Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Neurosci ; 44(28)2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38830758

RESUMO

Shank3 is a synaptic scaffolding protein that assists in tethering and organizing structural proteins and glutamatergic receptors in the postsynaptic density of excitatory synapses. The localization of Shank3 at excitatory synapses and the formation of stable Shank3 complexes is regulated by the binding of zinc to the C-terminal sterile-alpha-motif (SAM) domain of Shank3. Mutations in the SAM domain of Shank3 result in altered synaptic function and morphology, and disruption of zinc in synapses that express Shank3 leads to a reduction of postsynaptic proteins important for synaptic structure and function. This suggests that zinc supports the localization of postsynaptic proteins via Shank3. Many regions of the brain are highly enriched with free zinc inside glutamatergic vesicles at presynaptic terminals. At these synapses, zinc transporter 3 (ZnT3) moves zinc into vesicles where it is co-released with glutamate. Alterations in ZnT3 are implicated in multiple neurodevelopmental disorders, and ZnT3 knock-out (KO) mice-which lack synaptic zinc-show behavioral deficits associated with autism spectrum disorder and schizophrenia. Here we show that male and female ZnT3 KO mice have smaller dendritic spines and miniature excitatory postsynaptic current amplitudes than wildtype (WT) mice in the auditory cortex. Additionally, spine size deficits in ZnT3 KO mice are restricted to synapses that express Shank3. In WT mice, synapses that express both Shank3 and ZnT3 have larger spines compared to synapses that express Shank3 but not ZnT3. Together these findings suggest a mechanism whereby presynaptic ZnT3-dependent zinc supports postsynaptic structure and function via Shank3 in a synapse-specific manner.


Assuntos
Córtex Auditivo , Proteínas de Transporte de Cátions , Espinhas Dendríticas , Proteínas do Tecido Nervoso , Sinapses , Animais , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Sinapses/metabolismo , Espinhas Dendríticas/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte de Cátions/genética , Córtex Auditivo/metabolismo , Feminino , Masculino , Camundongos Knockout , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/genética , Potenciais Pós-Sinápticos Excitadores/fisiologia
2.
Sensors (Basel) ; 20(19)2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33007876

RESUMO

In this work, we investigate ethanol (EtOH)-sensing mechanisms of a ZnO nanorod (NRs)-based chemiresistor using a near-ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS). First, the ZnO NRs-based sensor was constructed, showing good performance on interaction with 100 ppm of EtOH in the ambient air at 327 °C. Then, the same ZnO NRs film was investigated by NAP-XPS in the presence of 1 mbar oxygen, simulating the ambient air atmosphere and O2/EtOH mixture at the same temperature. The partial pressure of EtOH was 0.1 mbar, which corresponded to the partial pressure of 100 ppm of analytes in the ambient air. To better understand the EtOH-sensing mechanism, the NAP-XPS spectra were also studied on exposure to O2/EtOH/H2O and O2/MeCHO (MeCHO = acetaldehyde) mixtures. Our results revealed that the reaction of EtOH with chemisorbed oxygen on the surface of ZnO NRs follows the acetaldehyde pathway. It was also demonstrated that, during the sensing process, the surface becomes contaminated by different products of MeCHO decomposition, which decreases dc-sensor performance. However, the ac performance does not seem to be affected by this phenomenon.

3.
bioRxiv ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38746319

RESUMO

Discovery of synaptic nanostructures suggests a molecular logic for the flexibility of synaptic function. We still have little understanding of how functionally diverse synapses in the brain organize their nanoarchitecture due to challenges associated with super-resolution imaging in complex brain tissue. Here, we characterized single-domain camelid nanobodies for the 3D quantitative multiplex imaging of synaptic nano-organization in 6 µm brain cryosections using STED nanoscopy. We focused on thalamocortical (TC) and corticocortical (CC) synapses along the apical-basal axis of layer 5 pyramidal neurons as models of functionally diverse glutamatergic synapses in the brain. Spines receiving TC input were larger than CC spines in all layers examined. However, TC synapses on apical and basal dendrites conformed to different organizational principles. TC afferents on apical dendrites frequently contacted spines with multiple aligned PSD-95/Bassoon nanomodules, which are larger. TC spines on basal dendrites contained mostly one aligned PSD-95/Bassoon nanocluster. However, PSD-95 nanoclusters were larger and scaled with spine volume. The nano-organization of CC synapses did not change across cortical layers. These results highlight striking nanoscale diversity of functionally distinct glutamatergic synapses, relying on afferent input and sub-cellular localization of individual synaptic connections.

4.
Mol Cell Neurosci ; 50(1): 35-44, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22449939

RESUMO

Synapses enable the transmission of information within neural circuits and allow the brain to change in response to experience. During the last decade numerous proteins that can induce synapse formation have been identified. Many of these synaptic inducers rely on trans-synaptic cell-cell interactions to generate functional contacts. Moreover, evidence now suggests that the same proteins that function early in development to regulate synapse formation may help to maintain and/or regulate the function and plasticity of mature synapses. One set of receptors and ligands that appear to impact both the development and the mature function of synapses are Eph receptors (erythropoietin-producing human hepatocellular carcinoma cell line) and their surface associated ligands, ephrins (Eph family receptor interacting proteins). Ephs can initiate new synaptic contacts, recruit and stabilize glutamate receptors at nascent synapses and regulate dendritic spine morphology. Recent evidence demonstrates that ephrin ligands also play major roles at synapses. Activation of ephrins by Eph receptors can induce synapse formation and spine morphogenesis, whereas in the mature nervous system ephrin signaling modulates synaptic function and long-term changes in synaptic strength. In this review we will summarize the recent progress in understanding the role of ephrins in presynaptic and postsynaptic differentiation, and synapse development, function and plasticity.


Assuntos
Efrinas/metabolismo , Cones de Crescimento/metabolismo , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Receptores da Família Eph/metabolismo , Sinapses/fisiologia , Animais , Regulação da Expressão Gênica no Desenvolvimento/genética , Hipocampo , Camundongos , Camundongos Knockout , Plasticidade Neuronal/genética , Neurônios/citologia , Ratos , Receptores da Família Eph/genética , Receptores de Glutamato/metabolismo
5.
Proc Natl Acad Sci U S A ; 107(19): 8830-5, 2010 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-20410461

RESUMO

Nervous system function requires tight control over the number of synapses individual neurons receive, but the underlying cellular and molecular mechanisms that regulate synapse number remain obscure. Here we present evidence that a trans-synaptic interaction between EphB2 in the presynaptic compartment and ephrin-B3 in the postsynaptic compartment regulates synapse density and the formation of dendritic spines. Observations in cultured cortical neurons demonstrate that synapse density scales with ephrin-B3 expression level and is controlled by ephrin-B3-dependent competitive cell-cell interactions. RNA interference and biochemical experiments support the model that ephrin-B3 regulates synapse density by directly binding to Erk1/2 to inhibit postsynaptic Ras/mitogen-activated protein kinase signaling. Together these findings define a mechanism that contributes to synapse maturation and controls the number of excitatory synaptic inputs received by individual neurons.


Assuntos
Efrina-B2/metabolismo , Efrina-B3/metabolismo , Potenciais Pós-Sinápticos Excitadores , Sistema de Sinalização das MAP Quinases , Sinapses/enzimologia , Animais , Comunicação Celular , Linhagem Celular , Espinhas Dendríticas/metabolismo , Efrina-B3/deficiência , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Ligantes , Camundongos , Terminações Pré-Sinápticas/metabolismo , Ligação Proteica , Ratos
6.
J Neurosci ; 31(14): 5353-64, 2011 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-21471370

RESUMO

Dynamic regulation of the localization and function of NMDA receptors (NMDARs) is critical for synaptic development and function. The composition and localization of NMDAR subunits at synapses are tightly regulated and can influence the ability of individual synapses to undergo long-lasting changes in response to stimuli. Here, we examine mechanisms by which EphB2, a receptor tyrosine kinase that binds and phosphorylates NMDARs, controls NMDAR subunit localization and function at synapses. We find that, in mature neurons, EphB2 expression levels regulate the amount of NMDARs at synapses, and EphB activation decreases Ca(2+)-dependent desensitization of NR2B-containing NMDARs. EphBs are required for enhanced localization of NR2B-containing NMDARs at synapses of mature neurons; triple EphB knock-out mice lacking EphB1-3 exhibit homeostatic upregulation of NMDAR surface expression and loss of proper targeting to synaptic sites. These findings demonstrate that, in the mature nervous system, EphBs are key regulators of the synaptic localization of NMDARs.


Assuntos
Neurônios/citologia , Receptores da Família Eph/metabolismo , Receptores de N-Metil-D-Aspartato/fisiologia , Sinapses/fisiologia , Regulação para Cima/fisiologia , Análise de Variância , Animais , Animais Recém-Nascidos , Biotinilação/fisiologia , Células Cultivadas , Córtex Cerebral/citologia , Embrião de Mamíferos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Proteínas de Fluorescência Verde/genética , Hipocampo/citologia , Humanos , Técnicas In Vitro , Masculino , Camundongos , Camundongos Knockout , Neurônios/fisiologia , Técnicas de Patch-Clamp/métodos , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Transporte Proteico/genética , RNA Interferente Pequeno/metabolismo , Ratos , Receptores da Família Eph/deficiência , Receptores da Família Eph/genética , Sinaptossomos/metabolismo , Transfecção/métodos , Regulação para Cima/genética
7.
Nat Commun ; 13(1): 920, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177616

RESUMO

Heterotetrameric glutamate receptors are essential for the development, function, and plasticity of spine synapses but how they are organized to achieve this is not known. Here we show that the nanoscale organization of glutamate receptors containing specific subunits define distinct subsynaptic features. Glutamate receptors containing GluA2 or GluN1 subunits establish nanomodular elements precisely positioned relative to Synaptotagmin-1 positive presynaptic release sites that scale with spine size. Glutamate receptors containing GluA1 or GluN2B specify features that exhibit flexibility: GluA1-subunit containing AMPARs are found in larger spines, while GluN2B-subunit containing NMDARs are enriched in the smallest spines with neither following a strict modular organization. Given that the precise positioning of distinct classes of glutamate receptors is linked to diverse events including cell death and synaptic plasticity, this unexpectedly robust synaptic nanoarchitecture provides a resilient system, where nanopositioned glutamate receptor heterotetramers define specific subsynaptic regions of individual spine synapses.


Assuntos
Espinhas Dendríticas/metabolismo , Subunidades Proteicas/metabolismo , Receptores de Glutamato/metabolismo , Sinapses/metabolismo , Animais , Células Cultivadas , Córtex Cerebral , Embrião de Mamíferos , Potenciais Pós-Sinápticos Excitadores , Plasticidade Neuronal , Cultura Primária de Células , Multimerização Proteica , Ratos
8.
Nanomaterials (Basel) ; 12(23)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36500920

RESUMO

The resolution of a quartz crystal microbalance (QCM) is particularly crucial for gas sensor applications where low concentrations are detected. This resolution can be improved by increasing the effective surface of QCM electrodes and, thereby, enhancing their sensitivity. For this purpose, various researchers have investigated the use of micro-structured materials with promising results. Herein, we propose the use of easy-to-manufacture metal blacks that are highly structured even on a nanoscale level and thus provide more bonding sites for gas analytes. Two different black metals with thicknesses of 280 nm, black aluminum (B-Al) and black gold (B-Au), were deposited onto the sensor surface to improve the sensitivity following the Sauerbrey equation. Both layers present a high surface roughness due to their cauliflower morphology structure. A high response (i.e., resonant frequency shift) of these QCM sensors coated with a black metal layer was obtained. Two gaseous analytes, H2O vapor and EtOH vapor, at different concentrations, are tested, and a distinct improvement of sensitivity is observed for the QCM sensors coated with a black metal layer compared to the blank ones, without strong side effects on resonance frequency stability or mechanical quality factor. An approximately 10 times higher sensitivity to EtOH gas is reported for the QCM coated with a black gold layer compared to the blank QCM sensor.

9.
J Neurosci ; 29(47): 14847-54, 2009 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-19940180

RESUMO

Vertebrate alpha-bungarotoxin-like molecules of the Ly-6 superfamily have been implicated as balancers of activity and survival in the adult nervous system. To determine whether a member of this family could be involved in the development of the avian ciliary ganglion, we identified 6 Gallus genes by their homology in structure to mouse lynx1 and lynx2. One of these genes, an ortholog of prostate stem cell antigen (psca), is barely detectable at embryonic day (E) 8, before neuronal cell loss in the ciliary ganglion, but increases >100-fold as the number of neurons begins to decline between E9 and E14. PSCA is highly expressed in chicken and mouse telencephalon and peripheral ganglia and correlates with expression of alpha7-containing nicotinic acetylcholine receptors (alpha7-nAChRs). Misexpressing PSCA before cell death in the ciliary ganglion blocks alpha7-nAChR activation by nicotine and rescues the choroid subpopulation from dying. Thus, PSCA, a molecule previously identified as a marker of prostate cancer, is a member of the Ly-6 neurotoxin-like family in the nervous system, and is likely to play a role as a modulator of alpha7 signaling-induced cell death during development.


Assuntos
Apoptose/genética , Proteínas Aviárias/metabolismo , Gânglios Parassimpáticos/metabolismo , Neurônios/metabolismo , Neurotoxinas/metabolismo , Receptores Nicotínicos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Sequência de Aminoácidos/genética , Animais , Antígenos de Neoplasias , Proteínas Aviárias/genética , Sequência de Bases/genética , Galinhas , Proteínas Ligadas por GPI , Gânglios Parassimpáticos/embriologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Dados de Sequência Molecular , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neurônios/citologia , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Agonistas Nicotínicos/farmacologia , Antagonistas Nicotínicos/metabolismo , Homologia de Sequência do Ácido Nucleico , Telencéfalo/embriologia , Telencéfalo/metabolismo , Receptor Nicotínico de Acetilcolina alfa7
10.
Elife ; 82019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30789343

RESUMO

Cortical networks are characterized by sparse connectivity, with synapses found at only a subset of axo-dendritic contacts. Yet within these networks, neurons can exhibit high connection probabilities, suggesting that cell-intrinsic factors, not proximity, determine connectivity. Here, we identify ephrin-B3 (eB3) as a factor that determines synapse density by mediating a cell-cell competition that requires ephrin-B-EphB signaling. In a microisland culture system designed to isolate cell-cell competition, we find that eB3 determines winning and losing neurons in a contest for synapses. In a Mosaic Analysis with Double Markers (MADM) genetic mouse model system in vivo the relative levels of eB3 control spine density in layer 5 and 6 neurons. MADM cortical neurons in vitro reveal that eB3 controls synapse density independently of action potential-driven activity. Our findings illustrate a new class of competitive mechanism mediated by trans-synaptic organizing proteins which control the number of synapses neurons receive relative to neighboring neurons.


Assuntos
Comunicação Celular , Córtex Cerebral/citologia , Efrina-B3/metabolismo , Rede Nervosa/fisiologia , Neurônios/metabolismo , Animais , Camundongos
11.
J Neurosci ; 27(43): 11501-9, 2007 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-17959793

RESUMO

Neurotrophic molecules are key retrograde influences of cell survival in the developing nervous system, but other influences such as activity are also emerging as important factors. In the avian ciliary ganglion, half the neurons are eliminated between embryonic day 8 (E8) and E14, but it is not known how cell death is initiated. Because systemic application of alpha7-nicotinic acetylcholine receptor (nAChR) antagonists prevents this cell loss, we examined differences in receptor densities and responses of intracellular calcium to nicotine using the calcium-sensitive dye fura-2. In addition, we determined whether cell-autonomous inhibition of alpha7 activation in neurons prevented cell death. E8 neurons are heterogeneous with respect to alpha7-nAChR density, which leads to large increases in [Ca2+]i in some neurons; E8 neurons also exhibit a slower rate of Ca2+ decay after nicotinic stimulation than E13 neurons. Expressing alpha-bungarotoxin that is tethered to the membrane by a glycosylphosphatidylinositol linkage (GPIalpha btx) in ciliary ganglion neurons with the retroviral vector RCASBP(A) blocks increases in intracellular calcium induced by nicotine through alpha7-nAChRs and prevents neurons from dying. Expression of GPIalpha btx in surrounding non-neural tissues, but not in neurons, does not prevent cell loss. Furthermore, the GPIalpha btx is not efficiently expressed in the accessory oculomotor neurons, eliminating preganglionic inputs as another site for action of the antagonist. These results support the hypothesis that cholinergic inputs facilitate cell death in the developing autonomic nervous system by activating alpha7-nAChRs, possibly by leading to increases in intracellular calcium that exceed the threshold for cell survival.


Assuntos
Gânglios Parassimpáticos/citologia , Gânglios Parassimpáticos/embriologia , Inibição Neural/fisiologia , Neurônios/citologia , Receptores Nicotínicos/fisiologia , Antagonistas Adrenérgicos alfa/farmacologia , Animais , Morte Celular/fisiologia , Embrião de Galinha , Corpo Ciliar/citologia , Corpo Ciliar/embriologia , Corpo Ciliar/fisiologia , Gânglios Parassimpáticos/fisiologia , Neurônios/fisiologia , Receptor Nicotínico de Acetilcolina alfa7
12.
Nat Neurosci ; 21(5): 671-682, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29686261

RESUMO

Experience results in long-lasting changes in dendritic spine size, yet how the molecular architecture of the synapse responds to plasticity remains poorly understood. Here a combined approach of multicolor stimulated emission depletion microscopy (STED) and confocal imaging in rat and mouse demonstrates that structural plasticity is linked to the addition of unitary synaptic nanomodules to spines. Spine synapses in vivo and in vitro contain discrete and aligned subdiffraction modules of pre- and postsynaptic proteins whose number scales linearly with spine size. Live-cell time-lapse super-resolution imaging reveals that NMDA receptor-dependent increases in spine size are accompanied both by enhanced mobility of pre- and postsynaptic modules that remain aligned with each other and by a coordinated increase in the number of nanomodules. These findings suggest a simplified model for experience-dependent structural plasticity relying on an unexpectedly modular nanomolecular architecture of synaptic proteins.


Assuntos
Espinhas Dendríticas/fisiologia , Plasticidade Neuronal/fisiologia , Sinapses/fisiologia , Animais , Espinhas Dendríticas/ultraestrutura , Proteína 4 Homóloga a Disks-Large/genética , Proteína 4 Homóloga a Disks-Large/metabolismo , Imuno-Histoquímica , Potenciação de Longa Duração/fisiologia , Camundongos , Modelos Neurológicos , Plasmídeos/genética , Cultura Primária de Células , Ratos , Receptores Pré-Sinápticos/fisiologia , Vesículas Sinápticas/fisiologia
13.
ACS Sens ; 3(12): 2558-2565, 2018 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-30431256

RESUMO

It is well-known that the applicability of phthalocyanine chemiresistors suffers from long recovery time after NO2 exposure. This circumstance enforces the necessity to operate the sensors at elevated temperatures (150-200 °C), which shortens the sensor lifetime and increases its power consumption (regardless, a typical measurement period is longer than 15 min). In this paper, we propose a new method for fast and effective recovery by UV-vis illumination at a low temperature (55 °C). The method is based on short illumination following short NO2 exposure. To support and optimize the method, we investigated the effects of light in the wavelength and intensity ranges of 375-850 nm and 0.2-0.8 mW/mm2, respectively, on the rate of NO2 desorption from the phthalocyanine sensitive layer during the recovery period. This investigation was carried out for a set of phthalocyanine materials (ZnPc, CuPc, H2Pc, PbPc, and FePc) operating at slightly elevated temperatures (55-100 °C) and was further supported by the analysis of UV-vis and FTIR spectral changes. We found out that the light with the wavelength shorter than 550 nm significantly accelerates the NO2 desorption from ZnPc, CuPc, and FePc, and allows bringing the measurement period under 2 min and decreasing the sensor power consumption by 75%. Possible mechanisms of the light-stimulated desorption are discussed.


Assuntos
Isoindóis/química , Isoindóis/efeitos da radiação , Luz , Dióxido de Nitrogênio/química , Temperatura
14.
Sci Rep ; 8(1): 16099, 2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30382129

RESUMO

Functional synaptic networks are compromised in many neurodevelopmental and neurodegenerative diseases. While the mechanisms of axonal transport and localization of synaptic vesicles and mitochondria are relatively well studied, little is known about the mechanisms that regulate the localization of proteins that localize to active zones. Recent finding suggests that mechanisms involved in transporting proteins destined to active zones are distinct from those that transport synaptic vesicles or mitochondria. Here we report that localization of BRP-an essential active zone scaffolding protein in Drosophila, depends on the precise balance of neuronal Par-1 kinase. Disruption of Par-1 levels leads to excess accumulation of BRP in axons at the expense of BRP at active zones. Temporal analyses demonstrate that accumulation of BRP within axons precedes the loss of synaptic function and its depletion from the active zones. Mechanistically, we find that Par-1 co-localizes with BRP and is present in the same molecular complex, raising the possibility of a novel mechanism for selective localization of BRP-like active zone scaffolding proteins. Taken together, these data suggest an intriguing possibility that mislocalization of active zone proteins like BRP might be one of the earliest signs of synapse perturbation and perhaps, synaptic networks that precede many neurological disorders.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Junção Neuromuscular/metabolismo , Sinapses/metabolismo , Animais , Axônios/metabolismo , Axônios/ultraestrutura , Larva/metabolismo , Larva/ultraestrutura , Proteínas Associadas aos Microtúbulos/metabolismo , Terminações Pré-Sinápticas/metabolismo , Transporte Proteico , Sinapses/ultraestrutura
15.
Nat Neurosci ; 18(11): 1594-605, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26479588

RESUMO

Organization of signaling complexes at excitatory synapses by membrane-associated guanylate kinase (MAGUK) proteins regulates synapse development, plasticity, senescence and disease. Post-translational modification of MAGUK family proteins can drive their membrane localization, yet it is unclear how these intracellular proteins are targeted to sites of synaptic contact. Here we show using super-resolution imaging, biochemical approaches and in vivo models that the trans-synaptic organizing protein ephrin-B3 controls the synaptic localization and stability of PSD-95 and links these events to changes in neuronal activity via negative regulation of a newly identified mitogen-associated protein kinase (MAPK)-dependent phosphorylation site on ephrin-B3, Ser332. Unphosphorylated ephrin-B3 was enriched at synapses, and interacted directly with and stabilized PSD-95 at synapses. Activity-induced phosphorylation of Ser332 dispersed ephrin-B3 from synapses, prevented the interaction with PSD-95 and enhanced the turnover of PSD-95. Thus, ephrin-B3 specifies the synaptic localization of PSD-95 and likely links the synaptic stability of PSD-95 to changes in neuronal activity.


Assuntos
Efrina-B3/metabolismo , Guanilato Quinases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Neurônios/metabolismo , Sinapses/metabolismo , Animais , Gatos , Proteína 4 Homóloga a Disks-Large , Efrina-B3/genética , Feminino , Guanilato Quinases/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Proteínas de Membrana/genética , Gravidez , Processamento de Proteína Pós-Traducional/genética , Ratos , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
16.
PLoS One ; 8(9): e73000, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24023801

RESUMO

NrCAM (Neuron-glial related cell adhesion molecule), a member of the L1 family of cell adhesion molecules, reversibly binds ankyrin and regulates axon growth, but it has not been studied for a role in retinotopic mapping. During development of retino-collicular topography, NrCAM was expressed uniformly in retinal ganglion cells (RGCs) along both mediolateral and anteroposterior retinal axes, and was localized on RGC axons within the optic tract and superior colliculus (SC). Anterograde tracing of RGC axons in NrCAM null mutant mice at P10, when the map resembles its mature form, revealed laterally displaced ectopic termination zones (eTZs) of axons from the temporal retina, indicating defective mediolateral topography, which is governed by ephrinB/EphBs. Axon tracing at P2 revealed that interstitial branch orientation of ventral-temporal RGC axons in NrCAM null mice was compromised in the medial direction, likely accounting for displacement of eTZs. A similar retinocollicular targeting defect in EphB mutant mice suggested that NrCAM and EphB interact to regulate mediolateral retino-collicular targeting. We found that EphB2 tyrosine kinase but not an EphB2 kinase dead mutant, phosphorylated NrCAM at a conserved tyrosine residue in the FIGQY ankyrin binding motif, perturbing ankyrin recruitment in NrCAM transfected HEK293 cells. Furthermore, the phosphorylation of NrCAM at FIGQY in SC was decreased in EphB1/3 and EphB1/2/3 null mice compared to WT, while phospho-FIGQY of NrCAM in SC was increased in EphB2 constitutively active (F620D/F620D) mice. These results demonstrate that NrCAM contributes to mediolateral retinocollicular axon targeting by regulating RGC branch orientation through a likely mechanism in which ephrinB/EphB phosphorylates NrCAM to modulate linkage to the actin cytoskeleton.


Assuntos
Moléculas de Adesão Celular/metabolismo , Retina/metabolismo , Colículos Superiores/metabolismo , Animais , Axônios/metabolismo , Moléculas de Adesão Celular/genética , Linhagem Celular , Humanos , Immunoblotting , Imunoprecipitação , Camundongos , Camundongos Knockout , Células Ganglionares da Retina/metabolismo
17.
PLoS One ; 6(2): e17417, 2011 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-21364901

RESUMO

The flow of information between neurons in many neural circuits is controlled by a highly specialized site of cell-cell contact known as a synapse. A number of molecules have been identified that are involved in central nervous system synapse development, but knowledge is limited regarding whether these cues direct organization of specific synapse types or on particular regions of individual neurons. Glutamate is the primary excitatory neurotransmitter in the brain, and the majority of glutamatergic synapses occur on mushroom-shaped protrusions called dendritic spines. Changes in the morphology of these structures are associated with long-lasting modulation of synaptic strength thought to underlie learning and memory, and can be abnormal in neuropsychiatric disease. Here, we use rat cortical slice cultures to examine how a previously-described synaptogenic molecule, the EphB2 receptor tyrosine kinase, regulates dendritic protrusion morphology in specific regions of the dendritic arbor in cortical pyramidal neurons. We find that alterations in EphB2 signaling can bidirectionally control protrusion length, and knockdown of EphB2 expression levels reduces the number of dendritic spines and filopodia. Expression of wild-type or dominant negative EphB2 reveals that EphB2 preferentially regulates dendritic protrusion structure in basal dendrites. Our findings suggest that EphB2 may act to specify synapse formation in a particular subcellular region of cortical pyramidal neurons.


Assuntos
Espinhas Dendríticas/genética , Pseudópodes/genética , Receptor EphB2/fisiologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/fisiologia , Pseudópodes/efeitos dos fármacos , Pseudópodes/metabolismo , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Células Piramidais/fisiologia , RNA Interferente Pequeno/farmacologia , Ratos , Receptor EphB2/antagonistas & inibidores , Receptor EphB2/genética , Receptor EphB2/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Sinapses/fisiologia
18.
J Comp Neurol ; 518(6): 839-50, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20058310

RESUMO

Somatostatin and cortistatin are neuromodulators with divergent expression patterns and biological roles. Whereas expression and function of genes encoding somatostatin (PSS1) and the related peptide cortistatin (PSS2) have been studied in detail for the central nervous system (CNS) and immune system, relatively little is known about their expression patterns in the peripheral nervous system (PNS). We compare the expression patterns of PSS1 and PSS2 in chicken embryos. At E14, PSS1 is higher in the CNS versus PNS, whereas PSS2 is higher in the PNS. During early development, PSS1 is transiently expressed in lumbar sympathetic ganglia and is detectable at low levels throughout the development of dorsal root and ciliary ganglia. In contrast, PSS2 expression increases as development progresses in sympathetic and dorsal root ganglia, whereas levels in ciliary ganglia by E8 are more than 100-fold higher than in sympathetic ganglia. Activin, which induces somatostatin-like immunoreactivity in ciliary ganglion neurons in vivo and in vitro, controls PSS2 expression by stabilizing PSS2 but not PSS1 mRNA. We conclude that much of the somatostatin-like immunoreactivity in the developing avian peripheral nervous system is actually cortistatin, the PSS2 product, as opposed to true somatostatin, which is the PSS1 product. The identification of PSS2 as the predominantly expressed somatostatin gene family member in avian autonomic neurons provides a molecular basis for further functional and pharmacological studies.


Assuntos
Sistema Nervoso Autônomo/embriologia , Sistema Nervoso Autônomo/metabolismo , Proteínas Aviárias/genética , Regulação da Expressão Gênica no Desenvolvimento , Neurônios/metabolismo , Neuropeptídeos/genética , Somatostatina/genética , Ativinas/metabolismo , Sequência de Aminoácidos , Animais , Proteínas Aviárias/metabolismo , Encéfalo/embriologia , Encéfalo/metabolismo , Embrião de Galinha , Gânglios Espinais/embriologia , Gânglios Espinais/metabolismo , Gânglios Simpáticos/embriologia , Gânglios Simpáticos/metabolismo , Técnicas In Vitro , Dados de Sequência Molecular , Neuropeptídeos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Homologia de Sequência de Aminoácidos , Somatostatina/metabolismo , Medula Espinal/embriologia , Medula Espinal/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa