Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
IEEE Trans Robot ; 37(6): 2137-2156, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35140552

RESUMO

This paper presents the first certifiably correct algorithm for distributed pose-graph optimization (PGO), the backbone of modern collaborative simultaneous localization and mapping (CSLAM) and camera network localization (CNL) systems. Our method is based upon a sparse semidefinite relaxation that we prove provides globally-optimal PGO solutions under moderate measurement noise (matching the guarantees enjoyed by state-of-the-art centralized methods), but is amenable to distributed optimization using the low-rank Riemannian Staircase framework. To implement the Riemannian Staircase in the distributed setting, we develop Riemannian block coordinate descent (RBCD), a novel method for (locally) minimizing a function over a product of Riemannian manifolds. We also propose the first distributed solution verification and saddle escape methods to certify the global optimality of critical points recovered via RBCD, and to descend from suboptimal critical points (if necessary). All components of our approach are inherently decentralized: they require only local communication, provide privacy protection, and are easily parallelizable. Extensive evaluations on synthetic and real-world datasets demonstrate that the proposed method correctly recovers globally optimal solutions under moderate noise, and outperforms alternative distributed techniques in terms of solution precision and convergence speed.

2.
Sensors (Basel) ; 19(21)2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31689962

RESUMO

Deep- and reinforcement-learning techniques have increasingly required large sets of real data to achieve stable convergence and generalization, in the context of image-recognition, object-detection or motion-control strategies. On this subject, the research community lacks robust approaches to overcome unavailable real-world extensive data by means of realistic synthetic-information and domain-adaptation techniques. In this work, synthetic-learning strategies have been used for the vision-based autonomous following of a noncooperative multirotor. The complete maneuver was learned with synthetic images and high-dimensional low-level continuous robot states, with deep- and reinforcement-learning techniques for object detection and motion control, respectively. A novel motion-control strategy for object following is introduced where the camera gimbal movement is coupled with the multirotor motion during the multirotor following. Results confirm that our present framework can be used to deploy a vision-based task in real flight using synthetic data. It was extensively validated in both simulated and real-flight scenarios, providing proper results (following a multirotor up to 1.3 m/s in simulation and 0.3 m/s in real flights).

3.
J Artif Intell Res ; 64: 817-859, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31656393

RESUMO

Decentralized partially observable Markov decision processes (Dec-POMDPs) are general models for decentralized multi-agent decision making under uncertainty. However, they typically model a problem at a low level of granularity, where each agent's actions are primitive operations lasting exactly one time step. We address the case where each agent has macro-actions: temporally extended actions that may require different amounts of time to execute. We model macro-actions as options in a Dec-POMDP, focusing on actions that depend only on information directly available to the agent during execution. Therefore, we model systems where coordination decisions only occur at the level of deciding which macro-actions to execute. The core technical difficulty in this setting is that the options chosen by each agent no longer terminate at the same time. We extend three leading Dec-POMDP algorithms for policy generation to the macro-action case, and demonstrate their effectiveness in both standard benchmarks and a multi-robot coordination problem. The results show that our new algorithms retain agent coordination while allowing high-quality solutions to be generated for significantly longer horizons and larger state-spaces than previous Dec-POMDP methods. Furthermore, in the multi-robot domain, we show that, in contrast to most existing methods that are specialized to a particular problem class, our approach can synthesize control policies that exploit opportunities for coordination while balancing uncertainty, sensor information, and information about other agents.

4.
IEEE Trans Neural Netw Learn Syst ; 33(9): 4184-4198, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33587714

RESUMO

Deep neural network-based systems are now state-of-the-art in many robotics tasks, but their application in safety-critical domains remains dangerous without formal guarantees on network robustness. Small perturbations to sensor inputs (from noise or adversarial examples) are often enough to change network-based decisions, which was recently shown to cause an autonomous vehicle to swerve into another lane. In light of these dangers, numerous algorithms have been developed as defensive mechanisms from these adversarial inputs, some of which provide formal robustness guarantees or certificates. This work leverages research on certified adversarial robustness to develop an online certifiably robust for deep reinforcement learning algorithms. The proposed defense computes guaranteed lower bounds on state-action values during execution to identify and choose a robust action under a worst case deviation in input space due to possible adversaries or noise. Moreover, the resulting policy comes with a certificate of solution quality, even though the true state and optimal action are unknown to the certifier due to the perturbations. The approach is demonstrated on a deep Q-network (DQN) policy and is shown to increase robustness to noise and adversaries in pedestrian collision avoidance scenarios, a classic control task, and Atari Pong. This article extends our prior work with new performance guarantees, extensions to other reinforcement learning algorithms, expanded results aggregated across more scenarios, an extension into scenarios with adversarial behavior, comparisons with a more computationally expensive method, and visualizations that provide intuition about the robustness algorithm.

5.
IEEE Trans Neural Netw Learn Syst ; 28(9): 2115-2128, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-27323379

RESUMO

Many prediction, decision-making, and control architectures rely on online learned Gaussian process (GP) models. However, most existing GP regression algorithms assume a single generative model, leading to poor predictive performance when the data are nonstationary, i.e., generated from multiple switching processes. Furthermore, existing methods for GP regression over nonstationary data require significant computation, do not come with provable guarantees on correctness and speed, and many only work in batch settings, making them ill-suited for real-time prediction. We present an efficient online GP framework, GP-non-Bayesian clustering (GP-NBC), which addresses these computational and theoretical issues, allowing for real-time changepoint detection and regression using GPs. Our empirical results on two real-world data sets and two synthetic data set show that GP-NBC outperforms state-of-the-art methods for nonstationary regression in terms of both regression error and computation. For example, it outperforms Dirichlet process GP clustering with Gibbs sampling by 98% in computation time reduction while the mean absolute error is comparable.

6.
IEEE Trans Neural Netw Learn Syst ; 26(3): 537-50, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25720009

RESUMO

Most current model reference adaptive control (MRAC) methods rely on parametric adaptive elements, in which the number of parameters of the adaptive element are fixed a priori, often through expert judgment. An example of such an adaptive element is radial basis function networks (RBFNs), with RBF centers preallocated based on the expected operating domain. If the system operates outside of the expected operating domain, this adaptive element can become noneffective in capturing and canceling the uncertainty, thus rendering the adaptive controller only semiglobal in nature. This paper investigates a Gaussian process-based Bayesian MRAC architecture (GP-MRAC), which leverages the power and flexibility of GP Bayesian nonparametric models of uncertainty. The GP-MRAC does not require the centers to be preallocated, can inherently handle measurement noise, and enables MRAC to handle a broader set of uncertainties, including those that are defined as distributions over functions. We use stochastic stability arguments to show that GP-MRAC guarantees good closed-loop performance with no prior domain knowledge of the uncertainty. Online implementable GP inference methods are compared in numerical simulations against RBFN-MRAC with preallocated centers and are shown to provide better tracking and improved long-term learning.

7.
Philos Trans A Math Phys Eng Sci ; 368(1928): 4649-72, 2010 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-20819826

RESUMO

The development of autonomous vehicles for urban driving has seen rapid progress in the past 30 years. This paper provides a summary of the current state of the art in autonomous driving in urban environments, based primarily on the experiences of the authors in the 2007 DARPA Urban Challenge (DUC). The paper briefly summarizes the approaches that different teams used in the DUC, with the goal of describing some of the challenges that the teams faced in driving in urban environments. The paper also highlights the long-term research challenges that must be overcome in order to enable autonomous driving and points to opportunities for new technologies to be applied in improving vehicle safety, exploiting intelligent road infrastructure and enabling robotic vehicles operating in human environments.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa