Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem A ; 123(20): 4333-4341, 2019 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-31034231

RESUMO

We investigate energy transfer and electron transfer in a dimethylsilylene-spaced aminostyrene-stilbene donor-acceptor dimer using time-dependent density functional theory calculations. Our results confirm that the vertical S3, S2, and S1 excited states are, respectively, a local excitation on the aminostyrene, local excitation on the stilbene, and the charge-transferred (CT) excited state with electron transfer from aminostyrene to stilbene. In addition, an energy minimum with the C-N bond of the amino group twisted at about 90° is also identified on the S1 potential energy surface. This S1 state exhibits a twisted intramolecular charge transfer (TICT) character. A potential energy scan along the C-N bond torsional angle reveals a conical intersection between the S2 stilbene local excitation and the S1 CT/TICT state at a torsional angle of ∼60°. We thus propose that the conical intersection dominates the electron transfer dynamics in the donor-acceptor dimer and copolymers alike, and the energy barrier along the C-N bond rotation controls the efficiency of such a process. Moreover, we show that despite the zero oscillator strength of the S1 excited states in the CT and TICT minima, an emissive S1 state with a V-shaped conformational structure can be located. The energy of this V-shape CT structure is thermally accessible; therefore, it is expected to be responsible for the CT emission band of the dimer observed in polar solvents. Our data provide a clear explanation of the complex solvent-dependent dual emission and photoinduced electron transfer properties observed experimentally in the dimer and copolymer systems. More importantly, the identifications of the conical intersection and energy barrier along the C-N bond rotation provide a novel synthetic route for controlling emissive properties and electron transfer dynamics in similar systems, which might be useful in the design of novel organic optoelectronic materials.

2.
J Org Chem ; 82(15): 8031-8039, 2017 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-28726405

RESUMO

Unlike the high fluorescence quantum yield of the naturally occurring green fluorescence protein (GFP, Φf ∼ 0.8), the GFP chromophore, a benzylidenedimethylimidazolinone (BDI) dye, is nearly nonfluorescent (Φf < 0.001) in common solutions at room temperature. While many efforts have been devoted into the BDI chromophore engineering for fluorescence recovery, limited success has been achieved for structurally unconstrained GFP chromophore analogues (uGFPc). Herein we report a rational design of uGFPc toward an unprecedentedly high fluorescence quantum efficiency of 0.60 in hexane. This is achieved by a combined ortho-CN and meta-dimethylamino substituent electronic effect that largely suppresses the Z → E photoisomerization (the τ torsion) reaction, which is the major nonradiative decay channel of uGFPc. The structural design relied on the assumptions that the τ torsion of the meta-amino-substituted BDI systems leads to a zwitterionic twisted intermediate state (1p*) and that destabilizing the 1p* state by an electron-withdrawing CN substituent at the ortho or para position could slow down the τ torsion. The observed CN position effect conforms to the design concept. The push-pull substitution of BDI also leads to sensitive fluorescence-quenching responses to electron donors such as trimethylamine and to H-bond donors such as methanol.

3.
Chemistry ; 18(1): 334-46, 2012 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-22162018

RESUMO

A series of dialkylsilylene-spaced copolymers 6 and 7, which contain Me(2)Si and iPr(2)Si spacer groups, respectively, and have alternating donor and acceptor chromophores, have been designed and regioselectively synthesized by hydrosilylation. The ratio of the donor and acceptor chromophores for each repeat unit is 2:1, and the two donor chromophores are linked by a trimethylene bridge. A 4-aminostyrene moiety is used as the donor and a series of acceptor chromophores with different reduction potentials are employed. Both steady-state and kinetic measurements reveal that the photoinduced electron transfer (PET) in 6 obeyed the Marcus theory in which normal and inverted regions are observed. On the other hand, the iPr(2)Si-spaced copolymers 7 exhibit absorption and emission from the charge-transfer complexes exclusively due to ground-state interactions between the donor and acceptor chromophores. The discrepancy in photophysical behavior may have arisen from the difference in distance between the adjacent donor and acceptor chromophores. The bulkiness of the substituents on the silicon atom (i.e., Me versus iPr) may exert the Thorpe-Ingold effect on the local conformation around the silicon atom. The differences in the small energetic barriers for each of the conformational states may be amplified by extending the distance of the folding structure, which results in perturbing the conformation of the polymers. These results suggest that the electronic interactions between adjacent donor-acceptor pairs in these copolymers are controlled by the synchronization of the substitution effect and corresponding polymeric structures.

4.
Nanotechnology ; 22(25): 254030, 2011 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-21572209

RESUMO

We have presented a systematical study of the domain nucleation and growth behaviors in multiferroic BiFeO(3) (BFO) films. Both the ferroelectric and the ferroelastic switching dynamics were investigated. Several environmental parameters, including the polarization orientations, the monodomain-like matrix, and the ordered domain walls as local boundaries, were well controlled by thin-film strain engineering through changing the vicinal angles of the substrates. The tip-based domain dynamics was studied by subsequent piezoresponse force microscope (PFM) imaging of the domain evolution under external voltage pulses. For the nanodomains written in the monodomain-like environment, the domain wall performed the thermal activated motion. The as-grown 71° domain walls can act as pinning centers for the ferroelectric domain growth driven by low fields; moreover, ferroelastic nucleation near a 71° domain wall will cause the deformation of the domain wall. The ferroelastic domain growth possessed relatively small activation fields, and therefore usually performed non-activated motion. This study revealed the effects of local environments on the dynamics forming nanoscale domains, and opened a pathway for applications in novel non-volatile functional devices.

5.
Nanoscale ; 8(3): 1322-6, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26689266

RESUMO

The successful integration of the strain-driven nanoscale phase boundary of BiFeO3 onto a silicon substrate is demonstrated with extraordinary ferroelectricity and ferromagnetism. The detailed strain history is delineated through a reciprocal space mapping technique. We have found that a distorted monoclinic phase forms prior to a tetragonal-like phase, a phenomenon which may correlates with the thermal strain induced during the growth process.

6.
Adv Mater ; 26(36): 6335-40, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25113412

RESUMO

A large enhancement of nanodomain retention is shown in the mixed-phase region of a strained BiFeO3 epitaxial film. The superior ferroelectric retention is attributed to a lower elastic-energy density at the phase boundaries, which act as periodic pinning centers for the domain wall motion. This study delivers a new pathway of incorporating an elastic-energy term to assist ferroelectric retention.

7.
Chem Asian J ; 5(6): 1425-38, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20397254

RESUMO

Polynorbornenes appended with porphyrins containing a range of different linkers are synthesized. The use of bisamidic chiral alanine linkers between the pending porphyrins and the polymeric backbone has been shown to bring the adjacent porphyrin chromophores to more suitable orientation for exciton coupling owing to hydrogen bonding between the adjacent linkers. The hydrogen bonding between the adjacent pendants in these polymers may induce a cooperative effect and therefore render single-handed helical structures for these polymers. Such a cooperative effect is reflected in the enhancement of FRET efficiencies between zinc-porphyrin and free base porphyrin in random copolymers.


Assuntos
Plásticos/química , Plásticos/síntese química , Porfirinas/química , Porfirinas/síntese química , Alanina , Dicroísmo Circular , Transferência de Energia , Transferência Ressonante de Energia de Fluorescência , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Metaloporfirinas/química , Modelos Moleculares , Polímeros/síntese química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa