Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Neuroimage ; 213: 116725, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32173412

RESUMO

Functional magnetic resonance imaging (fMRI) is a valuable tool for studying neural activations in the central nervous system of animals due to its wide spatial coverage and non-invasive nature. However, the advantages of fMRI have not been fully realized in functional studies in mice, especially in the olfactory system, possibly due to the lack of suitable anesthesia protocols with spontaneous breathing. Since mice are widely used in biomedical research, it is desirable to evaluate different anesthesia protocols for olfactory fMRI studies in mice. Dexmedetomidine (DEX) as a sedative/anesthetic has been introduced to fMRI studies in mice, but it has a limited anesthesia duration. To extend the anesthesia duration, DEX has been combined with a low dose of isoflurane (ISO) or ketamine (KET) in previous functional studies in mice. In this report, olfactory fMRI studies were performed under three anesthesia protocols (DEX alone, DEX/ISO, and DEX/KET) in three different groups of mice. Isoamyl-acetate was used as an odorant, and the odorant-induced neural activations were measured by blood oxygenation-level dependent (BOLD) fMRI. BOLD fMRI responses were observed in the olfactory bulb (OB), anterior olfactory nuclei (AON), and piriform cortex (Pir). Interestingly, BOLD fMRI activations were also observed in the prefrontal cortical region (PFC), which are most likely caused by the draining vein effect. The response in the OB showed no adaptation to either repeated odor stimulations or continuous odor exposure, but the response in the Pir showed adaptation during the continuous odor exposure. The data also shows that ISO suppresses the olfactory response in the OB and AON, while KET enhances the olfactory response in the Pir. Thus, DEX/KET should be an attractive anesthesia for olfactory fMRI in mice.


Assuntos
Dexmedetomidina/farmacologia , Isoflurano/farmacologia , Ketamina/farmacologia , Bulbo Olfatório/efeitos dos fármacos , Percepção Olfatória/efeitos dos fármacos , Anestésicos/farmacologia , Animais , Hipnóticos e Sedativos/farmacologia , Imageamento por Ressonância Magnética/métodos , Camundongos , Modelos Animais
2.
Pharm Res ; 37(10): 181, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32888082

RESUMO

PURPOSE: This work describes a staged approach to the application of pharmacokinetic-pharmacodynamic (PK-PD) modeling in the voltage-gated sodium ion channel (NaV1.7) inhibitor drug discovery effort to address strategic questions regarding in vitro to in vivo translation of target modulation. METHODS: PK-PD analysis was applied to data from a functional magnetic resonance imaging (fMRI) technique to non-invasively measure treatment mediated inhibition of olfaction signaling in non-human primates (NHPs). Initial exposure-response was evaluated using single time point data pooled across 27 compounds to inform on in vitro to in vivo correlation (IVIVC). More robust effect compartment PK-PD modeling was conducted for a subset of 10 compounds with additional PD and PK data to characterize hysteresis. RESULTS: The pooled compound exposure-response facilitated an early exploration of IVIVC with a limited dataset for each individual compound, and it suggested a 2.4-fold in vitro to in vivo scaling factor for the NaV1.7 target. Accounting for hysteresis with an effect compartment PK-PD model as compounds advanced towards preclinical development provided a more robust determination of in vivo potency values, which resulted in a statistically significant positive IVIVC with a slope of 1.057 ± 0.210, R-squared of 0.7831, and p value of 0.006. Subsequent simulations with the PK-PD model informed the design of anti-nociception efficacy studies in NHPs. CONCLUSIONS: A staged approach to PK-PD modeling and simulation enabled integration of in vitro NaV1.7 potency, plasma protein binding, and pharmacokinetics to describe the exposure-response profile and inform future study design as the NaV1.7 inhibitor effort progressed through drug discovery.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.7/química , Canal de Sódio Disparado por Voltagem NAV1.7/efeitos dos fármacos , Bloqueadores dos Canais de Sódio/química , Bloqueadores dos Canais de Sódio/farmacologia , Algoritmos , Analgésicos/química , Analgésicos/farmacocinética , Analgésicos/farmacologia , Animais , Circulação Cerebrovascular , Desenho de Fármacos , Descoberta de Drogas , Células HEK293 , Humanos , Técnicas In Vitro , Macaca mulatta , Imageamento por Ressonância Magnética , Modelos Biológicos , Olfato/efeitos dos fármacos , Bloqueadores dos Canais de Sódio/farmacocinética
3.
Am J Physiol Endocrinol Metab ; 316(6): E1105-E1117, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30912961

RESUMO

The regulation of nutrient homeostasis, i.e., the ability to transition between fasted and fed states, is fundamental in maintaining health. Since food is typically consumed over limited (anabolic) periods, dietary components must be processed and stored to counterbalance the catabolic stress that occurs between meals. Herein, we contrast tissue- and pathway-specific metabolic activity in fasted and fed states. We demonstrate that knowledge of biochemical kinetics that is obtained from opposite ends of the energetic spectrum can allow mechanism-based differentiation of healthy and disease phenotypes. Rat models of type 1 and type 2 diabetes serve as case studies for probing spatial and temporal patterns of metabolic activity via [2H]water labeling. Experimental designs that capture integrative whole body metabolism, including meal-induced substrate partitioning, can support an array of research surrounding metabolic disease; the relative simplicity of the approach that is discussed here should enable routine applications in preclinical models.


Assuntos
Aminoácidos/metabolismo , Glicemia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Jejum/metabolismo , Ácidos Graxos/metabolismo , Insulina/metabolismo , Músculo Esquelético/metabolismo , Período Pós-Prandial , Animais , Óxido de Deutério , Modelos Animais de Doenças , Glicogênio/metabolismo , Cinética , Metabolismo dos Lipídeos/fisiologia , Fígado/metabolismo , Redes e Vias Metabólicas , Metabolômica , Ratos , Ratos Wistar , Ratos Zucker , Análise Espaço-Temporal
4.
Neuroimage ; 149: 348-360, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28163142

RESUMO

Olfactory adaptation, characterized by attenuation of response to repeated odor stimulations or continuous odor exposure, is an intrinsic feature of olfactory processing. Adaptation can be induced by either "synaptic depression" due to depletion of neurotransmitters, or "enhanced inhibition" onto principle neurons by local inhibitory interneurons in olfactory structures. It is not clear which mechanism plays a major role in olfactory adaptation. More importantly, molecular sources of enhanced inhibition have not been identified. In this study, olfactory responses to either repeated 40-s stimulations with interstimulus intervals (ISI) of 140-s or 30-min, or a single prolonged 200-s stimulus were measured by fMRI in different naïve rats. Olfactory adaptations in the olfactory bulb (OB), anterior olfactory nucleus (AON), and piriform cortex (PC) were observed only with repeated 40-s odor stimulations, and no olfactory adaptations were detected during the prolonged 200-s stimulation. Interestingly, in responses to repeated 40-s odor stimulations in the PC, the first odor stimulation induced positive activations, and odor stimulations under adapted condition induced negative activations. The negative activations suggest that "sparse coding" and "global inhibition" are the characteristics of olfactory processing in PC, and the global inhibition manifests only under an adapted condition, not a naïve condition. Further, we found that these adaptations were NMDA receptor dependent; an NMDA receptor antagonist (MK801) blocked the adaptations. Based on the mechanism that glutamate NMDA receptor plays a role in the inhibition onto principle neurons by interneurons, our data suggest that the olfactory adaptations are caused by enhanced inhibition from interneurons. Combined with the necessity of the interruption of odor stimulation to observe the adaptations, the molecular source for the enhanced inhibition is most likely an increased glutamate release from presynaptic terminals due to glutamate over-replenishment during the interruption of odor stimulation. Furthermore, with blockage of the adaptations, the data reveal that orbital, medial & prefrontal, and cingulate cortices (OmPFC) are involved in the olfactory processing.


Assuntos
Adaptação Fisiológica/fisiologia , Bulbo Olfatório/fisiologia , Percepção Olfatória/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Adaptação Fisiológica/efeitos dos fármacos , Animais , Maleato de Dizocilpina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Imageamento por Ressonância Magnética , Ratos , Ratos Sprague-Dawley
5.
Bioorg Med Chem Lett ; 27(12): 2683-2688, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28465103

RESUMO

Studies on human genetics have suggested that inhibitors of the Nav1.7 voltage-gated sodium channel hold considerable promise as therapies for the treatment of chronic pain syndromes. Herein, we report novel, peripherally-restricted benzoxazolinone aryl sulfonamides as potent Nav1.7 inhibitors with excellent selectivity against the Nav1.5 isoform, which is expressed in the heart muscle. Elaboration of initial lead compound 3d afforded exemplar 13, which featured attractive physicochemical properties, outstanding lipophilic ligand efficiency and pharmacological selectivity against Nav1.5 exceeding 1000-fold. Key structure-activity relationships associated with oral bioavailability were leveraged to discover compound 17, which exhibited a comparable potency/selectivity profile as well as full efficacy following oral administration in a preclinical model indicative of antinociceptive behavior.


Assuntos
Analgésicos/farmacologia , Benzoxazóis/farmacologia , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Dor/tratamento farmacológico , Sulfonamidas/farmacologia , Administração Oral , Analgésicos/administração & dosagem , Analgésicos/química , Animais , Benzoxazóis/administração & dosagem , Benzoxazóis/química , Disponibilidade Biológica , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Formaldeído/administração & dosagem , Humanos , Camundongos , Estrutura Molecular , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Dor/induzido quimicamente , Ratos , Relação Estrutura-Atividade , Sulfonamidas/administração & dosagem , Sulfonamidas/química
6.
Bioorg Med Chem Lett ; 27(10): 2087-2093, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28389149

RESUMO

The voltage-gated sodium channel Nav1.7 is a genetically validated target for the treatment of pain with gain-of-function mutations in man eliciting a variety of painful disorders and loss-of-function mutations affording insensitivity to pain. Unfortunately, drugs thought to garner efficacy via Nav1 inhibition have undesirable side effect profiles due to their lack of selectivity over channel isoforms. Herein we report the discovery of a novel series of orally bioavailable arylsulfonamide Nav1.7 inhibitors with high levels of selectivity over Nav1.5, the Nav isoform responsible for cardiovascular side effects, through judicious use of parallel medicinal chemistry and physicochemical property optimization. This effort produced inhibitors such as compound 5 with excellent potency, selectivity, behavioral efficacy in a rodent pain model, and efficacy in a mouse itch model suggestive of target modulation.


Assuntos
Sulfonamidas/química , Bloqueadores do Canal de Sódio Disparado por Voltagem/química , Administração Oral , Animais , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Meia-Vida , Concentração Inibidora 50 , Camundongos , Canal de Sódio Disparado por Voltagem NAV1.7/química , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Nitrogênio/química , Dor/tratamento farmacológico , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/metabolismo , Ratos , Relação Estrutura-Atividade , Sulfonamidas/farmacocinética , Sulfonamidas/uso terapêutico , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacocinética , Bloqueadores do Canal de Sódio Disparado por Voltagem/uso terapêutico
7.
Neuroimage ; 127: 445-455, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26522425

RESUMO

Cerebral blood volume (CBV) fMRI with ultrasmall superparamagnetic iron oxide particles (USPIO) as a contrast agent was used to investigate olfactory processing in rats. fMRI data were acquired in sixteen 0.75-mm coronal slices covering the olfactory bulb (OB) and higher olfactory regions (HOR), including the anterior olfactory nucleus and piriform cortex. For each animal, multiple consecutive fMRI measurements were made during a 3-h experiment session, with each measurement consisting of a baseline period, an odorant stimulation period, and a recovery period. Two different stimulation paradigms with a stimulation period of 40s or 80s, respectively, were used to study olfactory processing. Odorant-induced CBV increases were robustly observed in the OB and HOR of each individual animal. Olfactory adaptation, which is characterized by an attenuation of responses to continuous exposure or repeated stimulations, has different characteristics in the OB and HOR. For adaptation to repeated stimuli, while it was observed in both the OB and HOR, CBV responses in the HOR were attenuated more significantly than responses in the OB. In contrast, within each continuous 40-s or 80-s odor exposure, CBV responses in the OB were stable and did not show adaptation, but the CBV responses in the HOR were state dependent, with no adaptation during initial exposures, but significant adaptation during following exposures. These results support previous reports that HOR plays a more significant role than OB in olfactory habituation. The technical approach presented in this study should enable more extensive fMRI studies of olfactory processing in rats.


Assuntos
Habituação Psicofisiológica/fisiologia , Bulbo Olfatório/fisiologia , Córtex Olfatório/fisiologia , Percepção Olfatória/fisiologia , Animais , Mapeamento Encefálico , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Condutos Olfatórios/fisiologia , Ratos , Ratos Sprague-Dawley
8.
Neuroimage ; 106: 364-72, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25498426

RESUMO

Cerebral blood volume (CBV) fMRI with superparamagnetic iron oxide nanoparticles (USPIO) as contrast agent was used to investigate the odorant-induced olfaction in anesthetized rhesus monkeys. fMRI data were acquired in 24 axial slices covering the entire brain, with isoamyl-acetate as the odor stimulant. For each experiment, multiple fMRI measurements were made during a 1- or 2-h period, with each measurement consisting of a baseline period, a stimulation period, and a recovery period. Three different stimulation paradigms with a stimulation period of 1 min, 2 min, or 8 min, respectively, were used to study the olfactory responses in the olfactory bulb (OB). Odorant-induced CBV increases were observed in the OB of each individual monkey. The spatial and temporal activation patterns were reproducible within and between animals. The sensitivity of CBV fMRI in OB was comparable with the sensitivities reported in previous animal fMRI studies. The CBV responses during the 1-min, 2-min, or 8-min odor stimulation period were relatively stable, and did not show attenuation. The amplitudes of CBV response to the repeated stimuli during the 1- or 2-h period were also stable. The stable CBV response in the OB to both continuous and repeated odor stimuli suggests that the OB may not play a major role in olfactory habituation. The technical approach described in this report can enable more extensive fMRI studies of olfactory processing in OB of both humans and non-human primates.


Assuntos
Mapeamento Encefálico/métodos , Habituação Psicofisiológica/fisiologia , Imageamento por Ressonância Magnética/métodos , Bulbo Olfatório/fisiologia , Percepção Olfatória/fisiologia , Olfato/fisiologia , Animais , Volume Sanguíneo/fisiologia , Circulação Cerebrovascular/fisiologia , Meios de Contraste , Feminino , Compostos Férricos , Macaca mulatta , Nanopartículas , Odorantes , Bulbo Olfatório/irrigação sanguínea , Oxigênio/sangue
9.
Neuroimage ; 84: 724-32, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24064074

RESUMO

fMRI can objectively measure pain-related neural activities in humans and animals, providing a valuable tool for studying the mechanisms of nociception and for developing new analgesics. However, due to its extreme sensitivity to subject motion, pain fMRI studies are performed in animals that are immobilized, typically with anesthesia. Since anesthesia could confound the nociceptive processes, it is unknown how well nociceptive-related neural activities measured by fMRI in anesthetized animals correlate with nociceptive behaviors in conscious animals. The threshold to vocalization (VT) in response to an increasing noxious electrical stimulus (NES) was implemented in conscious rats as a behavioral measure of nociception. The antinociceptive effect of systemic (intravenous infusion) lidocaine on NES-induced fMRI signals in anesthetized rats was compared with the corresponding VT in conscious rats. Lidocaine infusion increased VT and suppressed the NES-induced fMRI signals in most activated brain regions. The temporal characteristics of the nociception signal by fMRI and by VT in response to lidocaine infusion were highly correlated with each other, and with the pharmacokinetics (PK) of lidocaine. These results indicate that the fMRI activations in these regions may be used as biomarkers of acute nociception in anesthetized rats. Interestingly, systemic lidocaine had no effect on NES-induced fMRI activations in the primary somatosensory cortex (S1), a result that warrants further investigation.


Assuntos
Encéfalo/fisiologia , Medição da Dor/métodos , Dor , Anestesia Geral , Anestésicos Locais/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Mapeamento Encefálico , Estado de Consciência , Processamento de Imagem Assistida por Computador , Lidocaína/farmacologia , Imageamento por Ressonância Magnética , Dor/fisiopatologia , Ratos , Ratos Sprague-Dawley , Vocalização Animal
10.
Channels (Austin) ; 16(1): 230-243, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36239534

RESUMO

As part of a drug discovery effort to identify potent inhibitors of NaV1.7 for the treatment of pain, we observed that inhibitors produced unexpected cardiovascular and respiratory effects in vivo. Specifically, inhibitors administered to rodents produced changes in cardiovascular parameters and respiratory cessation. We sought to determine the mechanism of the in vivo adverse effects by studying the selectivity of the compounds on NaV1.5, NaV1.4, and NaV1.6 in in vitro and ex vivo assays. Inhibitors lacking sufficient NaV1.7 selectivity over NaV1.6 were associated with respiratory cessation after in vivo administration to rodents. Effects on respiratory rate in rats were consistent with effects in an ex vivo hemisected rat diaphragm model and in vitro NaV1.6 potency. Furthermore, direct blockade of the phrenic nerve signaling was observed at exposures known to cause respiratory cessation in rats. Collectively, these results support a significant role for NaV1.6 in phrenic nerve signaling and respiratory function.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.7 , Insuficiência Respiratória , Animais , Dor , Nervo Frênico , Ratos , Insuficiência Respiratória/tratamento farmacológico
11.
Expert Opin Ther Targets ; 26(9): 811-822, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36424892

RESUMO

INTRODUCTION: The Helping to End Addiction Long-termSM Initiative supports a wide range of programs to develop new or improved prevention and opioid addiction treatment strategies. An essential component of this effort is to accelerate development of non-opioid pain therapeutics. In all fields of medicine, therapeutics development is an arduous process and late-stage translational efforts such as clinical trials to validate targets are particularly complex and costly. While there are plentiful novel targets for pain treatment, successful clinical validation is rare. It is therefore crucial to develop processes whereby therapeutic targets can be reasonably 'de-risked' prior to substantial late-stage validation efforts. Such rigorous validation of novel therapeutic targets in the preclinical space will give potential private sector partners the confidence to pursue clinical validation of promising therapeutic concepts and compounds. AREAS COVERED: In 2020, the National Institutes of Health (NIH) held the Target Validation for Non-Addictive Therapeutics Development for Pain workshop to gather insights from key opinion leaders in academia, industry, and venture-financing. EXPERT OPINION: The result was a roadmap for pain target validation focusing on three modalities: 1) human evidence; 2) assay development in vitro; 3) assay development in vivo.


Assuntos
Transtornos Relacionados ao Uso de Opioides , Dor , Humanos , Dor/tratamento farmacológico , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico
12.
Bioorg Med Chem Lett ; 21(1): 271-5, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21112782

RESUMO

Hit compound 1, a selective noradrenaline re-uptake transporter (NET) inhibitor was optimised to build in potency at the serotonin re-uptake transporter (SERT) whilst maintaining selectivity against the dopamine re-uptake transporter (DAT). During the optimisation of 1 it became clear that selectivity against the Kv11.1 potassium ion channel (hERG) was also a parameter for optimisation within the series. Discrete structural changes to the molecule as well as a lowering of global cLogP successfully increased the hERG selectivity to afford compound 11 m, which was efficacious in a mouse model of inflammatory pain, complete Freund's adjuvant (CFA) induced thermal hyperalgesia and a rat model of neuropathic pain, spinal nerve ligation (SNL) induced mechanical allodynia.


Assuntos
Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/antagonistas & inibidores , Piridinas/química , Inibidores Seletivos de Recaptação de Serotonina/química , Proteínas da Membrana Plasmática de Transporte de Serotonina/química , Tropanos/química , Animais , Proteínas da Membrana Plasmática de Transporte de Dopamina/antagonistas & inibidores , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go/metabolismo , Masculino , Camundongos , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Dor/tratamento farmacológico , Piridinas/síntese química , Piridinas/uso terapêutico , Ratos , Ratos Wistar , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/síntese química , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico , Relação Estrutura-Atividade , Tropanos/síntese química , Tropanos/uso terapêutico
13.
Front Pharmacol ; 12: 786078, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35002718

RESUMO

MK-2075 is a small-molecule selective inhibitor of the NaV1.7 channel investigated for the treatment of postoperative pain. A translational strategy was developed for MK-2075 to quantitatively interrelate drug exposure, target modulation, and the desired pharmacological response in preclinical animal models for the purpose of human translation. Analgesics used as a standard of care in postoperative pain were evaluated in preclinical animal models of nociceptive behavior (mouse tail flick latency and rhesus thermode heat withdrawal) to determine the magnitude of pharmacodynamic (PD) response at plasma concentrations associated with efficacy in the clinic. MK-2075 was evaluated in those same animal models to determine the concentration of MK-2075 required to achieve the desired level of response. Translation of MK-2075 efficacious concentrations in preclinical animal models to a clinical PKPD target in humans was achieved by accounting for species differences in plasma protein binding and in vitro potency against the NaV1.7 channel. Estimates of human pharmacokinetic (PK) parameters were obtained from allometric scaling of a PK model from preclinical species and used to predict the dose required to achieve the clinical exposure. MK-2075 exposure-response in a preclinical target modulation assay (rhesus olfaction) was characterized using a computational PKPD model which included a biophase compartment to account for the observed hysteresis. Translation of this model to humans was accomplished by correcting for species differences in PK NaV1.7 potency, and plasma protein binding while assuming that the kinetics of distribution to the target site is the same between humans and rhesus monkeys. This enabled prediction of the level of target modulation anticipated to be achieved over the dosing interval at the projected clinical efficacious human dose. Integration of these efforts into the early development plan informed clinical study design and decision criteria.

14.
ACS Med Chem Lett ; 12(6): 1038-1049, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34141090

RESUMO

The voltage-gated sodium channel Nav1.7 continues to be a high-profile target for the treatment of various pain afflictions due to its strong human genetic validation. While isoform selective molecules have been discovered and advanced into the clinic, to date, this target has yet to bear fruit in the form of marketed therapeutics for the treatment of pain. Lead optimization efforts over the past decade have focused on selectivity over Nav1.5 due to its link to cardiac side effects as well as the translation of preclinical efficacy to man. Inhibition of Nav1.6 was recently reported to yield potential respiratory side effects preclinically, and this finding necessitated a modified target selectivity profile. Herein, we report the continued optimization of a novel series of arylsulfonamide Nav1.7 inhibitors to afford improved selectivity over Nav1.6 while maintaining rodent oral bioavailability through the use of a novel multiparameter optimization (MPO) paradigm. We also report in vitro-in vivo correlations from Nav1.7 electrophysiology protocols to preclinical models of efficacy to assist in projecting clinical doses. These efforts produced inhibitors such as compound 19 with potency against Nav1.7, selectivity over Nav1.5 and Nav1.6, and efficacy in behavioral models of pain in rodents as well as inhibition of rhesus olfactory response indicative of target modulation.

15.
Sci Transl Med ; 13(594)2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34011626

RESUMO

Humans with loss-of-function mutations in the Nav1.7 channel gene (SCN9A) show profound insensitivity to pain, whereas those with gain-of-function mutations can have inherited pain syndromes. Therefore, inhibition of the Nav1.7 channel with a small molecule has been considered a promising approach for the treatment of various human pain conditions. To date, clinical studies conducted using selective Nav1.7 inhibitors have not provided analgesic efficacy sufficient to warrant further investment. Clinical studies to date used multiples of in vitro IC50 values derived from electrophysiological studies to calculate anticipated human doses. To increase the chance of clinical success, we developed rhesus macaque models of action potential propagation, nociception, and olfaction, to measure Nav1.7 target modulation in vivo. The potent and selective Nav1.7 inhibitors SSCI-1 and SSCI-2 dose-dependently blocked C-fiber nociceptor conduction in microneurography studies and inhibited withdrawal responses to noxious heat in rhesus monkeys. Pharmacological Nav1.7 inhibition also reduced odor-induced activation of the olfactory bulb (OB), measured by functional magnetic resonance imaging (fMRI) studies consistent with the anosmia reported in Nav1.7 loss-of-function patients. These data demonstrate that it is possible to measure Nav1.7 target modulation in rhesus macaques and determine the plasma concentration required to produce a predetermined level of inhibition. The calculated plasma concentration for preclinical efficacy could be used to guide human efficacious exposure estimates. Given the translatable nature of the assays used, it is anticipated that they can be also used in phase 1 clinical studies to measure target modulation and aid in the interpretation of phase 1 clinical data.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.7 , Dor , Animais , Humanos , Macaca mulatta , Nociceptividade , Nociceptores
16.
Bioorg Med Chem Lett ; 20(16): 4918-21, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20634067

RESUMO

Novel tricyclic indole-3-carboxamides were synthesized as structurally restricted analogs of bicyclic indoles, and found to be potent CB1 cannabinoid receptor agonists. The CB1 agonist activity depended on the absolute configuration of the chiral center of the tricyclic ring. The preferred enantiomer was more potent than the structurally unconstrained lead compound. Structure-activity relationships in the amide side chain of the indole C-3 position were also investigated.


Assuntos
Amidas/química , Indóis/química , Receptor CB1 de Canabinoide/agonistas , Amidas/síntese química , Amidas/farmacocinética , Animais , Desenho de Fármacos , Humanos , Camundongos , Microssomos/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Relação Estrutura-Atividade
17.
Bioorg Med Chem Lett ; 20(24): 7327-30, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21074434

RESUMO

Bicyclic piperazine derivatives were synthesized as conformationally constrained analogs of N-alkyl piperazines and were found to be potent CB1 receptor agonists. The CB1 receptor agonist activity was dependent upon the absolute configuration of the chiral center of the bicyclic ring system. Although the conformational constraint did not protect the compounds from metabolism by N-dealkylation, several bicyclic analogs were found to be more potent than the unconstrained lead compound. Compound 8b demonstrated potent antinociceptive activity in vivo.


Assuntos
Amidas/química , Compostos Azabicíclicos/síntese química , Compostos Bicíclicos com Pontes/química , Indóis/síntese química , Piperazinas/química , Receptor CB1 de Canabinoide/agonistas , Animais , Compostos Azabicíclicos/química , Compostos Azabicíclicos/farmacologia , Desenho de Fármacos , Humanos , Indóis/química , Indóis/farmacologia , Camundongos , Microssomos Hepáticos/metabolismo , Piperazinas/síntese química , Piperazinas/farmacologia , Receptor CB1 de Canabinoide/metabolismo , Relação Estrutura-Atividade
18.
Bioorg Med Chem Lett ; 19(22): 6441-6, 2009 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-19818611

RESUMO

A knowledge based approach has been adopted to identify novel NOP receptor agonists with simplified hydrophobes. Substitution of the benzimidazol-2-one piperidine motif with a range of hydrophobic groups and pharmacophore guided bio-isosteric replacement of the benzimidazol-2-one moiety was explored. Compound 51 was found to be a high affinity, potent NOP receptor agonist with reduced affinity for the hERG channel.


Assuntos
Benzimidazóis/química , Antagonistas de Entorpecentes/química , Piperidinas/química , Animais , Cricetinae , Receptores Opioides/metabolismo , Relação Estrutura-Atividade , Receptor de Nociceptina
19.
Bioorg Med Chem ; 16(6): 2829-51, 2008 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-18249547

RESUMO

The N-3 position of a series of 3-phenoxypropyl piperidine benzimidazol-2-one analogues was optimised using the predictive power of a CoMFA model. The model was used to prioritise compounds for synthesis culminating in the triazole (+)-24. (+)-24 was found to be a high affinity, potent NOP agonist and demonstrated both antinociceptive and antiallodynic effects when administered iv to rodents.


Assuntos
Benzimidazóis/química , Modelos Moleculares , Receptores Opioides/agonistas , Analgésicos/química , Animais , Benzimidazóis/farmacologia , Hipnóticos e Sedativos/química , Roedores , Relação Estrutura-Atividade , Receptor de Nociceptina
20.
PLoS One ; 13(6): e0198395, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29870538

RESUMO

Studies in rodents show that olfactory processing in the principal neurons of olfactory bulb (OB) and piriform cortex (PC) is controlled by local inhibitory interneurons, and glutamate NMDA receptor plays a role in this inhibitory control. It is not clear if findings from studies in rodents translate to olfactory processing in nonhuman primates (NHPs). In this study, the effect of the glutamate NMDA receptor antagonist MK801 on odorant-induced olfactory responses in the OB and PC of anesthetized NHPs (rhesus monkeys) was investigated by cerebral blood volume (CBV) fMRI. Isoamyl-acetate was used as the odor stimulant. For each NHP, sixty fMRI measurements were made during a 4-h period, with each 4-min measurement consisting of a 1-min baseline period, a 1-min odor stimulation period, and a 2-min recovery period. MK801 (0.3 mg/kg) was intravenously delivered 1 hour after starting fMRI. Before MK801 injection, olfactory fMRI activations were observed only in the OB, not in the PC. After MK801 injection, olfactory fMRI activations in the OB increased, and robust olfactory fMRI activations were observed in the PC. The data indicate that MK801 enhances the olfactory responses in both the OB and PC. The enhancement effects of MK801 are most likely from its blockage of NMDA receptors on local inhibitory interneurons and the attenuation of the inhibition onto principal neurons. This study suggests that the mechanism of local inhibitory control of principal neurons in the OB and PC derived from studies in rodents translates to NHPs.


Assuntos
Imageamento por Ressonância Magnética/métodos , Bulbo Olfatório/diagnóstico por imagem , Córtex Olfatório/diagnóstico por imagem , Percepção Olfatória/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Volume Sanguíneo Cerebral , Maleato de Dizocilpina/farmacologia , Feminino , Macaca mulatta , Bulbo Olfatório/metabolismo , Córtex Olfatório/metabolismo , Pentanóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa