Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Curr Microbiol ; 80(5): 188, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37074450

RESUMO

Our previous studies found that the H1-50 monoclonal antibody (mAb) of influenza A virus hemagglutinin (HA) cross-reacted with pancreatic tissue and islet ß-cells, and further studies showed that H1-50 mAb binds to prohibitin (PHB) protein of islet ß-cells. These suggest that there are heterophilic epitopes between influenza virus HA and pancreatic tissue, which may be involved in the pathogenesis of type 1 diabetes. To further investigate these heterophilic epitopes, we screened binding epitopes of H1-50 mAb using a phage 12-peptide library. DNA sequencing and comparative analysis were performed on specific positive phage clones, and the sequence of 12-peptide binding to H1-50 mAb was obtained. The binding epitopes of H1-50 mAb in influenza virus HA were determined by sequence analysis and experimental verification, and their distribution within the three-dimensional structure was assessed by PyMOL. The results showed that H1-50 mAb specifically binds to polypeptides (306-SLPFQNIHPITIGK-319) of influenza A virus HA, located in the stem of the HA protein. However, there is no specific binding sequence between H1-50 mAb and the PHB protein of islet ß-cells in the primary structure, and we speculate that the binding of H1-50 mAb to islet ß-cells may depend on the spatial conformation. The identification of the heterophilic epitopes of H1N1 influenza virus hemagglutinin provides a new perspective on type 1 diabetes that may be caused by influenza virus infection, which may contribute to the prevention and control of influenza.


Assuntos
Diabetes Mellitus Tipo 1 , Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Humanos , Epitopos/química , Epitopos/genética , Hemaglutininas , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Anticorpos Antivirais , Anticorpos Monoclonais
2.
J Nat Prod ; 85(6): 1474-1485, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35696541

RESUMO

Transcriptome analysis is shown to be an effective strategy to understand the potential function of natural products. Here, it is reported that 11 previously undescribed hydroanthraquinones [nigroquinones A-K (1-11)], along with eight known congeners, were isolated from Nigrospora sphaerica. Their structures were elucidated by interpreting spectroscopic and spectrometric data including high-resolution mass spectra and nuclear magnetic resonance. The absolute configurations of 1-11 were confirmed by electronic circular dichroism calculations. Transcriptome analysis revealed that 3 (isolated in the largest amount) might be anti-inflammatory. Assays based on LPS-induced RAW264.7 macrophages and zebrafish embryos confirmed that some of the isolated hydroanthraquinones attenuated the secretion of pro-inflammatory mediators in vitro and in vivo. Further Western blotting and immunofluorescence experiments indicated that 4 (which showed the most obvious nitric oxide inhibition) could suppress the expression of nuclear factor-kappa-B (NF-κB), phosphorylation of the inhibitor of NF-κB kinase and inhibit the transportation of NF-κB to the nucleus. Hence, the suppression of the NF-κB signaling pathway may be responsible for the anti-inflammatory effect. These results show that bioactivity evaluation on the basis of transcriptome analysis may be effective in the functional exploration of natural products.


Assuntos
Produtos Biológicos , NF-kappa B , Animais , Anti-Inflamatórios/farmacologia , Ascomicetos , Perfilação da Expressão Gênica , Lipopolissacarídeos/farmacologia , Camundongos , Óxido Nítrico , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7 , Peixe-Zebra
3.
Neural Plast ; 2018: 7513748, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29780409

RESUMO

Spinal cord injury (SCI) causes a high rate of morbidity and disability. The clinical features of SCI are divided into acute, subacute, and chronic phases according to its pathophysiological events. The mammalian target of rapamycin (mTOR) signaling pathway plays an important role in cell death and inflammation in the acute phase and neuroregeneration in the subacute/chronic phases at different times. Resveratrol has the potential of regulating cell growth, proliferation, metabolism, and angiogenesis through the mTOR signaling pathway. Herein, we explicate the role of resveratrol in the repair of SCI through the inhibition of the mTOR signaling pathway. The inhibition of the mTOR pathway by resveratrol has the potential of serving as a neuronal restorative mechanism following SCI.


Assuntos
Resveratrol/farmacologia , Transdução de Sinais/efeitos dos fármacos , Traumatismos da Medula Espinal/metabolismo , Medula Espinal/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Medula Espinal/metabolismo
4.
Neurosignals ; 25(1): 1-14, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28359049

RESUMO

BACKGROUND/AIMS: Every year, around the world, between 250000 and 500000 people suffer from spinal cord injury (SCI). This study investigated the potential for poly (lactic-co-glycolic acid) (PLGA) complex inoculated with olfactory ensheathing cells (OECs) to treat spinal cord injury in a rat model. METHODS: OECs were identified by immunofluorescence based on the nerve growth factor receptor (NGFR) p75. The Basso, Beattie, and Bresnahan (BBB) score, together with an inclined plane (IP) test were used to detect functional recovery. Nissl staining along with the luxol fast blue (LFB) staining were independently employed to illustrate morphological alterations. More so, immunofluorescence labeling of the glial fibrillary acidic protein (GFAP) and the microtubule-associated protein-2 (MAP-2), representing astrocytes and neurons respectively, were investigated at time points of weeks 2 and 8 post-operation. RESULTS: The findings showed enhanced locomotor recovery, axon myelination and better protected neurons post SCI when compared with either PLGA or untreated groups (P < 0.05). CONCLUSION: PLGA complexes inoculated with OECs improve locomotor functional recovery in transected spinal cord injured rat models, which is most likely due to the fact it is conducive to a relatively benevolent microenvironment, has nerve protective effects, as well as the ability to enhance remyelination, via a promotion of cell differentiation and inhibition of astrocyte formation.


Assuntos
Astrócitos/citologia , Regeneração Nervosa/fisiologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/uso terapêutico , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/terapia , Animais , Astrócitos/metabolismo , Modelos Animais de Doenças , Proteína Glial Fibrilar Ácida/metabolismo , Masculino , Atividade Motora/fisiologia , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/fisiopatologia , Alicerces Teciduais
5.
Cell Biol Int ; 41(9): 1039-1047, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28685977

RESUMO

Mild traumatic brain injury (mTBI), common in juveniles, has been reported to be caused by sports-related concussion. Many young children may suffer from post-concussion syndrome. mTBI, in early stages of life, could play a part in neuron apoptosis and degeneration, cognitive and motor coordination impairment, as well as dementia. Our study was aimed at further investigating the post-therapeutic efficacy of rapamycin in the recuperation of mTBI while at the same time investigating the metamorphosis in both autophagy and mitophagy in mTBI. We created a weight-drop rat mTBI model with the administration of rapamycin at 4 h after every mTBI. Behavioral tests of beam walking and open field task indicated the expected improvement of cognitive and motor coordination functions. Both Western blot and immunofluorescence examinations revealed increased Beclin-1 and PINK1 in the treated rats as well as reduction of caspase-3 and cytochrome C (Cyt C). More so, the TUNEL staining evidenced curtailment of apoptotic cells following treatment with rapamycin. The upregulation of Beclin-1 and PINK1 and the downregulation of caspase-3 and Cyt C extrapolate that rapamycin plays neuroprotective as well as anti-apoptotic role via interposition of both autophagy and mitophagy.


Assuntos
Concussão Encefálica/tratamento farmacológico , Sirolimo/farmacologia , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Concussão Encefálica/patologia , Modelos Animais de Doenças , Masculino , Mitofagia/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Ratos , Ratos Sprague-Dawley , Regulação para Cima
6.
Zhongguo Zhong Xi Yi Jie He Za Zhi ; 36(3): 339-44, 2016 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-27236893

RESUMO

OBJECTIVE: To study the inhibitory effect of paeoniflorin (PAE) on TNF-α-induced TNF receptor type I (TNFR1)-mediated signaling pathway in mouse renal arterial endothelial cells (AECs) and to explore its underlying molecular mechanisms. METHODS: Mouse AECs were cultured in vitro and then they were treated by different concentrations PAE or TNF-α for various time periods. Expression levels of intercellular cell adhesion molecule-1 (ICAM-1) were detected in the normal group (cultured by serum-free culture media), the TNF-α group (cultured by 2-h serum-free culture media plus 6-h TNF-α 30 ng/mL), the low dose PAE group (cultured by 2-h PAE 0.8 µmo/L plus 6-h TNF-α 30 ng/mL), the middle dose PAE group (cultured by 2-h PAE 8 µmol/L plus 6-h TNF-α 30 ng/mL), the high dose PAE group (cultured by 2-h PAE 80 µmol/L plus 6-h TNF-α 30 ng/mL) with Western blot analysis. Nuclear translocation of transcription factor NF-κB (NE-κB) was detected in the normal group (cultured by serum-free culture media), the TNF-α group (cultured by 2-h serum-free culture media plus 45-mm TNF-α 30 ng/mL), and the high dose PAE group (cultured by 2-h PAE 80 µmol/L plus 45-min TNF-α 30 ng/mL) by immunofluorescent staining. Expression levels of the phosphorylation of extracellular signal-regulated (protein) kinase (ph-ERK) and p38 (ph- p38) were detected in the normal group (cultured by serum-free culture media) and the high dose PAE group (2-h PAE 80 µmol/L culture) by Western blot. NF-κB inhibitor-α (IκBα) protein expressions were detected in the normal group (cultured by serum-free culture media), the TNF-α group (cultured by 2-h serum-free culture media plus 30-min TNF-α 30 ng/mL), the high dose PAE group (cultured by 2-h PAE 80 µmol/L plus 30-min TNF-α 30 ng/mL), the p38 inhibitor group (SB group, pretreatment with SB238025 25 µmol/L for 30 min, then treated by PAE 80 µmol/L for 2 h, and finally treated by TNF-α 30 ng/mL for 30 min), the ERK inhibitor group (PD group, treated by PD98059 50 µmol/L for 30 min, then treated by PAE 80 µmol/L for 2 h, and finally treated by TNF-α 30 ng/mL for 30 min) by Western blot. RESULTS: Compared with the normal group, ICAM-1 protein expression levels obviously increased (P < 0.01). Compared with the TNFα group, ICAM-1 protein expression levels were obviously inhibited in the high dose PAE group (P < 0.05). Protein expression levels of ph-p38 and ph-ERK were obviously higher in the hIgh dose PAE group (P < 0.05). Compared with the normal group, IκBα protein expression levels obviously decreased in the TNF-α group (P < 0.01). Compared with the TNFα group, TNF-α-induced IκBα degradation could be significantly inhibited in the high dose PAE group (P < 0.01); the inhibition of PAE on IκBα degradation could be significantly inhibited in the SB group (P < 0.05). NF-κB/p65 signal was mainly located in cytoplasm in the normal group. NF-κB/p65 was translocated from cytoplasm to nucleus after stimulated by 45 min TNF-α in the TNF-α group, while it could be significantly inhibited in the high dose PAE group. CONCLUSIONS: PAE inhibited TNF-α-induced expression of lCAM-1. Its action might be associated with inhibiting TNFR1/NF-κB signaling pathway. p38 participated and mediated these actions.


Assuntos
Células Endoteliais/efeitos dos fármacos , Glucosídeos/farmacologia , Monoterpenos/farmacologia , NF-kappa B/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Células Cultivadas , Células Endoteliais/citologia , Molécula 1 de Adesão Intercelular/metabolismo , Camundongos , Fator de Necrose Tumoral alfa/farmacologia
7.
Front Pharmacol ; 13: 903378, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35668946

RESUMO

Purpose: To assess the quality of clinical practice guidelines (CPGs) related to drug therapy for prevention and control of ventilator-associated pneumonia (VAP) and compare the differences and similarities between recommendations. Methods: Electronic databases (including PubMed, Cochrane library, Embase, Web of Science), guideline development organizations, and professional societies were searched to identify CPGs for VAP from 20 January 2012 to 20 January 2022. The Appraisal of Guidelines Research & Evaluation (AGREE) II instrument was used to evaluate the quality of the guidelines. The recommendations on drug therapy for prevention and treatment for each guideline were extracted, and then a descriptive synthesis was performed to analyze the scope/topic, and consistency of the recommendations. Results: Thirteen CPGs were included. The median score and interquartile range (IQR) in each domain are shown below: scope and purpose 72.22% (63.89%,83.33%); stakeholder involvement 44.44% (38.89%,52.78%); rigor of development 43.75% (31.25%,57.29%); clarity and presentation 94.44% (77.78%,94.44%); applicability 20.83 (8.34%,33.34%) and editorial independence 50% (33.33%,66.67%). We extracted 21 recommendations on drug therapy for prevention of VAP and 51 recommendations on drugs used for treatment. Some controversies remained among the included guidelines. Conclusion: There is considerable variability in the development processes and reporting of VAP guidelines. Despite many similarities, the recommendations still had some inconsistencies in the details. For the prevention and treatment of VAP, local microbial epidemiology and antibiotic sensitivity must be considered, and recommendations should be regularly revised as new evidence emerges.

8.
Int J Clin Pharm ; 44(6): 1351-1360, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36178607

RESUMO

BACKGROUND: Previous reports on daptomycin's adverse drug reactions (ADRs) have been insufficient, often because of limited data. Pharmacovigilance risk signal detection is innovative and has been applied to the safety monitoring and reevaluation of drugs post-marketing. AIM: The study aimed to promote safe daptomycin prescribing by mining and evaluating the daptomycin ADR signals from the US Food and Drug Administration Adverse Event Reporting System (FAERS). METHOD: A disproportionality analysis (reporting odds ratio ROR and proportional reporting ratio PRR) was utilized for FAERS data mining from the first quarter of 2004 to the second quarter of 2021 (the most recent quarterly data at the time of the study). Preferred Terms of ADR reports were categorized by System Organ Class (SOC) based on the Medical Dictionary for Regulatory Activities. RESULTS: This study retrieved 12,221 cases within the reporting period. A total of 140 repetitive signals were obtained by ROR and PRR, of which 53 new ADR signals were not recorded in the drug labels/datasheets. The top three ADR reports were "blood creatine phosphokinase elevation" (ROR, 56.66, 95% confidence interval (CI) 51.07-62.87, PRR 51.94), "eosinophilic pneumonia" (ROR 696.71, 95%CI 603.21-804.70, PRR 657.57), and "rhabdomyolysis" (ROR 22.85, 95%CI 19.94-26.18, PRR 21.83). The highest ROR of "antimicrobial susceptibility test resistant" was found at 9808.14. Reports of rare adverse events, such as "necrotizing fasciitis and compartment syndrome," have emerged. The significant SOCs were "Infections and Infestations" and "Investigations." CONCLUSION: New daptomycin ADR signals were detected. Clinicians should monitor these potential ADRs in patients receiving daptomycin.


Assuntos
Daptomicina , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Estados Unidos/epidemiologia , Humanos , Sistemas de Notificação de Reações Adversas a Medicamentos , United States Food and Drug Administration , Daptomicina/efeitos adversos , Bases de Dados Factuais , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/diagnóstico , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/epidemiologia , Farmacovigilância , Mineração de Dados
9.
Oxid Med Cell Longev ; 2022: 8002566, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35707278

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a refractory chronic respiratory disease with progressively exacerbating symptoms and a high mortality rate. There are currently only two effective drugs for IPF; thus, there is an urgent need to develop new therapeutics. Previous experiments have shown that ginkgolic acid (GA), as a SUMO-1 inhibitor, exerted an inhibitory effect on cardiac fibrosis induced by myocardial infarction. Regarding the pathogenesis of PF, previous studies have concluded that small ubiquitin-like modifier (SUMO) polypeptides bind multiple target proteins and participate in fibrosis of multiple organs, including PF. In this study, we found altered expression of SUMO family members in lung tissues from IPF patients. GA mediated the reduced expression of SUMO1/2/3 and the overexpression of SENP1 in a PF mouse model, which improved PF phenotypes. At the same time, the protective effect of GA on PF was also confirmed in the SENP1-KO transgenic mice model. Subsequent experiments showed that SUMOylation of SMAD4 was involved in PF. It was inhibited by TGF-ß1, but GA could reverse the effects of TGF-ß1. SENP1 also inhibited the SUMOylation of SMAD4 and then participated in epithelial-mesenchymal transition (EMT) downstream of TGF-ß1. We also found that SENP1 regulation of SMAD4 SUMOylation affected reactive oxygen species (ROS) production during TGF-ß1-induced EMT and that GA prevented this oxidative stress through SENP1. Therefore, GA may inhibit the SUMOylation of SMAD4 through SENP1 and participate in TGF-ß1-mediated pulmonary EMT, all of which reduce the degree of PF. This study provided potential novel targets and a new alternative for the future clinical testing in PF.


Assuntos
Bleomicina , Fibrose Pulmonar Idiopática , Animais , Bleomicina/toxicidade , Transição Epitelial-Mesenquimal , Humanos , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/tratamento farmacológico , Camundongos , Salicilatos , Proteína Smad4/genética , Proteína Smad4/metabolismo , Proteína Smad4/farmacologia , Sumoilação , Fator de Crescimento Transformador beta1/metabolismo
10.
Front Microbiol ; 13: 999996, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36081795

RESUMO

Excessive inflammation causes chronic diseases and tissue damage. Although there has been drug treatment, its side effects are relatively large. Searching for effective anti-inflammatory drugs from natural products has become the focus of attention. First isolated from Trichoderma longibraciatum, trichodimerol is a natural product with TNF inhibition. In this study, lipopolysaccharide (LPS)-induced RAW264.7 macrophages were used as a model to investigate the anti-inflammatory activity of trichodimerol. The results of nitric oxide (NO) detection, enzyme-linked immunosorbent assay (ELISA), and reactive oxygen species (ROS) showed that trichodimerol could reduce the production of NO, ROS, and the proinflammatory cytokines interleukin (IL)-6 and tumor necrosis factor (TNF)-α. Western blotting results showed that trichodimerol could inhibit the production of inflammatory mediators such as cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS) and the protein expression of nuclear transcription factor-kappaB (NF-κB), p-IKK, p-IκB, Toll-like receptor 4 (TLR4), NOD-like receptor thermal protein domain associated protein 3 (NLRP3), cysteinyl aspartate specific proteinase (Caspase)-1, and ASC, which indicated that trichodimerol may inhibit inflammation through the NF-κB and NLRP3 pathways. At the same time, molecular docking showed that trichodimerol can directly combine with the TLR4-MD2 complex. Hence, trichodimerol inhibits inflammation by obstructing the interaction between LPS and the TLR4-MD2 heterodimer and suppressing the downstream NF-κB and NLRP3 pathways.

11.
Front Oncol ; 12: 978533, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36119467

RESUMO

Gene therapy is one of the target therapies with promising clinical use for gastric cancer (GC). However, the delivery of the CRISPR/Cas9/sgRNA (RNP) gene editing tool severely limits the practical therapeutic effect of GC. Therefore, it is a great challenge to develop an RNP delivery system that is simple to prepare and can rapidly encapsulate RNP while achieving high delivery and gene editing efficiency. We developed, for the first time, the CRISPR/Cas9@PDA nano-delivery system that can achieve high-efficiency delivery (95%) of CRISPR/Cas9-3NLS/sgHMGA2 and high-efficient HMGA2 gene editing (82%) of GC cells. In particular, the experiment's weak alkaline environment can not only protect the activity of CRISPR/Cas9-3NLS/sgHMGA2 but also trigger the self-polymerization of polydopamine (PDA). Meanwhile, the presence of KE in the CRISPR/Cas9 amino acid sequence can achieve the directional growth of PDA, thus forming a core-shell structure that protects CRISPR/Cas9-3NLS/sgHMGA2. This efficient CRISPR/Cas9-3NLS/sgHMGA2 delivery and HMGA2 gene editing ability has also been verified in mice, which can significantly inhibit tumor growth in mice. The success of building the delivery system and its ideal treating effect give hope to the efficacious treatment for the GC patients with HMGA2 high expression.

12.
Mol Med Rep ; 23(6)2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33880580

RESUMO

Following the publication of the above paper, a concerned reader drew to the Editor's attention that several figures (Figs. 3, 4 and 6) contained apparent anomalies, including repeated patternings of data within the same figure panels. Furthermore, Fig. 6 contained data that bore striking similarities to data published in Fig. 8 in another paper published in Molecular Medicine Reports, which has now been retracted [Zhu Y­Y, Huang H­Y and Wu Y­L: Anticancer and apoptotic activities of oleanolic acid are mediated through cell cycle arrest and disruption of mitochondrial membrane potential in HepG2 human hepatocellular carcinoma cells. Mol Med Rep 12: 5012­5018, 2015]. After having conducted an independent investigation in the Editorial Office, the Editor of Molecular Medicine Reports has determined that the above paper should be retracted from the Journal on account of a lack of confidence concerning the originality and the authenticity of the data. The authors were asked for an explanation to account for these concerns, but the Editorial Office never received any reply. The Editor regrets any inconvenience that has been caused to the readership of the Journal. [the original articles was published in Molecular Medicine Reports 12: 4843­4850, 2015; DOI: 10.3892/mmr.2015.4074].

13.
Materials (Basel) ; 14(11)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34072852

RESUMO

Compared with straight steel-concrete composite beams, curved composite beams exhibit more complicated mechanical behaviors under combined bending and torsion coupling. There are much fewer experimental studies on curved composite beams than those of straight composite beams. This study aimed to investigate the combined bending and torsion behavior of curved composite beams. This paper presents static loading tests of the full elastoplastic process of three curved composite box beams with various central angles and shear connection degrees. The test results showed that the specimens exhibited notable bending and torsion coupling force characteristics under static loading. The curvature and interface shear connection degree significantly affected the force behavior of the curved composite box beams. The specimens with weak shear connection degrees showed obvious interfacial longitudinal slip and transverse slip. Constraint distortion and torsion behavior caused the strain of the inner side of the structure to be higher than the strain of the outer side. The strain of the steel beam webs was approximately linear. In addition, fine finite element models of three curved composite box beams were established. The correctness and applicability of the finite element models were verified by comparing the test results and numerical calculation results for the load-displacement curve, load-rotational angle curve, load-interface slip curve, and cross-sectional strain distribution. Finite element modeling can be used as a reliable numerical tool for the large-scale parameter analysis of the elastic-plastic mechanical behavior of curved composite box beams.

14.
Front Mol Biosci ; 8: 707295, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34513922

RESUMO

The inhibitor of CDK4/6 has been clinically used for treating certain types of cancer which are characterized by G0/G1 acceleration induced by the CDK4/6-RB1 pathway. On the contrary, the cell cycle-related molecules are abnormal in over 50% of the patients with gastric cancer (GC), but the efficiency of inhibiting CDK4/6 does not work well as it is expected. In our study, we found HMGA2 promotes GC through accelerating the S-G2/M phase transition, instead of G0/G1. We also found CDK13 is the direct target gene of HMGA2. Importantly, we analyzed 200 pairs of GC and the adjacent tissue and proved the positive relation between HMGA2 and CDK13; moreover, high expression of both genes predicts a poorer prognosis than the expression of single gene does. We explored the effect of the novel CDK12/13 inhibiting agent, SR-4835, on high HMGA2 expression GC and found inhibition of both genes jointly could reach a satisfied result. Therefore, we suggest that inhibition of CDK13 and HMGA2 simultaneously could be an effective strategy for high HMGA2 expression GC. To detect the expression of both genes simultaneously and individually could be of benefit to predict prognosis for GC.

15.
Anat Rec (Hoboken) ; 301(4): 686-696, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29150987

RESUMO

In addition to imperiling an individual's daily life, spinal cord injury (SCI), a catastrophic medical damage, can permanently impair an individual's body function. Methylprednisolone (MP), a medically accepted therapeutic drug for SCI, is highly controversial for the lack of consensus on its true therapeutic effect. In recent years, curcumin has served as a potential and novel therapeutic drug in SCI. Our study was intended to investigate the precise effect of MP and curcumin in SCI. We examined the function of MP and curcumin in a SCI model rat, both in vivo and in vitro, and found that there was a momentous improvement in Basso-Beattie-Bresnahan scores in the MP-treated group when compared with Cur-treated group within 14 days. Results obtained from the histological, immunohistochemistry and ultrastructural examinations evidenced the curative effect of MP was better than curcumin before Day 14. Nonetheless, there was a significant variation in the treatment effect between the MP-treated and Cur-treated groups after 14 days. The curcumin's effectiveness was more obvious than MP after 14 days following SCI. As such, we surmise that curcumin has a better therapeutic potential than MP with a prolong treatment time in the wake of SCI. Anat Rec, 301:686-696, 2018. © 2017 Wiley Periodicals, Inc.


Assuntos
Curcumina/uso terapêutico , Metilprednisolona/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Recuperação de Função Fisiológica/efeitos dos fármacos , Traumatismos da Medula Espinal/tratamento farmacológico , Animais , Curcumina/farmacologia , Masculino , Metilprednisolona/farmacologia , Atividade Motora/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Ratos , Ratos Sprague-Dawley , Medula Espinal/efeitos dos fármacos
16.
Biomed Res Int ; 2017: 1634801, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28691015

RESUMO

The purpose of this review is to discuss the possibility of the treatment of spinal cord injury (SCI) with curcumin via regulating the mTOR signaling pathway, which may provide another strong support for curcumin to be a promising medicine applied to the treatment of SCI. Curcumin is termed as a multifunctional targeting therapy drug that regulates the mTOR signaling pathway in the treatment of numerous diseases. Previous research has already revealed that mTOR signaling pathway plays a vital role in prognosis, which involves the axon regeneration and autophagy. This review discusses a potential mechanism that curcumin suppresses the activation of this pathway and ameliorates the microenvironment of axons regeneration which would provide a new way that induces autophagy appropriately.


Assuntos
Curcumina/uso terapêutico , Terapia de Alvo Molecular , Transdução de Sinais/efeitos dos fármacos , Traumatismos da Medula Espinal/tratamento farmacológico , Serina-Treonina Quinases TOR/metabolismo , Animais , Apoptose/efeitos dos fármacos , Curcumina/farmacologia , Humanos , Traumatismos da Medula Espinal/fisiopatologia
17.
Front Neurosci ; 11: 428, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28790887

RESUMO

In the clinic selective serotonin reuptake inhibitors (SSRIs), like Fluoxetine, remain the primary treatment for major depression. It has been suggested that miR-16 regulates serotonin transporters (SERT) via raphe nuclei and hippocampal responses to antidepressants. However, the underlying mechanism and regulatory pathways are still obtuse. Here, a chronic unpredicted mild stress (CUMS) depression model in rats was established, and then raphe nuclei miR-16 and intragastric Fluoxetine injections were administered for a duration of 3 weeks. An open field test and sucrose preference quantification displayed a significant decrease in the CUMS groups when compare to the control groups, however these changes were attenuated by both miR-16 and Fluoxetine treatments. A dual-luciferase reporter assay system verified that hsa-miR-16 inhibitory effects involve the targeting of 3'UTR on the 5-HTT gene. Expression levels of miR-16 and BDNF in the hippocampus were examined with RT-PCR, and it was found that increased 5-HT2a receptor expression induced by CUMS can be decreased by miR-16 and Fluoxetine administration. Immunofluorescence showed that expression levels of neuron NeuN and MAP-2 in CUMS rats were lower. Apoptosis and autophagy levels were evaluated separately through relative expression of Bcl-2, Caspase-3, Beclin-1, and LC3II. Furthermore, CUMS was found to decrease levels of hippocampal mTOR, PI3K, and AKT. These findings indicate that apoptosis and autophagy related pathways could be involved in the effectiveness of antidepressants, in which miR-16 participates in the regulation of, and is likely to help integrate rapid therapeutic strategies to alleviate depression clinically. These findings indicate that miR-16 participates in the regulation of apoptosis and autophagy and could account for some part of the therapeutic effect of SSRIs. This discovery has the potential to further the understanding of SSRIs and accelerate the development of new treatments for depression.

18.
Toxicol Lett ; 280: 195-205, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28867212

RESUMO

One role of BACE 1 (Beta-site amyloid precursor protein cleaving enzyme 1) is to cleave the sequential amyloid precursor protein (APP) into ß-Amyloid (Aß), the accumulation of which is an important participant in the formation of the amyloid plaques and neurofibrillary tangles of Alzheimer's disease (AD). Our previous study showed BACE 1, the potential functional downstream target of miR-124, to be connected to cell death in AD cell models. Recent studies have shown that autophagy is altered in AD, however, as to whether miR-124 is involved in this alteration is not clear. In this study, 7-month-old APP/PS1 transgenic mice were transfected with miR-124 lentiviral vectors, injected bilaterally into the dentate gyrus (DG) of mice hippocampi. Following 7 days of recovery, both behavior and biochemical pathology tests were implemented. The results demonstrated learning ability improvement and specific AD pathology alleviation. Meanwhile there was down-regulation of Bcl-2 to Bax ratio expression, increase in Beclin-1 and decreases in expression of LC3II, Atg5 and p62/SQSTMl. In view of this, we hypothesis that miR-124 conducts its neuroprotective effect through BACE 1 by regulation of autophagic pathways.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Regulação da Expressão Gênica/fisiologia , MicroRNAs/metabolismo , Presenilina-1/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Ácido Aspártico Endopeptidases/genética , Comportamento Animal , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/genética , MicroRNAs/farmacologia , Presenilina-1/genética , Proteínas tau/metabolismo
19.
Curr Med Chem ; 24(32): 3508-3521, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28714388

RESUMO

BACKGROUND: Depression is a debilitating disease that is affecting a growing number of patients, both physically and mentally. In addition to mood changes, depression results in cognitive impairment. Although depression studies have been going on for decades, the underlying mechanism still remains unclear. MicroRNAs (miRNAs), a type of small non-coding RNAs, predominantly control the expression of their target mRNAs to exert their functions. Some evidences have revealed the importance of miRNAs in the mechanism of depression,however, these studies are still in their infancy. Alterations in brain regions, synaptic plasticity, hypothalamic-pituitary-adrenal (HPA) axis, changes in the levels of serotonin and glucocorticoids, together with stress response have been proven to be involved in depression. These alterations can influence cognition, learning and memory, with recent evidences demonstrating the involvement of miRNAs in several aspects of stress response, neural plasticity and neurogenesis as well as pathogenesis of depression. OBJECTIVE: In light of these theories of depression, this review was aimed at elucidating the role of miRNAs in the underlying mechanisms of depression resulting in cognitive, learning and memory impairments. METHOD/RESULTS: Both PubMed and Scopus databases were employed in scouring for research reports pertaining to this area of study. A total of 180 articles were obtained from these two databases. CONCLUSION: With the probing of classical theories of depression as well as the connection between miRNAs and depression, more studies,nevertheless, are needed to ascertain the full mechanism of depression along with its resultant cognitive, learning and memory impediments.


Assuntos
Depressão/genética , Transtorno Depressivo/genética , MicroRNAs/genética , Animais , Disfunção Cognitiva/genética , Disfunção Cognitiva/fisiopatologia , Depressão/fisiopatologia , Transtorno Depressivo/fisiopatologia , Humanos , Aprendizagem , Memória , Plasticidade Neuronal , Estresse Fisiológico
20.
Mitochondrial DNA B Resour ; 1(1): 958-959, 2017 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33473691

RESUMO

The complete mitochondrial genome of the Tamarisk jird, Meriones tamariscinus, was sequenced. The 16,389bp genome contains 37 genes, typical for rodent mitogenomes, including 22 tRNA genes, 2 rRNA genes, and 13 protein-coding genes. The total GC content of the mitochondrial genome is 36.8%, with a base composition of 34.0% A, 24.5% C, 12.3% G, and 29.2% T. The phylogenetic analysis showed that M. tamariscinus was classified in the genus Meriones, Muridae.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa