RESUMO
The unfolded protein response (UPR) has emerged as a central regulator of immune cell responses in several pathologic contexts including infections. However, how intracellular residing pathogens modulate the UPR in dendritic cells (DCs) and thereby affect T cell-mediated immunity remains uncharacterized. Here, we demonstrate that infection of DCs with Toxoplasma gondii (T. gondii) triggers a unique UPR signature hallmarked by the MyD88-dependent activation of the IRE1α pathway and the inhibition of the ATF6 pathway. Induction of XBP1s controls pro-inflammatory cytokine secretion in infected DCs, while IRE1α promotes MHCI antigen presentation of secreted parasite antigens. In mice, infection leads to a specific activation of the IRE1α pathway, which is restricted to the cDC1 subset. Mice deficient for IRE1α and XBP1 in DCs display a severe susceptibility to T. gondii and succumb during the acute phase of the infection. This early mortality is correlated with increased parasite burden and a defect in splenic T-cell responses. Thus, we identify the IRE1α/XBP1s branch of the UPR as a key regulator of host defense upon T. gondii infection.
Assuntos
Toxoplasma , Toxoplasmose , Animais , Células Dendríticas/metabolismo , Endorribonucleases/genética , Endorribonucleases/metabolismo , Camundongos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Resposta a Proteínas não DobradasRESUMO
Toxoplasma gondii virulence depends on the expression of factors packed into specific organelles such as rhoptry and microneme. Although virulence factor expression is tightly regulated, the molecular mechanisms controlling their regulation remain poorly understood. ApiAP2 are a family of conserved transcription factors (TFs) that play an important role in regulating gene expression in apicomplexan parasites. TgAP2XI-5 is able to bind to transcriptionally active promoters of genes expressed during the S/M phase of the cell cycle, such as virulence genes (rhoptries and micronemes genes). We identified proteins interacting with TgAP2XI-5 including a cell cycle-regulated ApiAP2 TF, TgAP2X-5. Using an inducible knock-down strategy and RNA-seq, we demonstrated that the level of expression of number of virulence factors transcripts is affected by the disruption of TgAP2X-5 expression. While TgAP2X-5 disruption has mild effect on parasite invasion, it leads to the strain avirulence in mice. To better understand the molecular mechanisms at stake, we investigated the binding of TgAP2XI-5 at promoters in the TgAP2X-5 mutant strain in a genome-wide assay. We show that disruption of TgAP2X-5 expression leads to defects in TgAP2XI-5 binding to multiple rhoptry gene promoters. Taken together, these data suggest a cooperative contribution of two ApiAP2 TF in the regulation of virulence genes in T. gondii.
Assuntos
Regulação da Expressão Gênica , Proteínas de Protozoários/metabolismo , Toxoplasma/genética , Toxoplasma/patogenicidade , Fatores de Transcrição/metabolismo , Fatores de Virulência/genética , Animais , Regulação para Baixo , Feminino , Camundongos Endogâmicos BALB C , Regiões Promotoras Genéticas , Proteínas de Protozoários/fisiologia , Toxoplasma/metabolismo , Fatores de Transcrição/fisiologiaRESUMO
Toxoplasma gondii possesses a highly polarized secretory system, which efficiently assembles de novo micronemes and rhoptries during parasite replication. These apical secretory organelles release their contents into host cells promoting parasite invasion and survival. Using a CreLox-based inducible knock-out strategy and the ddFKBP over-expression system, we unraveled novel functions of the clathrin adaptor complex TgAP1. First, our data indicate that AP1 in T. gondii likely functions as a conserved heterotetrameric complex composed of the four subunits γ, ß, µ1, σ1 and interacts with known regulators of clathrin-mediated vesicular budding such as the unique ENTH-domain containing protein, which we named Epsin-like protein (TgEpsL). Disruption of the µ1 subunit resulted in the mis-sorting of microneme proteins at the level of the Trans-Golgi-Network (TGN). Furthermore, we demonstrated that TgAP1 regulates rhoptry biogenesis by activating rhoptry protein exit from the TGN, but also participates in the post-Golgi maturation process of preROP compartments into apically anchored club-shaped mature organelles. For this latter activity, our data indicate a specific functional relationship between TgAP1 and the Rab5A-positive endosome-like compartment. In addition, we unraveled an original role for TgAP1 in the regulation of parasite division. APµ1-depleted parasites undergo normal daughter cell budding and basal complex assembly but fail to segregate at the end of cytokinesis.
Assuntos
Complexo 1 de Proteínas Adaptadoras/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/metabolismo , Complexo 1 de Proteínas Adaptadoras/genética , Animais , Divisão Celular , Clatrina/genética , Clatrina/metabolismo , Citocinese , Endossomos/metabolismo , Expressão Gênica , Técnicas de Inativação de Genes , Complexo de Golgi/metabolismo , Espectrometria de Massas , Modelos Biológicos , Organelas/metabolismo , Transporte Proteico , Proteínas de Protozoários/genética , Toxoplasma/genética , Toxoplasma/ultraestrutura , Rede trans-Golgi/metabolismoRESUMO
Bordetella pertussis is the causative agent of whooping cough, a respiratory disease still considered as a major public health threat and for which recent re-emergence has been observed. Constant reshuffling of Bordetella pertussis genome organization was observed during evolution. These rearrangements are essentially mediated by Insertion Sequences (IS), a mobile genetic elements present in more than 230 copies in the genome, which are supposed to be one of the driving forces enabling the pathogen to escape from vaccine-induced immunity. Here we use high-throughput sequencing approaches (RNA-seq and differential RNA-seq), to decipher Bordetella pertussis transcriptome characteristics and to evaluate the impact of IS elements on transcriptome architecture. Transcriptional organization was determined by identification of transcription start sites and revealed also a large variety of non-coding RNAs including sRNAs, leaderless mRNAs or long 3' and 5'UTR including seven riboswitches. Unusual topological organizations, such as overlapping 5'- or 3'-extremities between oppositely orientated mRNA were also unveiled. The pivotal role of IS elements in the transcriptome architecture and their effect on the transcription of neighboring genes was examined. This effect is mediated by the introduction of IS harbored promoters or by emergence of hybrid promoters. This study revealed that in addition to their impact on genome rearrangements, most of the IS also impact on the expression of their flanking genes. Furthermore, the transcripts produced by IS are strain-specific due to the strain to strain variation in IS copy number and genomic context.
Assuntos
Bordetella pertussis/genética , Elementos de DNA Transponíveis/genética , Perfilação da Expressão Gênica , RNA Bacteriano/genética , Transcrição Gênica , Regiões 3' não Traduzidas , Regiões 5' não Traduzidas , Genoma Bacteriano/genética , Sequenciamento de Nucleotídeos em Larga Escala , RNA Mensageiro/genética , RNA não Traduzido/genética , Sítio de Iniciação de TranscriçãoRESUMO
Gene regulation in apicomplexan parasites, a phylum containing important protozoan parasites such as Plasmodium and Toxoplasma, is poorly understood. The life cycle of Toxoplasma gondii is complex, with multiple proliferation and differentiation steps, of which tachyzoite proliferation is the most relevant to pathogenesis in humans and animals. Tachyzoites express invasion and virulence factors that are crucial for their survival and manipulation of host cell functions. The expression of those factors is tightly controlled during the tachyzoite cell cycle to permit their correct packaging in newly formed apical secretory organelles named micronemes and rhoptries in the daughter cells. However, little is known about the factors that control the expression of genes encoding the virulence factors present in these parasite-specific secretory organelles. We report that the plant-like nuclear factor TgAP2XI-5 targets more than 300 gene promoters and actively controls the transcription of these genes. Most of these target genes, including those that are essential for parasite virulence, showed a peak of expression in the S and M phases of the cell cycle. Furthermore, we identified the cis-regulatory element recognized by TgAP2XI-5 and demonstrated its ability to actively drive gene transcription. Our results demonstrated that TgAP2XI-5 is a novel DNA sequence-specific transcription factor associated with promoter activation. TgAP2XI-5 may regulate gene transcription of crucial virulence factors in T. gondii.
Assuntos
Regulação da Expressão Gênica/fisiologia , Proteínas de Protozoários/metabolismo , Elementos de Resposta , Toxoplasma/metabolismo , Toxoplasma/patogenicidade , Fatores de Transcrição/metabolismo , Transcrição Gênica/fisiologia , Genes de Protozoários/fisiologia , Proteínas de Protozoários/genética , Toxoplasma/genética , Toxoplasmose/genética , Toxoplasmose/metabolismo , Fatores de Transcrição/genéticaRESUMO
Toxoplasma gondii undergoes many phenotypic changes during its life cycle. The recent identification of AP2 transcription factors in T. gondii has provided a platform for studying the mechanisms controlling gene expression. In the present study, we report that a recombinant protein encompassing the TgAP2XI-4 AP2 domain was able to specifically bind to a DNA motif using gel retardation assays. TgAP2XI-4 protein is localized in the parasite nucleus throughout the tachyzoite life cycle in vitro, with peak expression occurring after cytokinesis. We found that the TgAP2XI-4 transcript level was higher in bradyzoite cysts isolated from brains of chronically infected mice than in the rapidly replicating tachyzoites. A knockout of the TgAP2XI-4 gene in both T. gondii virulent type I and avirulent type II strains reveals its role in modulating expression and promoter activity of genes involved in stage conversion of the rapidly replicating tachyzoites to the dormant cyst forming bradyzoites. Furthermore, mice infected with the type II KO mutants show a drastically reduced brain cyst burden. Thus, our results validate TgAP2XI-4 as a novel nuclear factor that regulates bradyzoite gene expression during parasite differentiation and cyst formation.
Assuntos
Regulação da Expressão Gênica , Toxoplasma/citologia , Toxoplasma/genética , Fatores de Transcrição/metabolismo , Animais , Encéfalo/parasitologia , Encéfalo/patologia , DNA de Protozoário/metabolismo , Modelos Animais de Doenças , Ensaio de Desvio de Mobilidade Eletroforética , Técnicas de Inativação de Genes , Camundongos , Ligação Proteica , Esporos de Protozoários/citologia , Esporos de Protozoários/genética , Toxoplasmose Animal/parasitologia , Toxoplasmose Animal/patologia , Fatores de Transcrição/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismoRESUMO
The colonic epithelium self-renews every 3 to 5 d, but our understanding of the underlying processes preserving wound healing from carcinogenesis remains incomplete. Here, we demonstrate that Nod-like receptor pyrin domain-containing protein 6 (NLRP6) suppresses inflammation and carcinogenesis by regulating tissue repair. NLRP6 was primarily produced by myofibroblasts within the stem-cell niche in the colon. Although NLRP6 expression was lowered in diseased colon, NLRP6-deficient mice were highly susceptible to experimental colitis. Upon injury, NLRP6 deficiency deregulated regeneration of the colonic mucosa and processes of epithelial proliferation and migration. Consistently, absence of NLRP6 accelerated colitis-associated tumor growth in mice. A gene-ontology analysis on a whole-genome expression profiling revealed a link between NLRP6 and self-renewal of the epithelium. Collectively, the integrity of the epithelial barrier is preserved by NLRP6 that may be manipulated to develop drugs capable of preventing adenoma formation in inflammatory bowel diseases.
Assuntos
Proliferação de Células , Neoplasias Colorretais/genética , Células Epiteliais/metabolismo , Receptores de Superfície Celular/genética , Animais , Movimento Celular/genética , Colite/genética , Colite/metabolismo , Colite/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Células Epiteliais/patologia , Feminino , Perfilação da Expressão Gênica , Imuno-Histoquímica , Mucosa Intestinal/lesões , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miofibroblastos/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Receptores de Superfície Celular/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Cicatrização/genéticaRESUMO
Can's polyester coatings are intended to replace epoxy-phenolic ones due to rising safety concern regarding the potential release of bisphenol A under increased regulations and consumer pressure. In this study, hazard linked to the migration of non-intentionally added substances from a single polyester-coated tin plate (5 batches) to canned food has been studied. Migration tests were performed using acetonitrile (ACN) and ethanol (EtOH) 95 %. Non-targeted analyses by liquid chromatography-high-resolution mass spectrometry revealed the presence of four cyclic oligoesters classified as Cramer class III substances with an estimated exposure (calculated for French population only) below the threshold of toxicological concern value of 1.5 µg/kg b.w./day, suggesting a no safety concern. Moreover, migrates were tested using in vitro genotoxicity DNA damage response (DDR) test and mini mutagenicity test (MMT) with different strains of S. Typhimurium using direct incorporation (TA100, TA98, TA102, TA1537) and pre-incubation (TA100, TA98) methods. Samples were negative in both bioassays suggesting the absence of genotoxicity/mutagenicity of the mixtures. To verify any false negative response due to matrix effect, migrates were spiked with corresponding positive controls in parallel with the MMT and the DDR test. No matrix effect was observed in these experimental conditions.
Assuntos
Contaminação de Alimentos , Poliésteres , Poliésteres/toxicidade , Poliésteres/química , Contaminação de Alimentos/análise , Embalagem de Alimentos , Alimentos , Mutagênicos/toxicidade , Mutagênicos/análise , Testes de MutagenicidadeRESUMO
BACKGROUND AND AIMS: NOD2 has emerged as a critical player in the induction of both Th1 and Th2 responses for potentiation and polarisation of antigen-dependent immunity. Loss-of-function mutations in the NOD2-encoding gene and deregulation of its downstream signalling pathway have been linked to Crohn's disease. Although it is well documented that NOD2 is capable of sensing bacterial muramyl dipeptide, it remains counter-intuitive to link development of overt intestinal inflammation to a loss of bacterial-induced inflammatory response. We hypothesised that a T helper bias could also contribute to an autoimmune-like colitis different from inflammation that is fully fledged by Th1 type cells. METHODS: An oedematous bowel wall with a mixed Th1/Th2 response was induced in mice by intrarectal instillation of the haptenating agent oxazolone. Survival and clinical scoring were evaluated. At several time points after instillation, colonic damage was assessed by macroscopic and microscopic observations. To evaluate the involvement of NOD2 in immunochemical phenomena, quantitative polymerase chain reaction [PCR] and flow cytometry analysis were performed. Bone marrow chimera experimentation allowed us to evaluate the role of haematopoietic/non-hematopoietic NOD2-expressing cells. RESULTS: Herein, we identified a key regulatory circuit whereby NOD2-mediated sensing of a muramyl dipeptide [MDP] by radio-resistant cells improves colitis with a mixed Th1/Th2 response that is induced by oxazolone. Genetic ablation of either Nod2 or Ripk2 precipitated oxazolone colitis that is predominantly linked to a lack of interferon-gamma. Bone marrow chimera experiments revealed that inactivation of Nod2 signalling in non-haematopoietic cells is causing a biased M1-M2 polarisation of macrophages and a decreased frequency of splenic regulatory T cells that correlates with an impaired activation of CD4â +â T cells within mesenteric lymph nodes. Mechanistically, mice were protected from oxazolone-induced colitis upon administration of MDP in an interleukin-1- and interleukin-23-dependent manner. CONCLUSIONS: These findings indicate that Nod2 signalling may prevent pathological conversion of T helper cells for maintenance of tissue homeostasis.
Assuntos
Colite , Oxazolona , Camundongos , Animais , Oxazolona/efeitos adversos , Acetilmuramil-Alanil-Isoglutamina/efeitos adversos , Acetilmuramil-Alanil-Isoglutamina/metabolismo , Colite/metabolismo , Inflamação , Transdução de Sinais , Proteína Adaptadora de Sinalização NOD2/genética , Proteína Adaptadora de Sinalização NOD2/metabolismoRESUMO
Tobacco smoking is classified as a human carcinogen. A wide variety of new products, in particular electronic cigarettes (e-cigs), have recently appeared on the market as an alternative to smoking. Although the in vitro toxicity of e-cigs is relatively well known, there is currently a lack of data on their long-term health effects. In this context, the aim of our study was to compare, on a mouse model and using a nose-only exposure system, the in vivo genotoxic and mutagenic potential of e-cig aerosols tested at two power settings (18 W and 30 W) and conventional cigarette (3R4F) smoke. The standard comet assay, micronucleus test and Pig-a gene mutation assay were performed after subacute (4 days), subchronic (3 months) and chronic (6 months) exposure. The generation of oxidative stress was also assessed by measuring the 8-hydroxy-2'-deoxyguanosine and by using the hOGG1-modified comet assay. Our results show that only the high-power e-cig and the 3R4F cigarette induced oxidative DNA damage in the lung and the liver of exposed mice. In return, no significant increase in chromosomal aberrations or gene mutations were noted whatever the type of product. This study demonstrates that e-cigs, at high-power setting, should be considered, contrary to popular belief, as hazardous products in terms of genotoxicity in mouse model.
Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Produtos do Tabaco , Aerossóis/toxicidade , Animais , Dano ao DNA , Eletrônica , CamundongosRESUMO
Graphene-based materials (GBMs) are promising nanomaterials, and several innovations depend on their use. However, the assessment of their potential hazard must be carefully explored before entering any market. GBMs are indeed well-known to induce various biological impacts, including oxidative stress, which can potentially lead to DNA damage. Genotoxicity is a major endpoint for hazard assessment and has been explored for GBMs, but the available literature shows conflicting results. In this study, we assessed the genotoxicity of 13 various GBMs, one carbon black and one amorphous silica through a DNA damage response assay (using a human respiratory cell model, BEAS-2B). Concurrently, oxidative stress was assessed through a ROS production quantification (DCFH-DA assay using a murine macrophage model, RAW 264.7). We also performed a full physicochemical characterization of our samples to explore potential structure-activity relationships involving genotoxicity. We observed that surface oxidation appears linked to genotoxicity response and were able to distinguish several groups within our studied GBMs showing different genotoxicity results. Our findings highlight the necessity to individually consider each nanoform of GBMs since the tested samples showed various results and modes of action. We propose this study as a genotoxicity assessment using a high-throughput screening method and suggest few hypotheses concerning the genotoxicity mode of action of GBMs.
Assuntos
Grafite , Nanoestruturas , Animais , Dano ao DNA , Grafite/química , Grafite/toxicidade , Humanos , Camundongos , Nanoestruturas/química , Oxirredução , Estresse OxidativoRESUMO
Toxoplasma gondii is a eukaryotic parasite that forms latent cysts in the brain of immunocompetent individuals. The latent parasite infection of the immune-privileged central nervous system is linked to most complications. With no drug currently available to eliminate the latent cysts in the brain of infected hosts, the consequences of neurons' long-term infection are unknown. It has long been known that T. gondii specifically differentiates into a latent form (bradyzoite) in neurons, but how the infected neuron responds to the infection remains to be elucidated. We have established a new in vitro model resulting in the production of mature bradyzoite cysts in brain cells. Using dual, host and parasite RNA-seq, we characterized the dynamics of differentiation of the parasite, revealing the involvement of key pathways in this process. Moreover, we identified how the infected brain cells responded to the parasite infection revealing the drastic changes that take place. We showed that neuronal-specific pathways are strongly affected, with synapse signalling being particularly affected, especially glutamatergic synapse signalling. The establishment of this new in vitro model allows investigating both the dynamics of parasite differentiation and the specific response of neurons to long-term infection by this parasite.
Assuntos
Prepúcio do Pênis/citologia , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Neurônios/citologia , Proteínas de Protozoários/genética , Toxoplasma/patogenicidade , Toxoplasmose Cerebral/patologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Fibroblastos/citologia , Fibroblastos/parasitologia , Prepúcio do Pênis/parasitologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Camundongos , Neurônios/parasitologia , Cultura Primária de Células , Ratos , Análise de Sequência de RNA , Toxoplasma/genética , Toxoplasmose Cerebral/genéticaRESUMO
Apicomplexan parasites have evolved efficient and distinctive strategies for intracellular replication where the timing of emergence of the daughter cells (budding) is a decisive element. However, the molecular mechanisms that provide the proper timing of parasite budding remain unknown. Using Toxoplasma gondii as a model Apicomplexan, we identified a master regulator that controls the timing of the budding process. We show that an ApiAP2 transcription factor, TgAP2IX-5, controls cell cycle events downstream of centrosome duplication. TgAP2IX-5 binds to the promoter of hundreds of genes and controls the activation of the budding-specific cell cycle expression program. TgAP2IX-5 regulates the expression of specific transcription factors that are necessary for the completion of the budding cycle. Moreover, TgAP2IX-5 acts as a limiting factor that ensures that asexual proliferation continues by promoting the inhibition of the differentiation pathway. Therefore, TgAP2IX-5 is a master regulator that controls both cell cycle and developmental pathways.
Assuntos
Ciclo Celular/fisiologia , Divisão Celular/fisiologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Toxoplasma/genética , Toxoplasma/fisiologia , Proliferação de Células , Centrossomo , Replicação do DNA , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Organismos Geneticamente Modificados , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
BACKGROUND: In our laboratory we use cultured chicory (Cichorium intybus) explants as a model to investigate cell reactivation and somatic embryogenesis and have produced 2 chicory genotypes (K59, C15) sharing a similar genetic background. K59 is a responsive genotype (embryogenic) capable of undergoing complete cell reactivation i.e. cell de- and re-differentiation leading to somatic embryogenesis (SE), whereas C15 is a non-responsive genotype (non-embryogenic) and is unable to undergo SE. Previous studies 1 showed that the use of the beta-D-glucosyl Yariv reagent (beta-GlcY) that specifically binds arabinogalactan-proteins (AGPs) blocked somatic embryo production in chicory root explants. This observation indicates that beta-GlcY is a useful tool for investigating somatic embryogenesis (SE) in chicory. In addition, a putative AGP (DT212818) encoding gene was previously found to be significantly up-regulated in the embryogenic K59 chicory genotype as compared to the non-embryogenic C15 genotype suggesting that this AGP could be involved in chicory re-differentiation 2. In order to improve our understanding of the molecular and cellular regulation underlying SE in chicory, we undertook a detailed cytological study of cell reactivation events in K59 and C15 genotypes, and used microarray profiling to compare gene expression in these 2 genotypes. In addition we also used beta-GlcY to block SE in order to identify genes potentially involved in this process. RESULTS: Microscopy confirmed that only the K59, but not the C15 genotype underwent complete cell reactivation leading to SE formation. beta-GlcY-treatment of explants blocked in vitro SE induction, but not cell reactivation, and induced cell wall modifications. Microarray analyses revealed that 78 genes were differentially expressed between induced K59 and C15 genotypes. The expression profiles of 19 genes were modified by beta-GlcY-treatment. Eight genes were both differentially expressed between K59 and C15 genotypes during SE induction and transcriptionally affected by beta-GlcY-treatment: AGP (DT212818), 26 S proteasome AAA ATPase subunit 6 (RPT6), remorin (REM), metallothionein-1 (MT1), two non-specific lipid transfer proteins genes (SDI-9 and DEA1), 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoA reductase), and snakin 2 (SN2). These results suggest that the 8 genes, including the previously-identified AGP gene (DT212818), could be involved in cell fate determination events leading to SE commitment in chicory. CONCLUSION: The use of two different chicory genotypes differing in their responsiveness to SE induction, together with beta-GlcY-treatment represented an efficient tool to discriminate cell reactivation from the SE morphogenetic pathway. Such an approach, together with microarray analyses, permitted us to identify several putative key genes related to the SE morphogenetic pathway in chicory.
Assuntos
Cichorium intybus/embriologia , Cichorium intybus/genética , Perfilação da Expressão Gênica , Parede Celular/metabolismo , Cichorium intybus/citologia , Meios de Cultura , Etiquetas de Sequências Expressas , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genótipo , Glucosídeos/farmacologia , Análise de Sequência com Séries de Oligonucleotídeos , Floroglucinol/análogos & derivados , Floroglucinol/farmacologia , RNA de Plantas/genética , Técnicas de Cultura de TecidosRESUMO
Mutations in the nucleotide-binding oligomerization domain protein 12 (NLRP12) cause recurrent episodes of serosal inflammation. Here we show that NLRP12 efficiently sequesters HSP90 and promotes K48-linked ubiquitination and degradation of NOD2 in response to bacterial muramyl dipeptide (MDP). This interaction is mediated by the linker-region proximal to the nucleotide-binding domain of NLRP12. Consequently, the disease-causing NLRP12 R284X mutation fails to repress MDP-induced NF-κB and subsequent activity of the JAK/STAT signaling pathway. While NLRP12 deficiency renders septic mice highly susceptible towards MDP, a sustained sensing of MDP through NOD2 is observed among monocytes lacking NLRP12. This loss of tolerance in monocytes results in greater colonization resistance towards Citrobacter rodentium. Our data show that this is a consequence of NOD2-dependent accumulation of inflammatory mononuclear cells that correlates with induction of interferon-stimulated genes. Our study unveils a relevant process of tolerance towards the gut microbiota that is exploited by an attaching/effacing enteric pathogen.
Assuntos
Acetilmuramil-Alanil-Isoglutamina/metabolismo , Cápsulas Bacterianas/metabolismo , Citrobacter rodentium/imunologia , Infecções por Enterobacteriaceae/imunologia , Proteínas de Choque Térmico HSP90/metabolismo , Tolerância Imunológica/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo , Animais , Linhagem Celular , Infecções por Enterobacteriaceae/microbiologia , Microbioma Gastrointestinal/imunologia , Células HEK293 , Humanos , Inflamação/imunologia , Inflamação/microbiologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Camundongos , Camundongos Knockout , NF-kappa B/metabolismo , UbiquitinaçãoRESUMO
Antibiotic resistance is one of the biggest threats to human health globally. Alarmingly, multidrug-resistant and extensively drug-resistant Mycobacterium tuberculosis have now spread worldwide. Some key antituberculosis antibiotics are prodrugs, for which resistance mechanisms are mainly driven by mutations in the bacterial enzymatic pathway required for their bioactivation. We have developed drug-like molecules that activate a cryptic alternative bioactivation pathway of ethionamide in M. tuberculosis, circumventing the classic activation pathway in which resistance mutations have now been observed. The first-of-its-kind molecule, named SMARt-420 (Small Molecule Aborting Resistance), not only fully reverses ethionamide-acquired resistance and clears ethionamide-resistant infection in mice, it also increases the basal sensitivity of bacteria to ethionamide.
Assuntos
Antituberculosos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Etionamida/metabolismo , Tuberculose Extensivamente Resistente a Medicamentos/microbiologia , Isoxazóis/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Compostos de Espiro/farmacologia , Animais , DNA/metabolismo , Etionamida/farmacologia , Humanos , Camundongos , Mutação , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Oxidiazóis/farmacologia , Piperidinas/farmacologia , Ligação Proteica/efeitos dos fármacos , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/metabolismoRESUMO
The whooping cough agent Bordetella pertussis regulates the production of its virulence factors by the BvgA/S system. Phosphorylated BvgA activates the virulence-activated genes (vags) and represses the expression of the virulence-repressed genes (vrgs) via the activation of the bvgR gene. In modulating conditions, with MgSO4, the BvgA/S system is inactive, and the vrgs are expressed. Here, we show that the expression of almost all vrgs depends on RisA, another transcriptional regulator. We also show that some vags are surprisingly no longer modulated by MgSO4 in the risA(-) background. RisA also regulates the expression of other genes, including chemotaxis and flagellar operons, iron-regulated genes, and genes of unknown function, which may or may not be controlled by BvgA/S. We identified RisK as the likely cognate RisA kinase and found that it is important for expression of most, but not all RisA-regulated genes. This was confirmed using the phosphoablative RisAD(60)N and the phosphomimetic RisAD(60)E analogues. Thus the RisA regulon adds a new layer of complexity to B. pertussis virulence gene regulation.
Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/fisiologia , Bordetella pertussis/genética , Regulação Bacteriana da Expressão Gênica , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/fisiologia , Regulon , Virulência/genética , Bordetella pertussis/patogenicidade , Ácido Glutâmico/química , Família Multigênica , Análise de Sequência com Séries de Oligonucleotídeos , Óperon , Fosforilação , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Transcrição Gênica , Ativação Transcricional , TranscriptomaRESUMO
Cellular senescence is known as an anti-tumor barrier and is characterized by a number of determinants including cell cycle arrest, senescence associated ß-galactosidase activity and secretion of pro-inflammatory mediators. Senescent cells are also subjected to enlargement, cytoskeleton-mediated shape changes and organelle alterations. However, the underlying molecular mechanisms responsible for these last changes remain still uncharacterized. Herein, we have identified the Unfolded Protein Response (UPR) as a player controlling some morphological aspects of the senescent phenotype. We show that senescent fibroblasts exhibit ER expansion and mild UPR activation, but conserve an ER stress adaptive capacity similar to that of exponentially growing cells. By genetically invalidating the three UPR sensors in senescent fibroblasts, we demonstrated that ATF6α signaling dictates senescence-associated cell shape modifications. We also show that ER expansion and increased secretion of the pro-inflammatory mediator IL6 were partly reversed by silencing ATF6α in senescent cells. Moreover, ATF6α drives the increase of senescence associated-ß-galactosidase activity. Collectively, these findings unveil a novel and central role for ATF6α in the establishment of morphological features of senescence in normal human primary fibroblasts.
Assuntos
Fator 6 Ativador da Transcrição/genética , Senescência Celular/genética , Fibroblastos/metabolismo , Resposta a Proteínas não Dobradas/genética , Fator 6 Ativador da Transcrição/metabolismo , Adulto , Células Cultivadas , Criança , Derme/citologia , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Estresse do Retículo Endoplasmático/genética , Feminino , Fibroblastos/citologia , Perfilação da Expressão Gênica/métodos , Humanos , Lactente , Masculino , Microscopia Eletrônica de Transmissão , Interferência de RNA , Transdução de Sinais/genéticaRESUMO
Although several ADAMs (A disintegrin-like and metalloproteases) have been shown to contribute to the amyloid precursor protein (APP) metabolism, the full spectrum of metalloproteases involved in this metabolism remains to be established. Transcriptomic analyses centred on metalloprotease genes unraveled a 50% decrease in ADAM30 expression that inversely correlates with amyloid load in Alzheimer's disease brains. Accordingly, in vitro down- or up-regulation of ADAM30 expression triggered an increase/decrease in Aß peptides levels whereas expression of a biologically inactive ADAM30 (ADAM30(mut)) did not affect Aß secretion. Proteomics/cell-based experiments showed that ADAM30-dependent regulation of APP metabolism required both cathepsin D (CTSD) activation and APP sorting to lysosomes. Accordingly, in Alzheimer-like transgenic mice, neuronal ADAM30 over-expression lowered Aß42 secretion in neuron primary cultures, soluble Aß42 and amyloid plaque load levels in the brain and concomitantly enhanced CTSD activity and finally rescued long term potentiation alterations. Our data thus indicate that lowering ADAM30 expression may favor Aß production, thereby contributing to Alzheimer's disease development.
Assuntos
Proteínas ADAM/metabolismo , Peptídeos beta-Amiloides/metabolismo , Catepsina D/metabolismo , Proteínas ADAM/antagonistas & inibidores , Proteínas ADAM/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Sequência de Aminoácidos , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Catepsina D/química , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Células HEK293 , Humanos , Lisossomos/metabolismo , Macrolídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia de Fluorescência , Técnicas de Patch-Clamp , Pepstatinas/farmacologia , Interferência de RNA , RNA Interferente Pequeno/metabolismoRESUMO
At the present time, there is little information on mechanisms of innate immunity in invertebrate groups other than insects, especially annelids. In the present study, we have performed a transcriptomic study of the immune response in the leech Theromyzon tessulatum after bacterial challenge, by a combination of differential display RT (reverse transcriptase)-PCR and cDNA microarrays. The results show relevant modulations concerning several known and unknown genes. Indeed, threonine deaminase, malate dehydrogenase, cystatin B, polyadenylate-binding protein and alpha-tubulin-like genes are up-regulated after immunostimulation. We focused on cystatin B (stefin B), which is an inhibitor of cysteine proteinases involved in the vertebrate immune response. We have cloned the full-length cDNA and named the T. tessulatum gene as Tt-cysb. Main structural features of cystatins were identified in the derived amino acid sequence of Tt-cysb cDNA; namely, a glycine residue in the N-terminus and a consensus sequence of Gln-Xaa-Val-Xaa-Gly (QXVXG) corresponding to the catalytic site. Moreover, Tt-cysb is the first cystatin B gene characterized in invertebrates. We have determined by in situ hybridization and immunocytochemistry that Tt-cysb is only expressed in large coelomic cells. In addition, this analysis confirmed that Tt-cysb is up-regulated after bacterial challenge, and that increased expression occurs only in coelomic cells. These data demonstrate that the innate immune response in the leech involves a cysteine proteinase inhibitor that is not found in ecdysozoan models, such as Drosophila melanogaster or Caenorhabditis elegans, and so underlines the great need for information about innate immunity mechanisms in different invertebrate groups.