Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Infect Dis ; 218(suppl_5): S612-S626, 2018 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29860496

RESUMO

Background: For most classes of drugs, rapid development of therapeutics to treat emerging infections is challenged by the timelines needed to identify compounds with the desired efficacy, safety, and pharmacokinetic profiles. Fully human monoclonal antibodies (mAbs) provide an attractive method to overcome many of these hurdles to rapidly produce therapeutics for emerging diseases. Methods: In this study, we deployed a platform to generate, test, and develop fully human antibodies to Zaire ebolavirus. We obtained specific anti-Ebola virus (EBOV) antibodies by immunizing VelocImmune mice that use human immunoglobulin variable regions in their humoral responses. Results: Of the antibody clones isolated, 3 were selected as best at neutralizing EBOV and triggering FcγRIIIa. Binding studies and negative-stain electron microscopy revealed that the 3 selected antibodies bind to non-overlapping epitopes, including a potentially new protective epitope not targeted by other antibody-based treatments. When combined, a single dose of a cocktail of the 3 antibodies protected nonhuman primates (NHPs) from EBOV disease even after disease symptoms were apparent. Conclusions: This antibody cocktail provides complementary mechanisms of actions, incorporates novel specificities, and demonstrates high-level postexposure protection from lethal EBOV disease in NHPs. It is now undergoing testing in normal healthy volunteers in preparation for potential use in future Ebola epidemics.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/uso terapêutico , Doença pelo Vírus Ebola/tratamento farmacológico , Animais , Anticorpos Monoclonais/isolamento & purificação , Glicoproteínas/imunologia , Cobaias , Células HEK293 , Humanos , Macaca mulatta , Masculino , Camundongos
2.
Proc Natl Acad Sci U S A ; 112(28): 8738-43, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26124093

RESUMO

Traditional approaches to antimicrobial drug development are poorly suited to combatting the emergence of novel pathogens. Additionally, the lack of small animal models for these infections hinders the in vivo testing of potential therapeutics. Here we demonstrate the use of the VelocImmune technology (a mouse that expresses human antibody-variable heavy chains and κ light chains) alongside the VelociGene technology (which allows for rapid engineering of the mouse genome) to quickly develop and evaluate antibodies against an emerging viral disease. Specifically, we show the rapid generation of fully human neutralizing antibodies against the recently emerged Middle East Respiratory Syndrome coronavirus (MERS-CoV) and development of a humanized mouse model for MERS-CoV infection, which was used to demonstrate the therapeutic efficacy of the isolated antibodies. The VelocImmune and VelociGene technologies are powerful platforms that can be used to rapidly respond to emerging epidemics.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/uso terapêutico , Infecções por Coronavirus/terapia , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Infecções por Coronavirus/virologia , Modelos Animais de Doenças , Células HEK293 , Humanos , Camundongos , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia
3.
Proc Natl Acad Sci U S A ; 111(14): 5153-8, 2014 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-24706856

RESUMO

Mice genetically engineered to be humanized for their Ig genes allow for human antibody responses within a mouse background (HumAb mice), providing a valuable platform for the generation of fully human therapeutic antibodies. Unfortunately, existing HumAb mice do not have fully functional immune systems, perhaps because of the manner in which their genetic humanization was carried out. Heretofore, HumAb mice have been generated by disrupting the endogenous mouse Ig genes and simultaneously introducing human Ig transgenes at a different and random location; KO-plus-transgenic humanization. As we describe in the companion paper, we attempted to make mice that more efficiently use human variable region segments in their humoral responses by precisely replacing 6 Mb of mouse Ig heavy and kappa light variable region germ-line gene segments with their human counterparts while leaving the mouse constant regions intact, using a unique in situ humanization approach. We reasoned the introduced human variable region gene segments would function indistinguishably in their new genetic location, whereas the retained mouse constant regions would allow for optimal interactions and selection of the resulting antibodies within the mouse environment. We show that these mice, termed VelocImmune mice because they were generated using VelociGene technology, efficiently produce human:mouse hybrid antibodies (that are rapidly convertible to fully human antibodies) and have fully functional humoral immune systems indistinguishable from those of WT mice. The efficiency of the VelocImmune approach is confirmed by the rapid progression of 10 different fully human antibodies into human clinical trials.


Assuntos
Formação de Anticorpos , Genes de Imunoglobulinas , Alelos , Animais , Linfócitos B/imunologia , Citometria de Fluxo , Humanos , Camundongos , Mutação
4.
Nat Med ; 9(1): 47-52, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12483208

RESUMO

Cytokines can initiate and perpetuate human diseases, and are among the best-validated of therapeutic targets. Cytokines can be blocked by the use of soluble receptors; however, the use of this approach for cytokines such as interleukin (IL)-1, IL-4, IL-6 and IL-13 that use multi-component receptor systems is limited because monomeric soluble receptors generally exhibit low affinity or function as agonists. We describe here a generally applicable method to create very high-affinity blockers called 'cytokine traps' consisting of fusions between the constant region of IgG and the extracellular domains of two distinct cytokine receptor components involved in binding the cytokine. Traps potently block cytokines in vitro and in vivo and represent a substantial advance in creating novel therapeutic candidates for cytokine-driven diseases.


Assuntos
Antígenos CD/metabolismo , Citocinas/antagonistas & inibidores , Citocinas/metabolismo , Fragmentos Fc das Imunoglobulinas/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores de Interleucina-6/metabolismo , Animais , Antígenos CD/genética , Antígenos CD/imunologia , Divisão Celular/fisiologia , Linhagem Celular , Receptor gp130 de Citocina , Citocinas/imunologia , Dimerização , Humanos , Fragmentos Fc das Imunoglobulinas/genética , Fragmentos Fc das Imunoglobulinas/imunologia , Imunoglobulina G/genética , Imunoglobulina G/imunologia , Macaca fascicularis , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos , Ligação Proteica , Distribuição Aleatória , Receptores de Interleucina-6/genética , Receptores de Interleucina-6/imunologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa