Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Small ; 19(45): e2303277, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37434035

RESUMO

Sliding mode triboelectric nanogenerator (S-TENG) is effective for low-frequency mechanical energy harvesting owing to their more efficient mechanical energy extraction capability and easy packaging. Ternary electrification layered (TEL) architecture is proven useful for improving the output performance of S-TENG. However, the bottleneck of electric output is the air breakdown on the interface of tribo-layers, which seriously restricts its further improvement. Herein, a strategy is adopted by designing a shielding layer to prevent air breakdown on the central surface of tribo-layers. And the negative effects of air breakdown on the edge of sliding layer are averted by increasing the shrouded area of tribo-layers on slider. Output charge of this shielding-layer and shrouded-tribo-area optimized ternary electrification layered triboelectric nanogenerator (SS-TEL-TENG) achieves 3.59-fold enhancement of traditional S-TENG and 1.76-fold enhancement of TEL-TENG. Furthermore, even at a very low speed of 30 rpm, output charge, current, and average power of the rotation-type SS-TEL-TENG reach 4.15 µC, 74.9 µA, and 25.4 mW (2.05 W m-2 Hz-1 ), respectively. With such high-power output, 4248 LEDs can be lighted brightly by SS-TEL-TENG directly. The high-performance SS-TEL-TENG demonstrated in this work will have great applications for powering ubiquitous sensor network in the Internet of Things (IoT).

2.
Nanotechnology ; 32(49)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34438386

RESUMO

The development of simple preparation and excellent capacity performance electrode materials is the key to energy conversion and storage for supercapacitors. Based on the growth mechanism of crystal, Zn induced NiCo nanosheets and nanoneedles composite structure deposed on Ni foam (ZNC) are successfully attained by a facile one-step method, the growth mechanism of the composite structure is further discussed. Because of its unique composites structure and additional modification of carbon, the carbon modified ZNC (ZNC@C) delivers better energy storage ability (2280 mC cm-2at 2 mA cm-2) compare to ZNC. An asymmetric supercapacitor (ASC) is assembled by ZNC@C as the positive electrode and carbonized popcorn as the negative electrode. The ASC exhibits good energy storage performance. Zn also positively affects the adsorption energy to enhance the capacitance property based on Density Functional theory calculation. The simple method for the composite structure by tuning the kinetics behaver of the crystal can provide a new strategy in synthesizing the materials, and the material with a unique structure and high performance will have potential applications in the field of energy storage.

3.
Nanotechnology ; 31(38): 385401, 2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32492669

RESUMO

Wurtzite-structured CdS material is widely used in information sensing and energy harvesting. Based on the piezoelectric property of CdS, we present a flexible piezoelectric nanogenerator (PENG) with three-dimensional-structured CdS nanowall arrays. Under index finger oscillations at a slow rate, the maximal open-circuit voltage and short-circuit current are 1.2 V and 6 nA respectively. Meanwhile, the working mechanism of this PENG was successfully studied with piezoelectric potential distribution and energy band theory respectively. All of the results show that an increase in the bending degree and bending frequency will affect the output of the PENG, suggesting that it can be used as a flexible sensor. In addition, the fabricated PENG can be used as a self-powered pressure sensor relying on the linear relationship between the output voltage and the vertical pressure. This work may provide a new approach to fabricating piezoelectric nanogenerators based on three-dimensional materials as an energy harvester, which may also facilitate the development of flexible and wearable electric sensing technology.

4.
Nanotechnology ; 31(49): 495601, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-32990261

RESUMO

The high-performance filter capacitor is a hot research topic in the field of filter circuits for flexible and wearable devices, whereas traditional aluminum electrolytic capacitors still experience widespread problems in terms of large error factors and poor stability. To avoid these disadvantages, in this work, we have developed a liquid dual-layer supercapacitor (SC). When it is employed as the filter capacitor in a filter circuit, any waveform signal can be transformed into a linear signal. The maximum fluctuation of the output signal is less than 16 mV; the SC also demonstrates excellent filtering stability in a frequency range of 1 ∼ 100 000 Hz, as well as an amplitude window of 0 ∼ 10 V. In this framework, our filter SC demonstrates unparalleled processing properties, and can greatly improve the stability and extend the lifetime of the entire electronic circuit. The fact that the requirements of high-end electronic products can be fulfilled due to the contribution of this filter SC are particularly significant.

5.
Nanotechnology ; 31(12): 125405, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-31751972

RESUMO

By exploiting the storage performance of supercapacitors, iron has the potential to be used as a new anode material. However, this potential is limited by unsatisfactory electrical conductivity and poor cycling stability which impact the energy and power density. Consequently a foundation for improving the electrical conductivity and cycling stability of iron materials to obtain good storage performance is needed. In this work, Ag-modified Fe2O3 nanoparticles on carbon cloth were synthesized as an anode material for supercapacitors. The specific capacitance of the composite material reaches 10.39 F cm-2 (2734.2 F g-1) at a current density of 1 mA cm-2 and remains at 83% of this value after 12 000 cycles. The energy density is 379.8 Wh kg-1 at a power density of 131.6 W kg-1 and remains at 123.9 Wh kg-1 at a power density of 2631.6 W kg-1. The electrical conductivity and interfacial effect created between Ag@Fe2O3 is confirmed with density functional theory calculations. The packaged asymmetric supercapacitor devices have flexibility and can light ten LEDs for 2 min 30 s, with an energy density of 60.3 Wh kg-1 that can be reached at a power density of 1063.8 W kg-1 and remain at 16 Wh kg-1 even at a power density of 4255.3 W kg-1.

6.
Nanotechnology ; 26(47): 475402, 2015 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-26526824

RESUMO

An easily foldable and portable triboelectric-electromagnetic generator (TEMG) based on two polymer/Al layers and one copper coil has been designed to harvest ambient mechanical energy, where the copper coil is used both as a spring to achieve contact and separation of triboelectric layers and as a circuit to collect electromagnetic-induced electricity. The output performance of the TEMG is approximately reproducible after being folded many times. The working mechanism is discussed. The output performance of individual triboelectric generator (TEG) and electromagnetic generator (EMG) are systematically investigated. The maximum output current, voltage, and power are obtained to be 32.2 µA, 500 V, and 2 mW for the TEG, and 4.04 mA, 30 mV, and 15.8 µW for the EMG, respectively. The TEG with a higher internal resistance can be used as a current source, while the EMG with a lower resistance can be used as a voltage source. It can be used as a mobile light source via integrating the TEMG in clothes or bags, and as a self-powered gas flow sensor for detecting respiratory rate, which has a potential application in medical diagnoses. The simple structure and easy portability of the TEMG could be used widely in daily life to harvest ambient energy for electronic devices.

7.
Adv Mater ; 36(19): e2312148, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38314966

RESUMO

Recently, utilizing the air breakdown effect in the charge excitation strategy proves as an efficient charge injection technique to increase the surface charge density of dielectric polymers for triboelectric nanogenerators (TENGs). However, quantitative characterization of the ability of dielectric polymers to trap reverse charges and the effect on the startup time of secondary self-charge excitation (SSCE) are essential for extensive applications. Here, an ultra-fast charge self-injection technique based on a self-charge excitation strategy is proposed, and a standard method to quantify the charge trapping and de-trapping abilities of 23 traditional tribo-materials is introduced. Further, the relationship among the distribution of dielectric intrinsic deep, shallow trap states, and transportation of trapped charges is systematically analyzed in this article. It shows that the de-trapping rate of charges directly determines the reactivation and failure of SSCE. Last, independent of TENG contact efficiency, an ultra-high charge density of 2.67 mC m-2 and an ultra-fast startup time of SSCE are obtained using a 15 µm poly(vinylidene fluoride-trifluoroethylene) film, breaking the historical record for material modification. As a standard for material selection, this work quantifies the charge trapping and de-trapping ability of the triboelectric dielectric series and provides insights for understanding the charge transport in dielectrics.

8.
J Nanosci Nanotechnol ; 13(2): 933-6, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23646545

RESUMO

Functional carbon nanospheres have been synthesized from analytically pure glucose by a composite-molten-salt (CMS) method. Field emission scanning electron microscopy, transmission electron microscopy, Raman and Fourier transformation infra-red spectroscopy indicate the carbon nanospheres are solid, bond hybridisation (sp2/sp3) and with many functional groups on their surfaces. Amperometric sensor based on the synthesized carbon nanospheres have been fabricated without pretreatment or modification. The detection of hydrogen peroxide exhibits high sensitivity and good selectivity. The electrochemical measurement of these nanospheres demonstrates much superior performance to those of the carbon nanospheres synthesized by hydrothermal method.

9.
Nanomicro Lett ; 15(1): 127, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37209262

RESUMO

As hundreds of millions of distributed devices appear in every corner of our lives for information collection and transmission in big data era, the biggest challenge is the energy supply for these devices and the signal transmission of sensors. Triboelectric nanogenerator (TENG) as a new energy technology meets the increasing demand of today's distributed energy supply due to its ability to convert the ambient mechanical energy into electric energy. Meanwhile, TENG can also be used as a sensing system. Direct current triboelectric nanogenerator (DC-TENG) can directly supply power to electronic devices without additional rectification. It has been one of the most important developments of TENG in recent years. Herein, we review recent progress in the novel structure designs, working mechanism and corresponding method to improve the output performance for DC-TENGs from the aspect of mechanical rectifier, tribovoltaic effect, phase control, mechanical delay switch and air-discharge. The basic theory of each mode, key merits and potential development are discussed in detail. At last, we provide a guideline for future challenges of DC-TENGs, and a strategy for improving the output performance for commercial applications.

10.
Adv Mater ; 35(7): e2209657, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36398558

RESUMO

To enhance the durability of triboelectric nanogenerator (TENG), liquid lubrication has been used to reduce mechanical abrasion. However, as the charge transportation behavior in dielectric liquid is not clearly understood, the output energy is still low although some improvements have been reported. Herein, the charge transportation behaviors in dielectric liquid by self-excited liquid suspension triboelectric nanogenerator (LS-TENG) are systematically investigated. The important role of solid-liquid triboelectrification effect, charge-liquid transmission and dissipation effect, and the homogeneous dielectric induction effect in promoting its output performance is found. The LS-TENG with a dual dielectric tribolayer has advantages of slight driving force and long lifetime for harvesting micro energy. The output of LS-TENG remains almost constant for more than 234 k operating cycles. A high charge density of 704 µC m-2 is obtained, 2.7 times as much as that of the current highest record in non-contact TENG. Additionally, the rotary LS-TENG lights up 4200 LEDs and continuously powers a variety of wireless sensors by harvesting wind energy at low wind speed. This work provides an important insight toward the charge transportation mechanism in dielectric liquid, and a prospective strategy for achieving highly robust TENG in micro energy harvesting for practical applications.

11.
Adv Mater ; 35(40): e2302954, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37354126

RESUMO

Improving the output energy and durability of triboelectric nanogenerators (TENGs) remains a considerable challenge for their practical applications. Owing to the interface effect of triboelectrification and electrostatic induction, thinner films with higher dielectric constants yield a higher output; however, they are not durable for practical applications. Herein, the dielectric surface effect is changed into a volume effect by adopting a millimeter-thick dielectric film with an inner porous network structure so that charges can hop in the surface state of the network. Charge migration inside the dielectric film is the key factor affecting the output of the triboelectric nanogenerator (TENG) with a thick film, based on which each working stage follows the energy-maximization principle in the voltage-charge plot. The maximum peak and average power densities of the TENG with polyurethane foam film in 1 mm thickness reach 40.9 and 20.7 W m-2  Hz-1 , respectively, under environmental conditions, and the output charge density is 5.14 times that of TENGs with a poly(tetrafluoroethylene) film of the same thickness. Superdurability is achieved in the rotary-mode TENG after 200 000 operation cycles. This study identifies the physical mechanism of the thick dielectric film used in TENGs and provides a new approach to promote the output and durability of TENGs.

12.
ACS Nano ; 16(6): 9359-9367, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35587233

RESUMO

The state of neck motion reflects cervical health. To detect the motion state of the human neck is of important significance to healthcare intelligence. A practical neck motion detector should be wearable, flexible, power efficient, and low cost. Here, we report such a neck motion detector comprising a self-powered triboelectric sensor group and a deep learning block. Four flexible and stretchable silicon rubber based triboelectric sensors are integrated on a neck collar. With different neck motions, these four sensors lead-out voltage signals with different amplitudes and/or directions. Thus, the combination of these four signals can represent one motion state. Significantly, a carbon-doped silicon rubber layer is attached between the neck collar and the sensors to shield the external electric field (i.e., electrical changes at the skin surface) for a far more robust identification. Furthermore, a deep learning model based on the convolutional neural network is designed to recognize 11 classes of neck motion including eight directions of bending, two directions of twisting, and one resting state with an average recognition accuracy of 92.63%. This developed neck motion detector has promising applications in neck monitoring, rehabilitation, and control.


Assuntos
Aprendizado Profundo , Nanotecnologia , Humanos , Fontes de Energia Elétrica , Silício , Borracha , Movimento (Física)
13.
Chem Commun (Camb) ; 58(4): 589-592, 2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-34913934

RESUMO

One of the biggest challenges faced by the layered manganese oxide MnO2 used as a supercapacitor cathode is the capacity fading caused by chemo-mechanical degradation and/or structural transformation occurring in the discharging/charging process. Here, based on systematical experimental measurements and theoretical calculations, we show that both the stability and rate performance of the δ-MnO2 supercapacitor cathode can be significantly enhanced by Al doping. Compared with pure δ-MnO2, Al doping (δ-Al0.06MnO2) clearly improves the specific capacitance (7% enhancement at 0.1 mA cm-2) and cycling stability (12% enhancement after 5000 cycles) simultaneously. These improvements can be attributed to the enhanced electronic transport and formation of more active sites, which are introduced by Al doping. Additionally, our calculations demonstrate that the doped systems (Al atoms located at Mn or O sites) show smaller surface energies than that of pure δ-MnO2, which hinders side reactions or structure transformations and leads to a better cycling lifetime. Our work gives a comprehensive understanding of the impacts on the performance of δ-MnO2 introduced by Al doping, and provides a feasible scheme to study the electrochemical mechanism of metal-doped δ-MnO2.

14.
Nanomicro Lett ; 14(1): 124, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35543758

RESUMO

Triboelectric nanogenerators (TENGs) have shown promising potential for large-scale blue energy harvesting. However, the lack of reasonable designs has largely hindered TENG from harvesting energy from both rough and tranquil seas. Herein, a fully symmetrical triboelectric nanogenerator based on an elliptical cylindrical structure (EC-TENG) is proposed for all-weather blue energy harvesting. The novel elliptical cylindrical shell provides a unique self-stability, high sensitivity to wave triggering, and most importantly, an anti-overturning capability for the EC-TENG. Moreover, benefiting from its internal symmetrical design, the EC-TENG can produce energy normally, even if it was overturned under a rude oscillation in the rough seas, which distinguishes this work from previous reported TENGs. The working mechanism and output performance are systematically studied. The as-fabricated EC-TENG is capable of lighting 400 light-emitting diodes and driving small electronics. More than that, an automatic monitoring system powered by the EC-TENG can also monitor the water level in real-time and provide an alarm if necessary. This work presents an innovative and reliable approach toward all-weather wave energy harvesting in actual marine environments.

15.
ACS Appl Mater Interfaces ; 14(43): 48636-48646, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36273325

RESUMO

The triboelectric nanogenerator (TENG) as an ideal low-frequency mechanical energy harvester has received extensive attention, while low output charge density limits its application. A charge excitation strategy is one of the techniques to effectively improve the surface charge density of the TENG. However, there is little in-depth research on the matching factors between the TENG and excitation circuit. Herein, a soft-contact charge excitation rotary TENG (SCER-TENG) is developed to explore the matching mechanism of different charge excitation strategies. The total output power transferred by the voltage-multiplying circuit (VMC) is 2.13 times that of the full-wave bridge rectifier, which effectively improves the output performance of the SCER-TENG. Moreover, through the established capacitor model and the theoretically calculated maximum output charge of the SCER-TENG with VMC and Zener diodes (VMC-Z), it is found that the output of the Main TENG is mainly affected by capacitors and Zener diodes. The theories have been verified by experiments. After optimization, the output charge of the Main TENG with VMC-Z (1.54 µC) is 3850% higher than that without excitation (0.04 µC). The SCER-TENG successfully harvests low-speed (2.5 m s-1) wind energy to form a self-powered system. This work has crucial instructive implications for using charge excitation strategies to improve the performance of the rotary TENG.

16.
Adv Mater ; 34(2): e2105882, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34617342

RESUMO

The triboelectric nanogenerator (TENG) is an emerging technology for ambient mechanical energy harvesting, which provides a possibility to realize wild environment monitoring by self-powered sensing systems. However, TENGs are limited in some practical applications as a result of their low output performance (low charge density) and mechanical durability (material abrasion). Herein, an ultrarobust and high-performance rotational TENG enabled by automatic mode switching (contact mode at low speed and noncontact at high speed) and charge excitation is proposed. It displays excellent stability, maintaining 94% electrical output after 72 000 cycles, much higher than that of the normal contact-mode TENG (30%). Due to its high electrical stability and large electrical output, this TENG powers 944 green light-emitting diodes to brightness in series. Furthermore, by harvesting water-flow energy, various commercial capacitors can be charged quickly, and a self-powered fire alarm and self-powered temperature and humidity detection are realized. This work provides an ideal scheme for enhancing the mechanical durability, broadening the range of working frequency, and improving the electrical output of TENGs. In addition, the high-performance hydrodynamic TENG demonstrated in this work will have great applications for Internet of Things in remote areas.

17.
Research (Wash D C) ; 2022: 9812865, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909938

RESUMO

Triboelectric nanogenerator (TENG) is a promising strategy for harvesting low frequency mechanical energy. However, the bottlenecks of limited electric output by air/dielectric breakdown and poor durability by material abrasion seriously restrict its further improvement. Herein, we propose a liquid lubrication promoted sliding mode TENG to address both issues. Liquid lubrication greatly reduces interface material abrasion, and its high breakdown strength and charge transmission effect further enhance device charge density. Besides, the potential decentralization design by the voltage balance bar effectively suppresses the dielectric breakdown. In this way, the average power density up to 87.26 W·m-2·Hz-1, energy conversion efficiency of 48%, and retention output of 90% after 500,000 operation cycles are achieved, which is the highest average power density and durability currently. Finally, a cell phone is charged to turn on by a palm-sized TENG device at 2 Hz within 25 s. This work has a significance for the commercialization of TENG-based self-powered systems.

18.
Nanomicro Lett ; 14(1): 155, 2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35916998

RESUMO

Triboelectric nanogenerator (TENG) is regarded as an effective strategy to convert environment mechanical energy into electricity to meet the distributed energy demand of large number of sensors in the Internet of Things (IoTs). Although TENG based on the coupling of triboelectrification and air-breakdown achieves a large direct current (DC) output, material abrasion is a bottleneck for its applications. Here, inspired by primary cell and its DC signal output characteristics, we propose a novel primary cell structure TENG (PC-TENG) based on contact electrification and electrostatic induction, which has multiple working modes, including contact separation mode, freestanding mode and rotation mode. The PC-TENG produces DC output and operates at low surface contact force. It has an ideal effective charge density (1.02 mC m-2). Meanwhile, the PC-TENG shows a superior durability with 99% initial output after 100,000 operating cycles. Due to its excellent output performance and durability, a variety of commercial electronic devices are powered by PC-TENG via harvesting wind energy. This work offers a facile and ideal scheme for enhancing the electrical output performance of DC-TENG at low surface contact force and shows a great potential for the energy harvesting applications in IoTs.

19.
Adv Mater ; 34(13): e2109918, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35081267

RESUMO

Boosting output charge density is top priority for achieving high-performance triboelectric nanogenerators (TENGs). The charge-excitation strategy is demonstrated to be a superior approach to acquire high output charge density. Meanwhile, the molecular charge behaviors in the dielectric under a strong electric field from high charge density bring new physics that are worth exploring. Here, a rapid self-polarization effect of a polar dielectric material by the superhigh electric field in a charge-excitation TENG is reported, by which the permittivity of the polar dielectric material realizes self-increase to a saturation, and thus enhances the output charge density. Consequently, an ultrahigh charge density of 3.53 mC m-2 is obtained with 7 µm homemade lead zirconate titanate-poly(vinylidene fluoride) composite film in the atmosphere with 5% relative humidity, which is the highest charge density for TENGs with high durability currently. This work provides new guidance for dielectric material optimization under charge excitation to boost the output performance of TENGs toward practical applications.

20.
J Nanosci Nanotechnol ; 11(12): 10706-9, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22408978

RESUMO

Barium carbonate (BaCO3) nanowires have been synthesized for the first time by using the composite hydroxide mediated (CHM) method. The products are characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). Humidity sensors based on BaCO3 nanowires have been fabricated. The response to humidity in static and dynamic measurement proves the ultrasensitive property of the sensors. The resistance changes from 386 M(omega) to 7.1 M(omega) as the relative humidity (RH) increases from 20% to 95%. The response and recovery time of the resistance is 16 s and 56 s versus the changes of relative humidity from 25% to 85%. These results indicate promising applications of BaCO3 nanowires in a highly sensitive environmental monitoring and humidity control electronic device.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa