RESUMO
Since the demonstration of p-type gallium nitride (GaN) through doping with substitutional magnesium (Mg) atoms1,2, rapid and comprehensive developments, such as blue light-emitting diodes, have considerably shaped our modern lives and contributed to a more carbon-neutral society3-5. However, the details of the interplay between GaN and Mg have remained largely unknown6-11. Here we observe that Mg-intercalated GaN superlattices can form spontaneously by annealing a metallic Mg film on GaN at atmospheric pressure. To our knowledge, this marks the first instance of a two-dimensional metal intercalated into a bulk semiconductor, with each Mg monolayer being intricately inserted between several monolayers of hexagonal GaN. Characterized as an interstitial intercalation, this process induces substantial uniaxial compressive strain perpendicular to the interstitial layers. Consequently, the GaN layers in the Mg-intercalated GaN superlattices exhibit an exceptional elastic strain exceeding -10% (equivalent to a stress of more than 20 GPa), among the highest recorded for thin-film materials12. The strain alters the electronic band structure and greatly enhances hole transport along the compression direction. Furthermore, the Mg sheets induce a unique periodic transition in GaN polarity, generating polarization-field-induced net charges. These characteristics offer fresh insights into semiconductor doping and conductivity enhancement, as well as into elastic strain engineering of nanomaterials and metal-semiconductor superlattices13.
RESUMO
PURPOSE: We demonstrate cyclotron production of high-quality 225Ac using an electroplated 226Ra target. METHODS: 226Ra was extracted from legacy Ra sources using a chelating resin. Subsequent ion-exchange purification gave pure 226Ra with a certain amount of carrier Ba. The radium target was prepared by electroplating. We successfully deposited about 37 MBq of 226Ra on a target box. Maximum activation was achieved using 15.6 MeV protons on the target at 20 µA for 5 h. Two functional resins with various concentrations of nitric acid purified 225Ac and recovered 226Ra. Cooling the intermediate 225Ac for 2-3 weeks decayed the major byproduct of 226Ac and increased the radionuclidic purity of 225Ac. Repeating the same separation protocol provided high-quality 225Ac. RESULTS: We obtained 225Ac at a yield of about 2.4 MBq at the end of bombardment (EOB), and the subsequent initial purification gave 1.7 MBq of 225Ac with 226Ac/225Ac ratio of < 3% at 4 days from EOB. Additional cooling time coupled with the separation procedure (secondary purification) effectively increased the 225Ac (4n + 1 series) radionuclidic purity up to 99 + %. The recovered 225Ac had a similar identification to commercially available 225Ac originating from a 229Th/225Ac generator. CONCLUSION: This procedure, which involves the 226Ra(p,2n)225Ac reaction and the appropriate purification, has the potential to be a major alternative pathway for 225Ac production because it can be performed in any facility with a compact cyclotron to address the increasing demand for 225Ac.
Assuntos
Ciclotrons , Rádio (Elemento) , Humanos , Prótons , RadioisótoposRESUMO
A low voltage (-20 V) operating high-energy (5.48 MeV) α-particle detector with a high charge collection efficiency (CCE) of approximately 65% was observed from the compensated (7.7 × 1014 /cm3) metalorganic vapor phase epitaxy (MOVPE) grown 15 µm thick drift layer gallium nitride (GaN) Schottky diodes on free-standing n+-GaN substrate. The observed CCE was 30% higher than the bulk GaN (400 µm)-based Schottky barrier diodes (SBD) at -20 V. This is the first report of α-particle detection at 5.48 MeV with a high CCE at -20 V operation. In addition, the detectors also exhibited a three-times smaller variation in CCE (0.12 %/V) with a change in bias conditions from -120 V to -20 V. The dramatic reduction in CCE variation with voltage and improved CCE was a result of the reduced charge carrier density (CCD) due to the compensation by Mg in the grown drift layer (DL), which resulted in the increased depletion width (DW) of the fabricated GaN SBDs. The SBDs also reached a CCE of approximately 96.7% at -300 V.
RESUMO
Nonpolar a-plane (11-20) GaN (a-GaN) layers with low overall defect density and high crystalline quality were grown on r-plane sapphire substrates using etched a-GaN. The a-GaN layer was etched by pulse NH3 interrupted etching. Subsequently, a 2-µm-thick Si-doped a-GaN layer was regrown on the etched a-GaN layer. A fully coalescent n-type a-GaN layer with a low threading dislocation density (~7.5 × 10(8) cm(-2)) and a low basal stacking fault density (~1.8 × 10(5) cm(-1)) was obtained. Compared with a planar sample, the full width at half maximum of the (11-20) X-ray rocking curve was significantly decreased to 518 arcsec along the c-axis direction and 562 arcsec along the m-axis direction.
RESUMO
With the ammonothermal method, one of the most promising technologies for scalable, cost-effective production of bulk single crystals of the wide bandgap semiconductor GaN is investigated. Specifically, etch-back and growth conditions, as well as the transition from the former to the latter, are studied using a 2D axis symmetrical numerical model. In addition, experimental crystal growth results are analyzed in terms of etch-back and crystal growth rates as a function of vertical seed position. The numerical results of internal process conditions are discussed. Variations along the vertical axis of the autoclave are analyzed using both numerical and experimental data. During the transition from quasi-stable conditions of the dissolution stage (etch-back process) to quasi-stable conditions of the growth stage, significant temperature differences of 20 K to 70 K (depending on vertical position) occur temporarily between the crystals and the surrounding fluid. These lead to maximum rates of seed temperature change of 2.5 K/min to 1.2 K/min depending on vertical position. Based on temperature differences between seeds, fluid, and autoclave wall upon the end of the set temperature inversion process, deposition of GaN is expected to be favored on the bottom seed. The temporarily observed differences between the mean temperature of each crystal and its fluid surrounding diminish about 2 h after reaching constant set temperatures imposed at the outer autoclave wall, whereas approximately quasi-stable conditions are reached about 3 h after reaching constant set temperatures. Short-term fluctuations in temperature are mostly due to fluctuations in velocity magnitude, usually with only minor variations in the flow direction.
RESUMO
For the fundamental understanding and the technological development of the ammonothermal method for the synthesis and crystal growth of nitrides, an in situ monitoring technique for tracking mass transport of the nitride throughout the entire autoclave volume is desirable. The feasibility of using high-energy computed tomography for this purpose was therefore evaluated using ex situ measurements. Acceleration voltages of 600 kV were estimated to yield suitable transparency in a lab-scale ammonothermal setup for GaN crystal growth designed for up to 300 MPa operating pressure. The total scan duration was estimated to be in the order of 20 to 40 min, which was sufficient given the comparatively slow crystal growth speed in ammonothermal growth. Even shorter scan durations or, alternatively, lower acceleration voltages for improved contrast or reduced X-ray shielding requirements, were estimated to be feasible in the case of ammonoacidic growth, as the lower pressure requirements for this process variant allow for thinned autoclave walls in an adapted setup designed for improved X-ray transparency. Promising nickel-base and cobalt-base alloys for applications in ammonothermal reactors with reduced X-ray absorption in relation to the maximum operating pressure were identified. The applicability for the validation of numerical simulations of the growth process of GaN, in addition to the applicability of the technique to further nitride materials, as well as larger reactors and bulk crystals, were evaluated.
RESUMO
Lanthanoid-doped Gallium Nitride (GaN) integrated into nanophotonic technologies is a promising candidate for room-temperature quantum photon sources for quantum technology applications. We manufactured praseodymium (Pr)-doped GaN nanopillars of varying size, and showed significantly enhanced room-temperature photon extraction efficiency compared to unstructured Pr-doped GaN. Implanted Pr ions in GaN show two main emission peaks at 650.3 nm and 651.8 nm which are attributed to 3P0-3F2 transition in the 4f-shell. The maximum observed enhancement ratio was 23.5 for 200 nm diameter circular pillars, which can be divided into the emitted photon extraction enhancement by a factor of 4.5 and the photon collection enhancement by a factor of 5.2. The enhancement mechanism is explained by the eigenmode resonance inside the nanopillar. Our study provides a pathway for Lanthanoid-doped GaN nano/micro-scale photon emitters and quantum technology applications.
RESUMO
As a newly developed technique to slice GaN substrates, which are currently very expensive, with less loss, we previously reported a laser slicing technique in this journal. In the previous report, from the perspective of GaN substrate processing, we could only show that the GaN substrate could be sliced by a laser and that the sliced GaN substrate could be reused. In this study, we newly investigated the applicability of this method as a device fabrication process. We demonstrated the thinning of GaN-on-GaN high-electron-mobility transistors (HEMTs) using a laser slicing technique. Even when the HEMTs were thinned by laser slicing to a thickness of 50 mm after completing the fabrication process, no significant fracture was observed in these devices, and no adverse effects of laser-induced damage were observed on electrical characteristics. This means that the laser slicing process can be applied even after device fabrication. It can also be used as a completely new semiconductor process for fabricating thin devices with thicknesses on the order of 10 mm, while significantly reducing the consumption of GaN substrates.
RESUMO
We have investigated the possibility of applying lasers to slice GaN substrates. Using a sub-nanosecond laser with a wavelength of 532 nm, we succeeded in slicing GaN substrates. In the laser slicing method used in this study, there was almost no kerf loss, and the thickness of the layer damaged by laser slicing was about 40 µm. We demonstrated that a standard high quality homoepitaxial layer can be grown on the sliced surface after removing the damaged layer by polishing.
RESUMO
Hexagonal boron nitride (hBN) and diamond are promising materials for next-generation electronics and optoelectronics. However, their combination is rarely reported. In this study, we for the first time demonstrate the success to direct growth of two-dimensional (2D) hBN crystal layers on diamond substrates by metalorganic vapor phase epitaxy. Compared with the disordered growth we found on diamond (100), atomic force microscopy, X-ray diffraction, and transmission electron microscopy results all support 2D hBN with highly oriented lattice formation on diamond (111). Also, the epitaxial relationship between hBN and diamond (111) substrate is revealed to be [0 0 0 1]hBN // [1 1 1]diamond and [1 0 1Ì 0]hBN // [1 1 2Ì ]diamond. The valence band offset at hBN/diamond (111) heterointerface determined by X-ray photoelectron spectroscopy is 1.4 ± 0.2 eV, thus yielding a conduction band offset of 1.0 ± 0.2 eV and type II staggered band alignment with a bandgap of 5.9 eV assumed for hBN. Furthermore, prior thermal cleaning of diamond in a pure H2 atmosphere smoothens the surface for well-ordered layered hBN epitaxy, while thermal cleaning in a mixed H2 and NH3 atmosphere etches the diamond surface, creating many small faceted pits that destroy the following epitaxy of hBN.
RESUMO
Phase-shifting electron holography (PS-EH) using a transmission electron microscope (TEM) was applied to visualize layers with different concentrations of carriers activated by Si (at dopant levels of 1019, 1018, 1017 and 1016 atoms cm-3) in n-type GaN semiconductors. To precisely measure the reconstructed phase profiles in the GaN sample, three electron biprisms were used to obtain a series of high-contrast holograms without Fresnel fringes generated by a biprism filament, and a cryo-focused-ion-beam (cryo-FIB) was used to prepare a uniform TEM sample with less distortion in the wide field of view. All layers in a 350-nm-thick TEM sample were distinguished with 1.8-nm spatial resolution and 0.02-rad phase-resolution, and variations of step width in the phase profile (corresponding to depletion width) at the interfaces between the layers were also measured. Thicknesses of the active and inactive layers at each dopant level were estimated from the observed phase profile and the simulation of theoretical band structure. Ratio of active-layer thickness to total thickness of the TEM sample significantly decreased as dopant concentration decreased; thus, a thicker TEM sample is necessary to visualize lower carrier concentrations; for example, to distinguish layers with dopant concentrations of 1016 and 1015 atoms cm-3. It was estimated that sample thickness must be more than 700 nm to make it be possible to detect sub-layers by the combination of PS-EH and cryo-FIB.
RESUMO
Growth of AlxGa1-xN layers (0 ≤ x ≤ 1) simultaneously on polar (0001), semipolar ([Formula: see text]3) and ([Formula: see text]), as well as nonpolar ([Formula: see text]) and ([Formula: see text]) AlN templates, which were grown on planar sapphire substrates, has been investigated by metal-organic vapour phase epitaxy. By taking into account anisotropic in-plane strain of semi- and non-polar layers, their aluminium incorporation has been determined by x-ray diffraction analysis. Optical emission energy of the layers was obtained from room-temperature photoluminescence spectra, and their effective bandgap energy was estimated from room-temperature pseudo-dielectric functions. Both x-ray diffraction and optical data consistently show that aluminium incorporation is comparable on the polar, semi- and non-polar planes.
RESUMO
A normally-off GaN double-implanted vertical MOSFET (DMOSFET) with an atomic layer deposition (ALD)-Al2O3 gate dielectric film on a free-standing GaN substrate fabricated by triple ion implantation is presented. The DMOSFET was formed with Si ion implanted source regions in a Mg ion implanted p-type base with N ion implanted termination regions. A maximum drain current of 115 mA/mm, maximum transconductance of 19 mS/mm at a drain voltage of 15 V, and a threshold voltage of 3.6 V were obtained for the fabricated DMOSFET with a gate length of 0.4 µm with an estimated p-type base Mg surface concentration of 5 × 1018 cm-3. The difference between calculated and measured Vths could be due to the activation ratio of ion-implanted Mg as well as Fermi level pinning and the interface state density. On-resistance of 9.3 mΩ·cm² estimated from the linear region was also attained. Blocking voltage at off-state was 213 V. The fully ion implanted GaN DMOSFET is a promising candidate for future high-voltage and high-power applications.
RESUMO
We report the fabrication of near-vertically elongated GaN nanorods on quartz substrates. To control the preferred orientation and length of individual GaN nanorods, we combined molecular beam epitaxy (MBE) with pulsed-mode metal-organic chemical vapor deposition (MOCVD). The MBE-grown buffer layer was composed of GaN nanograins exhibiting an ordered surface and preferred orientation along the surface normal direction. Position-controlled growth of the GaN nanorods was achieved by selective-area growth using MOCVD. Simultaneously, the GaN nanorods were elongated by the pulsed-mode growth. The microstructural and optical properties of both GaN nanorods and InGaN/GaN core-shell nanorods were then investigated. The nanorods were highly crystalline and the core-shell structures exhibited optical emission properties, indicating the feasibility of fabricating III-nitride nano-optoelectronic devices on amorphous substrates.
RESUMO
We report the selective-area growth of a gallium nitride (GaN)-nanorod-based InGaN/GaN multiple-quantum-well (MQW) core-shell structure embedded in a three-dimensional (3D) light-emitting diode (LED) grown by metalorganic chemical vapor deposition (MOCVD) and its optical analysis. High-resolution transmission electron microscopy (HR-TEM) observation revealed the high quality of the GaN nanorods and the position dependence of the structural properties of the InGaN/GaN MQWs on multiple facets. The excitation and temperature dependences of photoluminescence (PL) revealed the m-plane emission behaviors of the InGaN/GaN core-shell nanorods. The electroluminescence (EL) of the InGaN/GaN core-shell-nanorod-embedded 3D LED changed color from green to blue with increasing injection current. This phenomenon was mainly due to the energy gradient and deep localization of the indium in the selectively grown InGaN/GaN core-shell MQWs on the 3D architecture.
RESUMO
We studied 48 patients (48 ears) with congenital cholesteatoma who underwent surgery at our department from 1979 to 2000, and investigated symptoms at initial onset, tympanic membrane findings, cholesteatoma configuration and site, type of surgical procedure, and surgical outcome. Patients were from 2 to 62 years old (mean: 16.7 years), with 60.4% aged 15 years or younger. The symptom at initial onset was hearing loss in most (58.2%). Hearing loss was the main symptom in all with open type cholesteatoma, and most of these patients had normal tympanic membrane findings. The cholesteatoma was located mainly in the superior posterior portion of the tympanic cavity in many patients. The site of involvement was the tympanic cavity in 12 (25.0%), mastoid cavity in 2 (4.2%) and the petrous apex in 1 (2.1%). In many of (31 ears, 64.6%), the cholesteatoma was advanced and extended from the tympanic cavity to the mastoid antrum. For 23 of the 48 ears, treatment was completed in one operation. The remaining 25 ears required staged surgery. Loss of the structure of the upper part of the stapes was seen in 58.3% of patients, so most underwent type IV ossiculoplasty, with types III and I next most common.
Assuntos
Colesteatoma da Orelha Média/congênito , Colesteatoma da Orelha Média/cirurgia , Timpanoplastia/métodos , Adolescente , Adulto , Criança , Pré-Escolar , Colesteatoma da Orelha Média/fisiopatologia , Feminino , Audição , Humanos , Masculino , Pessoa de Meia-Idade , Resultado do TratamentoRESUMO
Electron holography was applied to determine the contact potential differences in an AlGaN/AlN/Si heterostructure formed by metallorganic vapor phase epitaxy. Since mean inner potentials are generally different for different materials, their values before and after forming the junction were evaluated first, then the contact potential difference was obtained by subtracting the difference of the mean inner potentials before forming the junction from the corresponding difference after forming the junction. The contact potential differences thus obtained were consistent with a reported asymmetric nonlinear behavior in the current-voltage characteristics measured for a similar heterojunction diode.
RESUMO
An electron-beam-induced-current technique has been applied to scanning transmission electron microscopy to characterize GaN/AlGaN/n-Si heterostructures. The structure was formed by metalorganic vapor phase epitaxy using AlGaN as an intermediate layer. Two samples with nominal intermediate layer thicknesses of 60 and 120 nm were studied. It was found that there is a junction in the n-type Si region underneath the nitride/Si interface irrespective of the intermediate layer thickness, whereas induced current occurred neither in the nitride region nor at the nitride/Si interface. The junction formed was found to be undulated. The sample with the thin intermediate layer had undulations of a shorter periodicity than that with the thick intermediate layer. The formation of the junction is attributed to the diffusion of Al during the nitride growth.