anabolic for cortical bone, but Cornell/HSS loading elicited a more rapid response that was greater than WashU loading by 13 %. By 6 weeks, cortical bone volume of each loading group was greater than of AC (average + 16 %) and not different from each other. Ultimate displacement and energy to fracture were greater in tibiae loaded by either protocol, and ultimate force was greater with Cornell/HSS loading. At 6 weeks, independent of mouse strain, the WashU protocol produced minimal trabecular bone and the trabecular bone volume fraction of Cornell/HSS tibiae was greater than that of AC by 65 % and that of WashU by 44 %. We concluded that tibial adaptation to loading was more influenced by waveform than mouse strain or animal handling and therefore may have targeted similar osteogenic mechanisms in C57BL/6 and BALB/c mice.


Assuntos
Força Compressiva , Osteogênese/fisiologia , Tíbia/patologia , Suporte de Carga/fisiologia , Adaptação Fisiológica , Animais , Densidade Óssea , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Especificidade da Espécie , Estresse Mecânico , Microtomografia por Raio-X
5.
bioRxiv ; 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36778423

RESUMO

BACKGROUND CONTEXT : Endplate (EP) injury plays critical roles in painful IVD degeneration since Modic changes (MCs) are highly associated with pain. Models of EP microfracture that progress to painful conditions are needed to better understand pathophysiological mechanisms and screen therapeutics. PURPOSE : Establish in vivo rat lumbar EP microfracture model with painful phenotype. STUDY DESIGN/SETTING : In vivo rat study to characterize EP-injury model with characterization of IVD degeneration, vertebral bone marrow remodeling, spinal cord sensitization, and pain-related behaviors. METHODS : EP-driven degeneration was induced in 5-month-old male Sprague-Dawley rats L4-5 and L5-6 IVDs through the proximal vertebral body injury with intradiscal injections of TNFα (n=7) or PBS (n=6), compared to Sham (surgery without EP-injury, n=6). The EP-driven model was assessed for IVD height, histological degeneration, pain-like behaviors (hindpaw von Frey and forepaw grip test), lumbar spine MRI and µCT analyses, and spinal cord substance P (SubP). RESULTS : EP injuries induced IVD degeneration with decreased IVD height and MRI T2 values. EP injury with PBS and TNFα both showed MC type1-like changes on T1 and T2-weighted MRI, trabecular bone remodeling on µCT, and damage in cartilage EP adjacent to the injury. EP injuries caused significantly decreased paw withdrawal threshold and reduced grip forces, suggesting increased pain sensitivity and axial spinal discomfort. Spinal cord dorsal horn SubP was significantly increased, indicating spinal cord sensitization. CONCLUSIONS : EP microfracture can induce crosstalk between vertebral bone marrow, IVD and spinal cord with chronic pain-like conditions. CLINICAL SIGNIFICANCE : This rat EP microfracture model of IVD degeneration was validated to induce MC-like changes and pain-like behaviors that we hope will be useful to screen therapies and improve treatment for EP-drive pain.

6.
Spine J ; 23(9): 1375-1388, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37086976

RESUMO

BACKGROUND CONTEXT: Endplate (EP) injury plays critical roles in painful IVD degeneration since Modic changes (MCs) are highly associated with pain. Models of EP microfracture that progress to painful conditions are needed to better understand pathophysiological mechanisms and screen therapeutics. PURPOSE: Establish in vivo rat lumbar EP microfracture model and assess crosstalk between IVD, vertebra and spinal cord. STUDY DESIGN/SETTING: In vivo rat EP microfracture injury model with characterization of IVD degeneration, vertebral remodeling, spinal cord substance P (SubP), and pain-related behaviors. METHODS: EP-injury was induced in 5 month-old male Sprague-Dawley rats L4-5 and L5-6 IVDs by puncturing through the cephalad vertebral body and EP into the NP of the IVDs followed by intradiscal injections of TNFα (n=7) or PBS (n=6), compared with Sham (surgery without EP-injury, n=6). The EP-injury model was assessed for IVD height, histological degeneration, pain-like behaviors (hindpaw von Frey and forepaw grip test), lumbar spine MRI and µCT, and spinal cord SubP. RESULTS: Surgically-induced EP microfracture with PBS and TNFα injection induced IVD degeneration with decreased IVD height and MRI T2 signal, vertebral remodeling, and secondary damage to cartilage EP adjacent to the injury. Both EP injury groups showed MC-like changes around defects with hypointensity on T1-weighted and hyperintensity on T2-weighted MRI, suggestive of MC type 1. EP injuries caused significantly decreased paw withdrawal threshold, reduced axial grip, and increased spinal cord SubP, suggesting axial spinal discomfort and mechanical hypersensitivity and with spinal cord sensitization. CONCLUSIONS: Surgically-induced EP microfracture can cause crosstalk between IVD, vertebra, and spinal cord with chronic pain-like conditions. CLINICAL SIGNIFICANCE: This rat EP microfracture model was validated to induce broad spinal degenerative changes that may be useful to improve understanding of MC-like changes and for therapeutic screening.


Assuntos
Dor Crônica , Fraturas de Estresse , Degeneração do Disco Intervertebral , Disco Intervertebral , Ratos , Masculino , Animais , Degeneração do Disco Intervertebral/etiologia , Degeneração do Disco Intervertebral/complicações , Disco Intervertebral/patologia , Fator de Necrose Tumoral alfa , Ratos Sprague-Dawley , Fraturas de Estresse/complicações , Fraturas de Estresse/patologia , Vértebras Lombares/patologia , Medula Espinal/patologia
7.
Front Bioeng Biotechnol ; 10: 924918, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36032728

RESUMO

Estrogen agonist raloxifene is an FDA-approved treatment of osteoporosis in postmenopausal women, which may also be a promising prophylactic for painful intervertebral disc (IVD) degeneration. Here, we hypothesized that 1) aging and biological sex contribute to IVD degeneration by reducing estrogen signaling and that 2) raloxifene stimulates estrogen signaling to protect against age- and sex-related IVD degeneration in mice. 2.5-month-old (male and female) and 22.5-month-old (female) C57Bl/6J mice were subcutaneously injected with raloxifene hydrochloride 5x/week for 6 weeks (n = 7-9/grp). Next, female mice were ovariectomized (OVX) or sham operated at 4 months of age and tissues harvested at 6 months (n = 5-6/grp). Advanced aging and OVX increased IVD degeneration score, weakened IVD strength, reduced estrogen receptor-α (ER-α) protein expression, and increased neurotransmitter substance P (SP) expression. Similar to aging and compared with male IVDs, female IVDs were more degenerated, mechanically less viscoelastic, and expressed less ER-α protein, but unlike the effect induced by aging or OVX, IVD mechanical force was greater in females than in males. Therapeutically, systemic injection of raloxifene promoted ER-α protein to quell these dysregulations by enlarging IVD height, alleviating IVD degeneration score, increasing the strength and viscoelastic properties of the IVD, and reducing IVD cell expression of SP in young-adult and old female mice. Transcriptionally, injection of raloxifene upregulated the gene expression of ER-α and extracellular matrix-related anabolism in young-adult and old IVD. In vertebra, advanced aging and OVX reduced trabecular BV/TV, whereas injection of raloxifene increased trabecular BV/TV in young-adult and old female mice, but not in young-adult male mice. In vertebra, advanced aging, OVX, and biological sex (females > males) increased the number of SP-expressing osteocytes, whereas injection of raloxifene reduced the number of SP-expressing osteocytes in young-adult female and male mice and old female mice. Overall, injection of estrogen agonist raloxifene in mice normalized dysregulation of IVD structure, IVD mechanics, and pain-related SP expression in IVD cells and osteocytes induced by aging and biological sex. These data suggest that, in addition to bone loss, raloxifene may relieve painful IVD degeneration in postmenopausal women induced by advanced age, biological sex, and estrogen depletion.

8.
J Bone Miner Res ; 37(6): 1156-1169, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35278242

RESUMO

Intervertebral disc (IVD) degeneration is a leading cause of low back pain, characterized by accelerated extracellular matrix breakdown and IVD height loss, but there is no approved pharmacological therapeutic. Deletion of Wnt ligand competitor Lrp5 induces IVD degeneration, suggesting that Wnt signaling is essential for IVD homeostasis. Therefore, the IVD may respond to neutralization of Wnt ligand competitors sost(gene)/sclerostin(protein) and/or dickkopf-1 (dkk1). Anti-sclerostin antibody (scl-Ab) is an FDA-approved bone therapeutic that activates Wnt signaling. We aimed to (i) determine if pharmacological neutralization of sclerostin, dkk1, or their combination would stimulate Wnt signaling and augment IVD structure and (ii) determine the prolonged adaptation of the IVD to global, persistent deletion of sost. Nine-week-old C57Bl/6J female mice (n = 6-7/group) were subcutaneously injected 2×/week for 5.5 weeks with scl-Ab (25 mg/kg), dkk1-Ab (25 mg/kg), 3:1 scl-Ab/dkk1-Ab (18.75:6.25 mg/kg), or vehicle (veh). Separately, IVD of sost KO and wild-type (WT) mice (n = 8/group) were harvested at 16 weeks of age. First, compared with vehicle, injection of scl-Ab, dkk1-Ab, and 3:1 scl-Ab/dkk1-Ab similarly increased lumbar IVD height and ß-catenin gene expression. Despite these similarities, only injection of scl-Ab alone strengthened IVD mechanical properties and decreased heat shock protein gene expressions. Genetically and compared with WT, sost KO enlarged IVD height, increased proteoglycan staining, and imbibed IVD hydration. Notably, persistent deletion of sost was compensated by upregulation of dkk1, which consequently reduced the cell nuclear fraction for Wnt signaling co-transcription factor ß-catenin in the IVD. Lastly, RNA-sequencing pathway analysis confirmed the compensatory suppression of Wnt signaling and revealed a reduction of cellular stress-related pathways. Together, suppression of sost/sclerostin or dkk1 each augmented IVD structure by stimulating Wnt signaling, but scl-Ab outperformed dkk1-Ab in strengthening the IVD. Ultimately, postmenopausal women prescribed scl-Ab injections to prevent vertebral fracture may also benefit from a restoration of IVD height and health. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Peptídeos e Proteínas de Sinalização Intercelular , Disco Intervertebral , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Anticorpos/farmacologia , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Disco Intervertebral/anatomia & histologia , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Via de Sinalização Wnt , beta Catenina
11.
Aviat Space Environ Med ; 81(12): 1078-84, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21197851

RESUMO

BACKGROUND: Changes in intervertebral disc (IVD) morphology and biochemistry have been characterized only incompletely in the rat hindlimb unloading (HLU) model. Here we present preliminary data on the differential effects of short periods of weight-bearing with or without low-level whole-body vibrations (WBV) on the lumbar rat IVD during HLU. METHODS: Rats were subjected to HLU and exposed to daily periods (15 min x d(-1)) of either ambulatory activities (HLU+AMB) or whole body vibrations superimposed upon ambulation (HLU+WBV; WBV at 45 Hz, 0.3 g). RESULTS: At the end of the 4-wk experimental period and compared to age-matched control rats (AC), the lumbar IVD of HLU+AMB had a 22% smaller glycosaminoglycans/collagen ratio, 12% smaller posterior IVD height, 13% smaller cross-sectional area, 9% greater ratio of height/area, and a 24% smaller volume of the surrounding muscle tissue. Compared to HLU+AMB rats, the addition of low-level vibratory loading did not significantly alter IVD biochemistry, posterior height, area, or volume but normalized muscle volume (-8% vs. AC) and the IVD height/area ratio (-3% vs. AC) to levels similar to normal controls. Relative to AC, superposition of the vibratory stimulus onto ambulation had a greater effect on IVD area than on IVD height. IVD volume and IVD posterior height of HLU+WBV rats remained 13% and 16% smaller than in normal controls. CONCLUSION: Even though neither intervention was successful in preventing hindlimb unloading induced changes in IVD volume, compared to ambulation alone, very low-level whole-body vibrations resulted in greater total back and abdominal muscle volume and directionally altered IVD geometry.


Assuntos
Elevação dos Membros Posteriores , Disco Intervertebral/fisiologia , Suporte de Carga/fisiologia , Músculos Abdominais/fisiologia , Animais , Feminino , Disco Intervertebral/anatomia & histologia , Disco Intervertebral/química , Degeneração do Disco Intervertebral/fisiopatologia , Vértebras Lombares/fisiopatologia , Músculo Esquelético/fisiologia , Ratos , Ratos Sprague-Dawley , Vibração
12.
Sci Rep ; 8(1): 11191, 2018 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-30046041

RESUMO

B-Catenin, transcription factor of Wnt signaling, is promoted in patients with intervertebral disc (IVD) degeneration, but Wnt signaling decreases with aging. We hypothesize that IVD degeneration is associated with decreased Wnt signaling despite more b-Catenin. Chronic compression of tail IVDs of young-adult and aged Wnt-reporter (TOPGAL) animals initiated an age-related cascade of degenerative-like changes, which included reduced Wnt ligand expression and Wnt signaling in nucleus pulposus cells, despite elevation of b-Catenin protein and gene expression. To determine the effect of upregulated and downregulated Wnt signaling in adult discs, b-Catenin in the nucleus pulposus was stabilized (Shh-CreErT2/b-Cateninfl(Ex3)/fl(Ex3), cACT) or knocked out (Shh-CreErT2/b-Cateninfl/fl, cKO). cACT discs had promoted expression of Wnt-targets and -ligands, brachyury, extracellular matrix production and 34% greater compressive stiffness than WT (b-Cateninfl(Ex3)/fl(Ex3)) discs, but 50% less tensile stiffness. By contrast, knockout reversed the cACT phenotype: less protein expression of b-catenin in the nucleus pulposus, less expression of brachyury, heightened expression of extracellular matrix breakdown and 46% less compressive stiffness than wild-type (b-Cateninfl/fl,WT) discs. These data suggest that intervertebral disc degeneration is associated with loss of Wnt signaling and that the concomitant increase in b-catenin is a regenerative response, potentially offering a therapeutic approach to degeneration.


Assuntos
Degeneração do Disco Intervertebral/genética , Núcleo Pulposo/fisiopatologia , Via de Sinalização Wnt/genética , beta Catenina/genética , Animais , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica/genética , Técnicas de Inativação de Genes , Humanos , Disco Intervertebral/metabolismo , Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/fisiopatologia , Camundongos , Núcleo Pulposo/metabolismo , beta Catenina/metabolismo
13.
J Orthop Res ; 36(2): 682-691, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28888055

RESUMO

Classic studies in bone mechanobiology have established the importance of loading parameters on the anabolic response. Most of these early studies were done using loading methods not currently in favor, and using non-murine species. Our objective was to re-examine the effects of several loading parameters on the response of cortical bone using the contemporary murine axial tibial compression model. We subjected tibias of 5-month old, female C57Bl/6 mice to cyclic (4 Hz) mechanical loading and examined bone formation responses using dynamic and static histomorphometry. First, using a reference protocol of 1,200 cycles/day, 5 days/week for 2 weeks, we confirmed the significant influence of peak strain magnitude on periosteal mineralizing surface (Ps.MS/BS) and bone formation rate (Ps.BFR/BS) (p < 0.05, ANOVA). There was a significant induction of periosteal lamellar bone at a lower threshold of approx. -1,000 µÏµ and a transition from lamellar-woven bone near -2,000 µÏµ. In contrast, on the endocortical surface, bone formation indices did not exhibit a load magnitude-dependent response and no incidence of woven bone. Next, we found that reducing daily cycle number from 1,200 to 300 to 60 did not diminish the bone formation response (p > 0.05). On the other hand, reducing the daily frequency of loading from 5 consecutive days/week to 3 alternate days/week significantly diminished the periosteal response, from a loading-induced increase in Ps.MS/BS of 38% (loaded vs. control) for 5 days/week to only 15% for 3 days/week (p < 0.05). Finally, we determined that reducing the study duration from 2 to 1 weeks of loading did not affect bone formation outcomes. In conclusion, cyclic loading to -1,800 µÏµ peak strain, at 4 Hz and 60 cycles/day for 5 consecutive days (1 week) induces an increase in periosteal lamellar bone formation with minimal incidence of woven bone in 5-month-old C57Bl/6 female mice. Our results provide a basis for reduction of loading duration (daily cycles and study length) without loss of anabolic effect as measured by dynamic histomorphometry. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:682-691, 2018.


Assuntos
Biofísica/métodos , Osso Cortical/fisiologia , Osteogênese , Animais , Feminino , Camundongos Endogâmicos C57BL , Periósteo/fisiologia , Tíbia/fisiologia , Suporte de Carga
14.
J Orthop Res ; 35(3): 524-536, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27591401

RESUMO

In this study, we examined early time-dependent changes in articular cartilage and synovium in response to tibial compression and sought the plausible origin of cells that respond to compression in the healer (LGXSM-6) and non-healer (LGXSM-33) recombinant inbred mouse strains. The right knee of 13-week old male mice was subjected to tibial compression using 9N axial loading. The contralateral left knee served as a control. Knees were harvested at 5, 9, and 14 days post-injury. Histological changes in cartilage and synovium, immunofluorescence pattern of CD44, aggrecan, type-II collagen, cartilage oligomeric matrix protein and the aggrecan neo-epitope NITEGE, and cell apoptosis (by TUNEL) were examined. We used a double nucleoside analog cell-labeling strategy to trace cells responsive to injury. We showed that tibial compression resulted in rupture of anterior cruciate ligament, cartilage matrix loss and chondrocyte apoptosis at the injury site. LGXSM-33 showed higher synovitis and ectopic synovial chondrogenesis than LGXSM-6 with no differences for articular cartilage lesions. With loading, an altered pattern of CD44 and NITEGE was observed: cells in the impacted area underwent apoptosis, cells closely surrounding the injured area expressed CD44, and cells in the intact area expressed NITEGE. Cells responding to injury were found in the synovium, subchondral bone marrow and the Groove of Ranvier. Taken together, we found no strain differences in chondrocytes in the early response to injury. However, the synovial response was greater in LGXSM-33 indicating that, at early time points, there is a genetic difference in synovial cell reaction to injury. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:524-536, 2017.


Assuntos
Traumatismos do Joelho/complicações , Osteoartrite do Joelho/genética , Sinovite/genética , Agrecanas/metabolismo , Animais , Apoptose , Cartilagem Articular/patologia , Proteínas da Matriz Extracelular/metabolismo , Receptores de Hialuronatos/metabolismo , Traumatismos do Joelho/patologia , Masculino , Camundongos , Membrana Sinovial/patologia , Sinovite/patologia
15.
PLoS One ; 12(4): e0175682, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28406954

RESUMO

OBJECTIVE: To investigate the therapeutic potential of intra-articular hyaluronan-derivative HYADD® 4-G and/or platelet-rich plasma (PRP) in a mouse model of non-invasive joint injury. METHODS: Non-invasive axial tibial loading was used to induce joint injury in 10-week-old C57BL/6J mice (n = 86). Mice underwent a single loading of either 6 Newton (N) or 9N axial tibial compression. HYADD® 4-G was injected intra-articularly at 8 mg/mL or 15 mg/mL either before or after loading with or without PRP. Phosphate-buffered-saline was injected as control. Knee joints were harvested at 5 or 56 days post-loading and prepared for micro-computed tomography scanning and subsequently processed for histology. Immunostaining was performed for aggrecan to monitor its distribution, for CD44 to monitor chondrocyte reactive changes and for COMP (cartilage oligomeric matrix protein) as an index for cartilage matrix changes related to loading and cartilage injury. TUNEL assay was performed to identify chondrocyte apoptosis. RESULTS: Loading initiated cartilage proteoglycan loss and chondrocyte apoptosis within 5 days with slowly progressive post-traumatic osteoarthritis (no cartilage degeneration, but increased synovitis and ectopic calcification after 9N loading) at 56 days. Mice treated with repeated HYADD® 4-G (15 mg/mL) or HYADD® 4-G (8 mg/mL) ± PRP or PRP alone exhibited no significant improvement in the short-term (5 days) and long-term (56 days) consequences of joint loading except for a trend for improved bone changes compared to non-loaded joints. CONCLUSION: While we failed to show an overall effect of intra-articular delivery of hyaluronan-derivative and/or PRP in reversing/protecting the pathological events in cartilage and synovium following joint injury, some bone alterations were relatively less severe with hyaluronan-derivative at higher concentration or in association with PRP.


Assuntos
Doenças das Cartilagens/tratamento farmacológico , Ácido Hialurônico/administração & dosagem , Articulação do Joelho/efeitos dos fármacos , Osteoartrite do Joelho/tratamento farmacológico , Plasma Rico em Plaquetas/fisiologia , Agrecanas/metabolismo , Animais , Apoptose/efeitos dos fármacos , Doenças das Cartilagens/diagnóstico por imagem , Doenças das Cartilagens/etiologia , Doenças das Cartilagens/metabolismo , Proteína de Matriz Oligomérica de Cartilagem/metabolismo , Condrócitos/citologia , Condrócitos/efeitos dos fármacos , Modelos Animais de Doenças , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/farmacologia , Injeções Intra-Articulares , Articulação do Joelho/diagnóstico por imagem , Camundongos , Osteoartrite do Joelho/diagnóstico por imagem , Osteoartrite do Joelho/etiologia , Osteoartrite do Joelho/metabolismo , Tomografia Computadorizada por Raios X , Falha de Tratamento
16.
Sci Rep ; 7: 45223, 2017 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-28345597

RESUMO

We investigated the spectrum of lesions characteristic of post-traumatic osteoarthritis (PTOA) across the knee joint in response to mechanical injury. We hypothesized that alteration in knee joint stability in mice reproduces molecular and structural features of PTOA that would suggest potential therapeutic targets in humans. The right knees of eight-week old male mice from two recombinant inbred lines (LGXSM-6 and LGXSM-33) were subjected to axial tibial compression. Three separate loading magnitudes were applied: 6N, 9N, and 12N. Left knees served as non-loaded controls. Mice were sacrificed at 5, 9, 14, 28, and 56 days post-loading and whole knee joint changes were assessed by histology, immunostaining, micro-CT, and magnetic resonance imaging. We observed that tibial compression disrupted joint stability by rupturing the anterior cruciate ligament (except for 6N) and instigated a cascade of temporal and topographical features of PTOA. These features included cartilage extracellular matrix loss without proteoglycan replacement, chondrocyte apoptosis at day 5, synovitis present at day 14, osteophytes, ectopic calcification, and meniscus pathology. These findings provide a plausible model and a whole-joint approach for how joint injury in humans leads to PTOA. Chondrocyte apoptosis, synovitis, and ectopic calcification appear to be targets for potential therapeutic intervention.


Assuntos
Lesões do Ligamento Cruzado Anterior/complicações , Lesões do Ligamento Cruzado Anterior/diagnóstico por imagem , Osteoartrite do Joelho/etiologia , Animais , Lesões do Ligamento Cruzado Anterior/etiologia , Apoptose , Condrócitos/citologia , Modelos Animais de Doenças , Humanos , Imageamento por Ressonância Magnética , Masculino , Camundongos , Osteoartrite do Joelho/diagnóstico por imagem , Estresse Mecânico , Microtomografia por Raio-X/métodos
17.
J Bone Miner Res ; 31(12): 2215-2226, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27357062

RESUMO

Aging diminishes bone formation engendered by mechanical loads, but the mechanism for this impairment remains unclear. Because Wnt signaling is required for optimal loading-induced bone formation, we hypothesized that aging impairs the load-induced activation of Wnt signaling. We analyzed dynamic histomorphometry of 5-month-old, 12-month-old, and 22-month-old C57Bl/6JN mice subjected to multiple days of tibial compression and corroborated an age-related decline in the periosteal loading response on day 5. Similarly, 1 day of loading increased periosteal and endocortical bone formation in young-adult (5-month-old) mice, but old (22-month-old) mice were unresponsive. These findings corroborated mRNA expression of genes related to bone formation and the Wnt pathway in tibias after loading. Multiple bouts (3 to 5 days) of loading upregulated bone formation-related genes, e.g., Osx and Col1a1, but older mice were significantly less responsive. Expression of Wnt negative regulators, Sost and Dkk1, was suppressed with a single day of loading in all mice, but suppression was sustained only in young-adult mice. Moreover, multiple days of loading repeatedly suppressed Sost and Dkk1 in young-adult, but not in old tibias. The age-dependent response to loading was further assessed by osteocyte staining for Sclerostin and LacZ in tibia of TOPGAL mice. After 1 day of loading, fewer osteocytes were Sclerostin-positive and, corroboratively, more osteocytes were LacZ-positive (Wnt active) in both 5-month-old and 12-month-old mice. However, although these changes were sustained after multiple days of loading in 5-month-old mice, they were not sustained in 12-month-old mice. Last, Wnt1 and Wnt7b were the most load-responsive of the 19 Wnt ligands. However, 4 hours after a single bout of loading, although their expression was upregulated threefold to 10-fold in young-adult mice, it was not altered in old mice. In conclusion, the reduced bone formation response of aged mice to loading may be due to failure to sustain Wnt activity with repeated loading. © 2016 American Society for Bone and Mineral Research.


Assuntos
Envelhecimento/fisiologia , Osso e Ossos/fisiologia , Estresse Mecânico , Via de Sinalização Wnt , Proteínas Adaptadoras de Transdução de Sinal , Adipogenia/genética , Animais , Fenômenos Biomecânicos , Diferenciação Celular/genética , Regulação para Baixo/genética , Feminino , Glicoproteínas/genética , Glicoproteínas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Ligantes , Camundongos Endogâmicos C57BL , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteócitos/metabolismo , Osteogênese/genética , Tíbia/fisiologia , Regulação para Cima/genética , Suporte de Carga , Via de Sinalização Wnt/genética
18.
J Bone Miner Res ; 30(2): 369-78, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25196701

RESUMO

Mammalian target of rapamycin (mTOR) is an evolutionarily conserved serine/threonine kinase controlling many physiological processes in mammals. mTOR functions in two distinct protein complexes, namely mTORC1 and mTORC2. Compared to mTORC1, the specific roles of mTORC2 are less well understood. To investigate the potential contribution of mTORC2 to skeletal development and homeostasis, we have genetically deleted Rictor, an essential component of mTORC2, in the limb skeletogenic mesenchyme of the mouse embryo. Loss of Rictor leads to shorter and narrower skeletal elements in both embryos and postnatal mice. In the embryo, Rictor deletion reduces the width but not the length of the initial cartilage anlage. Subsequently, the embryonic skeletal elements are shortened due to a delay in chondrocyte hypertrophy, with no change in proliferation, apoptosis, cell size, or matrix production. Postnatally, Rictor-deficient mice exhibit impaired bone formation, resulting in thinner cortical bone, but the trabecular bone mass is relatively normal thanks to a concurrent decrease in bone resorption. Moreover, Rictor-deficient bones exhibit a lesser anabolic response to mechanical loading. Thus, mTORC2 signaling is necessary for optimal skeletal growth and bone anabolism.


Assuntos
Osso e Ossos/embriologia , Complexos Multiproteicos/metabolismo , Osteogênese , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Animais , Animais Recém-Nascidos , Diferenciação Celular , Proliferação de Células , Condrócitos/patologia , Embrião de Mamíferos/fisiologia , Hipertrofia , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos , Osteoblastos/patologia , Biossíntese de Proteínas , Estresse Mecânico
19.
Bone ; 65: 83-91, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24836737

RESUMO

Aging purportedly diminishes the ability of the skeleton to respond to mechanical loading, but recent data show that old age did not impair loading-induced accrual of bone in BALB/c mice. Here, we hypothesized that aging limits the response of the tibia to axial compression over a range of adult ages in the commonly used C57BL/6. We subjected the right tibia of old (22 month), middle-aged (12 month) and young-adult (5 month) female C57BL/6 mice to peak periosteal strains (measured near the mid-diaphysis) of -2200 µÎµ and -3000 µÎµ (n=12-15/age/strain) via axial tibial compression (4 Hz, 1200 cycles/day, 5 days/week, 2 weeks). The left tibia served as a non-loaded, contralateral control. In mice of every age, tibial compression that engendered a peak strain of -2200 µÎµ did not alter cortical bone volume but loading to a peak strain of -3000 µÎµ increased cortical bone volume due in part to woven bone formation. Both loading magnitudes increased total volume, medullary volume and periosteal bone formation parameters (MS/BS, BFR/BS) near the cortical midshaft. Compared to the increase in total volume and bone formation parameters of 5-month mice, increases were less in 12- and 22-month mice by 45-63%. Moreover, woven bone incidence was greatest in 5-month mice. Similarly, tibial loading at -3000 µÎµ increased trabecular BV/TV of 5-month mice by 18% (from 0.085 mm3/mm3), but trabecular BV/TV did not change in 12- or 22-month mice, perhaps due to low initial BV/TV (0.032 and 0.038 mm3/mm3, respectively). In conclusion, these data show that while young-adult C57BL/6 mice had greater periosteal bone formation following loading than middle-aged or old mice, aging did not eliminate the ability of the tibia to accrue cortical bone.


Assuntos
Envelhecimento/fisiologia , Desenvolvimento Ósseo , Tíbia/fisiologia , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Microtomografia por Raio-X
20.
J Appl Physiol (1985) ; 116(12): 1551-60, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24790018

RESUMO

Murine lumbar and coccygeal (tail) regions of spines are commonly used to study cellular signaling of age-related disc diseases, but the tissue-level changes of aging intervertebral discs and vertebrae of each spinal region remain unclear. Furthermore, the impact of aging lumbar and coccygeal discs on Wnt/ß-catenin signaling, which is putatively involved in the catabolism of intervertebral discs, is also unclear. We compared disc/vertebrae morphology and mechanics and biochemical composition of intervertebral discs from lumbar and coccygeal regions between young (4-5 mo) and old (20-22 mo) female C57BL/6 mice. Center intervertebral disc height from both regions was greater in old discs than young discs. Compared with young, old lumbar discs had a lower early viscous coefficient (a measure of stiffness) by 40%, while conversely old coccygeal discs were stiffer by 53%. Biochemically, old mice had double the collagen content in lumbar and coccygeal discs of young discs, greater glycosaminoglycan in lumbar discs by 37%, but less glycosaminoglycan in coccygeal discs by 32%. Next, we compared Wnt activity of lumbar and coccygeal discs of 4- to 5-mo and 12- to 14-mo TOPGAL mice. Despite the disc-specific changes, aging decreased Wnt signaling in the nucleus pulposus from both spinal regions by ≥64%. Compared with young, trabecular bone volume/tissue volume and ultimate force were less in old lumbar vertebrae, but greater in old coccygeal vertebrae. Thus intervertebral discs and vertebrae age in a spinal region-dependent manner, but these differential age-related changes may be uncoupled from Wnt signaling. Overall, lumbar and coccygeal regions are not interchangeable in modeling human aging.


Assuntos
Envelhecimento/metabolismo , Envelhecimento/patologia , Disco Intervertebral/fisiopatologia , Vértebras Lombares/fisiopatologia , Via de Sinalização Wnt/fisiologia , Animais , Colágeno/metabolismo , Feminino , Glicosaminoglicanos/metabolismo , Humanos , Disco Intervertebral/metabolismo , Vértebras Lombares/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa