Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Exp Parasitol ; 263-264: 108807, 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39043327

RESUMO

African trypanosomiasis and malaria are among the most severe health challenges to humans and livestock in Africa and new drugs are needed. Leaves of Hyptis suaveolens Kuntze (Lamiaceae) and Momordica charantia L. (Cucurbitaceae) were extracted with hexane, ethyl acetate, and then methanol, and subjected to silica gel column chromatography. Structures of six isolated compounds were elucidated through NMR and HR-EIMS spectrometry. Callistrisic acid, dehydroabietinol, suaveolic acid, suaveolol, and a mixture of suaveolol and suaveolic acid (SSA) were obtained from H. suaveolens, while karavilagenin D and momordicin I acetate were obtained from M. charantia. The isolated biomolecules were tested against trypomastigotes of Trypanosoma brucei brucei and T. congolense, and against Plasmodium falciparum. The most promising EC50 values were obtained for the purified suaveolol fraction, at 2.71 ± 0.36 µg/mL, and SSA, exhibiting an EC50 of 1.56 ± 0.17 µg/mL against T. b. brucei trypomastigotes. Suaveolic acid had low activity against T. b. brucei but displayed moderate activity against T. congolense trypomastigotes at 11.1 ± 0.5 µg/mL. Suaveolol and SSA were also tested against T. evansi, T. equiperdum, Leishmania major and L. mexicana but the antileishmanial activity was low. Neither of the active compounds, nor the mixture of the two, displayed any cytotoxic effect on human foreskin fibroblast (HFF) cells at even the highest concentration tested, being 200 µg/mL. We conclude that suaveolol and its mixture possessed significant and selective trypanocidal activity.

2.
Molecules ; 28(2)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36677679

RESUMO

Propolis is a resin that is gathered by bees from exudates produced by various plants. Its exact chemical composition depends on the plants available near the hive. Bees use propolis to coat the surfaces of the hive, where it acts as an anti-infective. Regardless of the chemical composition of propolis, it is always anti-protozoal, probably because protozoan parasites, particularly Lotmarium passim, are widespread in bee populations. The protozoa Trypanosoma brucei and T. congolense cause disease in humans and/or animals. The existing drugs for treating these diseases are old and resistance is an increasingly severe problem. The many types of propolis present a rich source of anti-trypanosomal compounds-from a material gathered by bees in an environmentally friendly way. In the current work, red Nigerian propolis from Rivers State, Nigeria was tested against T. brucei and T. congolense and found to be highly active (EC50 1.66 and 4.00 µg/mL, respectively). Four isoflavonoids, vestitol, neovestitol, 7-methylvestitol and medicarpin, were isolated from the propolis. The isolated compounds were also tested against T. brucei and T. congolense, and vestitol displayed the highest activity at 3.86 and 4.36 µg/mL, respectively. Activities against drug-resistant forms of T. brucei and T. congolense were similar to those against wild type.


Assuntos
Anti-Infecciosos , Própole , Trypanosoma brucei brucei , Trypanosoma congolense , Tripanossomíase Africana , Humanos , Animais , Própole/farmacologia , Própole/química , Nigéria , Tripanossomíase Africana/tratamento farmacológico
3.
Environ Manage ; 71(1): 114-130, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35546364

RESUMO

Neglected and underutilized plant species (NUS) in Tanzania are maintained by socio-cultural preferences. However, a majority remains inadequately characterized and neglected by research and conservation initiatives. Over long time ago, the NUS have been part of the major component in the food systems of local communities especially in the dryland areas to overcome challenges brought about by uncertain climatic conditions. This study documents the NUS diversity and indigenous knowledge on their availability, agronomic and cultural practices in the Semi-arid zones of Tanzania to verify their economic potentials and promote their sustainable utilization for climate change adaptation as well as natural resources conservation. The study involved field plant identification, quantification and participatory rural appraisals (PRAs). The results indicate that the study regions have very rich diversity of NUS contributing significantly to the people's adaptation to drought conditions and food shortages in the areas. The NUS in the studied regions had varied uses including food and medicine. A majority of the consulted farmers in the study area indicated that the NUS utilized in the areas were either minimally cultivated on farms, freely obtained from the wild or grew as weeds in the farmlands. Despite the potentials for NUS in contributing to climate change adaptation in the areas, so far there have been no efforts geared towards their sustainable utilization and conservation. It is observed that promotion of NUS through improved packaging and marketing could contribute to the economy of the local people who have access to NUS in the area and therefore enhance resilience of semi-arid communities.


Assuntos
Mudança Climática , Plantas , Humanos , Tanzânia , Conservação dos Recursos Naturais/métodos , Agricultura
4.
Molecules ; 27(5)2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35268726

RESUMO

Profiling a propolis sample from Papua New Guinea (PNG) using high-resolution mass spectrometry indicated that it contained several triterpenoids. Further fractionation by column chromatography and medium-pressure liquid chromatography (MPLC) followed by nuclear magnetic resonance spectroscopy (NMR) identified 12 triterpenoids. Five of these were obtained pure and the others as mixtures of two or three compounds. The compounds identified were: mangiferonic acid, ambonic acid, isomangiferolic acid, ambolic acid, 27-hydroxyisomangiferolic acid, cycloartenol, cycloeucalenol, 24-methylenecycloartenol, 20-hydroxybetulin, betulin, betulinic acid and madecassic acid. The fractions from the propolis and the purified compounds were tested in vitro against Crithidia fasciculata, Trypanosoma congolense, drug-resistant Trypanosoma congolense, Trypanosoma b. brucei and multidrug-resistant Trypanosoma b. brucei (B48). They were also assayed for their toxicity against U947 cells. The compounds and fractions displayed moderate to high activity against parasitic protozoa but only low cytotoxicity against the mammalian cells. The most active isolated compound, 20-hydroxybetulin, was found to be trypanostatic when different concentrations were tested against T. b. brucei growth.


Assuntos
Própole
5.
Molecules ; 26(13)2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34206940

RESUMO

Ethanolic extracts of samples of temperate zone propolis, four from the UK and one from Poland, were tested against three Trypanosoma brucei strains and displayed EC50 values < 20 µg/mL. The extracts were fractionated, from which 12 compounds and one two-component mixture were isolated, and characterized by NMR and high-resolution mass spectrometry, as 3-acetoxypinobanksin, tectochrysin, kaempferol, pinocembrin, 4'-methoxykaempferol, galangin, chrysin, apigenin, pinostrobin, cinnamic acid, coumaric acid, cinnamyl ester/coumaric acid benzyl ester (mixture), 4',7-dimethoxykaempferol, and naringenin 4',7-dimethyl ether. The isolated compounds were tested against drug-sensitive and drug-resistant strains of T. brucei and Leishmania mexicana, with the highest activities ≤ 15 µM. The most active compounds against T. brucei were naringenin 4',7 dimethyl ether and 4'methoxy kaempferol with activity of 15-20 µM against the three T. brucei strains. The most active compounds against L. mexicana were 4',7-dimethoxykaempferol and the coumaric acid ester mixture, with EC50 values of 12.9 ± 3.7 µM and 13.1 ± 1.0 µM. No loss of activity was found with the diamidine- and arsenical-resistant or phenanthridine-resistant T. brucei strains, or the miltefosine-resistant L. mexicana strain; no clear structure activity relationship was observed for the isolated compounds. Temperate propolis yields multiple compounds with anti-kinetoplastid activity.


Assuntos
Leishmania mexicana/efeitos dos fármacos , Própole/análise , Própole/farmacologia , Tripanossomicidas/química , Trypanosoma brucei brucei/efeitos dos fármacos , Cinamatos/química , Flavanonas/química , Flavonoides/química , Quempferóis/química , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Polônia , Própole/química , Reino Unido
6.
Nanotechnology ; 31(19): 195101, 2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-31958777

RESUMO

Natural products have been successfully used to treat various ailments since ancient times and currently several anticancer agents based on natural products are used as the main therapy to treat cancer patients, or as a complimentary treatment to chemotherapy or radiation. Balanocarpol, which is a promising natural product that has been isolated from Hopea dryobalanoides, has been studied as a potential anticancer agent but its application is limited due to its high toxicity, low water solubility, and poor bioavailability. Therefore, the aim of this study is to improve the characteristics of balanocarpol and increase its anticancer activity through its encapsulation in a bilayer structure of a lipid-based nanoparticle drug delivery system where the application of nanotechnology can help improve the limitations of balanocarpol. The compound was first extracted and isolated from H. dryobalanoides. Niosome nanoparticles composed of Span 80 (SP80) and cholesterol were formulated through an innovative microfluidic mixing method for the encapsulation and delivery of balanocarpol. The prepared particles were spherical, small, and uniform with an average particles size and polydispersity index ∼175 nm and 0.088, respectively. The encapsulation of balanocarpol into the SP80 niosomes resulted in an encapsulation efficiency of ∼40%. The niosomes formulation loaded with balanocarpol showed a superior anticancer effect over the free compound when tested in vitro on human ovarian carcinoma (A2780) and human breast carcinoma (ZR-75-1). This is the first study to report the use of SP80 niosomes for the successful encapsulation and delivery of balanocarpol into cancer cells.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Dipterocarpaceae/química , Neoplasias Ovarianas/tratamento farmacológico , Polifenóis/isolamento & purificação , Polifenóis/farmacologia , Cápsulas , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colesterol/química , Feminino , Hexoses/química , Humanos , Lipossomos , Extratos Vegetais/química , Polifenóis/química
7.
Molecules ; 25(21)2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33167520

RESUMO

The kinetoplastids are protozoa characterized by the presence of a distinctive organelle, called the kinetoplast, which contains a large amount of DNA (kinetoplast DNA (kDNA)) inside their single mitochondrion. Kinetoplastids of medical and veterinary importance include Trypanosoma spp. (the causative agents of human and animal African Trypanosomiasis and of Chagas disease) and Leishmania spp. (the causative agents of the various forms of leishmaniasis). These neglected diseases affect millions of people across the globe, but drug treatment is hampered by the challenges of toxicity and drug resistance, among others. Propolis (a natural product made by bees) and compounds isolated from it are now being investigated as novel treatments of kinetoplastid infections. The anti-kinetoplastid efficacy of propolis is probably a consequence of its reported activity against kinetoplastid parasites of bees. This article presents a review of the reported anti-kinetoplastid potential of propolis, highlighting its anti-kinetoplastid activity in vitro and in vivo regardless of geographical origin. The mode of action of propolis depends on the organism it is acting on and includes growth inhibition, immunomodulation, macrophage activation, perturbation of the cell membrane architecture, phospholipid disturbances, and mitochondrial targets. This gives ample scope for further investigations toward the rational development of sustainable anti-kinetoplastid drugs.


Assuntos
Abelhas , Leishmania/efeitos dos fármacos , Própole/farmacologia , Trypanosoma/efeitos dos fármacos , Animais , Produtos Biológicos/farmacologia , Crithidia/efeitos dos fármacos , Modelos Animais de Doenças , Descoberta de Drogas , Flavonoides/farmacologia , Geografia , Humanos , Macrófagos/efeitos dos fármacos , Metabolômica , Mitocôndrias/efeitos dos fármacos , Nanotecnologia
8.
Molecules ; 24(6)2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30884752

RESUMO

Twelve propolis samples from different parts of Libya were investigated for their phytochemical constituents. Ethanol extracts of the samples and some purified compounds were tested against Trypanosoma brucei, Plasmodium falciparum and against two helminth species, Trichinella spiralis and Caenorhabditis elegans, showing various degrees of activity. Fourteen compounds were isolated from the propolis samples, including a novel compound Taxifolin-3-acetyl-4'-methyl ether (4), a flavanonol derivative. The crude extracts showed moderate activity against T. spiralis and C. elegans, while the purified compounds had low activity against P. falciparum. Anti-trypanosomal activity (EC50 = 0.7 µg/mL) was exhibited by a fraction containing a cardol identified as bilobol (10) and this fraction had no effect on Human Foreskin Fibroblasts (HFF), even at 2.0 mg/mL, thus demonstrating excellent selectivity. A metabolomics study was used to explore the mechanism of action of the fraction and it revealed significant disturbances in trypanosomal phospholipid metabolism, especially the formation of choline phospholipids. We conclude that a potent and highly selective new trypanocide may be present in the fraction.


Assuntos
Antiprotozoários/química , Proliferação de Células/efeitos dos fármacos , Própole/química , Trypanosoma brucei brucei/efeitos dos fármacos , Animais , Antiprotozoários/farmacologia , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/patogenicidade , Linhagem Celular , Fibroblastos/efeitos dos fármacos , Humanos , Líbia , Metabolômica , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/patogenicidade , Polifenóis/química , Polifenóis/farmacologia , Própole/farmacologia , Trichinella spiralis/efeitos dos fármacos , Trichinella spiralis/patogenicidade , Trypanosoma brucei brucei/patogenicidade
9.
Phytochem Anal ; 27(3-4): 217-21, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27313159

RESUMO

INTRODUCTION: Several taccalonolides with various bioactivities have been isolated from Tacca species but no studies to isolate taccalonolides with anti-trypanosomal activity from Tacca leontopetaloides have been reported. OBJECTIVES: To analyse extracts of the roots of Tacca leontopetaloides, purify the extracts by column chromatography and identify isolated compounds by spectroscopic methods. The compounds and fractions will be tested for antitrypanosomal activity in vitro against Trypanosoma brucei brucei. MATERIAL AND METHODS: Dried roots or tubers of Tacca leontopetaloides, chromatographic separation and spectroscopic identification. RESULTS: A novel taccalonolide A propanoate and some known taccalonolides were isolated and their structures were determined by NMR and mass spectrometry CONCLUSION: Several taccalonolides were isolated from Tacca leontopetaloides and were found to have in vitro antitrypanosomal activity against Trypanosoma brucei brucei and EC50 values for the isolated compounds were from 0.79 µg/mL. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Dioscoreaceae/química , Extratos Vegetais/farmacologia , Esteroides/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Espectrometria de Massas , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Raízes de Plantas/química , Tubérculos/química , Propionatos/química , Propionatos/isolamento & purificação , Propionatos/farmacologia , Esteroides/química , Esteroides/isolamento & purificação , Tripanossomicidas/química , Tripanossomicidas/isolamento & purificação
10.
Phytochem Anal ; 27(2): 107-15, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26662866

RESUMO

INTRODUCTION: A previous study showed the unique character of Nigerian red propolis from Rivers State, Nigeria (RSN), with regards to chemical composition and activity against Trypanosoma brucei in comparison with other African propolis. OBJECTIVE: To carry out fractionation and biological testing of Nigerian propolis in order to isolate compounds with anti-trypanosomal activity. To compare the composition of the RSN propolis with the composition of Brazilian red propolis. METHODOLOGY: Profiling was carried out using HPLC-UV-ELSD and HPLC-Orbitrap-FTMS on extracts of two samples collected from RSN with data extraction using MZmine software. Isolation was carried out by normal phase and reversed phase MPLC. Elucidation of the compounds with a purity > 95% was performed by 1D/2D NMR HRMS and HRLC-MS(n) . RESULTS: Ten phenolic compounds were isolated or in the case of liquiritigenin partially purified. Data for nine of these correlated with literature reports of known compounds i.e. one isoflavanone, calycosin (1); two flavanones, liquiritigenin (2) and pinocembrin (5); an isoflavan, vestitol (3); a pterocarpan, medicarpin (4); two prenylflavanones, 8-prenylnaringenin (7) and 6-prenylnaringenin (8); and two geranyl flavonoids, propolin D (9) and macarangin (10). The tenth was elucidated as a previously undescribed dihydrobenzofuran (6). The isolated compounds were tested against Trypanosoma brucei and displayed moderate to high activity. Some of the compounds tested had similar activity against wild type T. brucei and two strains displaying pentamidine resistance. CONCLUSION: Nigerian propolis from RSN has some similarities with Brazilian red propolis. The propolis displayed anti-trypanosomal activity at a potentially useful level.


Assuntos
Própole/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Animais , Antiprotozoários/química , Antiprotozoários/farmacologia , Cromatografia Líquida de Alta Pressão , Estrutura Molecular , Própole/química , Espectrofotometria Ultravioleta
11.
Anal Bioanal Chem ; 407(4): 1171-80, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25515013

RESUMO

The chromatographic isolation and characterisation of the four compounds present in the quaternary phenanthridine veterinary trypanocidal agent, isometamidium chloride hydrochloride (ISM), is reported. The isolated compounds were unambiguously characterised using spectroscopic (NMR, UV, IR and MS) methods as 3-amino-8-[3-(3-carbamimidoyl-phenyl)-triazenyl]-5-ethyl-6-phenylethidium (1a) and related isomers, 8-amino-3-[3-(3-carbamimidoyl-phenyl)-triazenyl]-5-ethyl-6-phenylethidium, 3,-8-diamino-7-[3-(3-carbamimidoyl-phenyl)-triazenyl]-5-ethyl-6-phenylethidium and 3,-8-bis[3-(3-carbamimidoyl-phenyl)-triazenyl]-5-ethyl-6-phenylethidium. During the course of this study, it was realised that the nature of the solvent used in the NMR study was critical as in DMSO-d6 the quaternary group in the compounds was reduced to dihydro forms (e.g. 2a).


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Espectroscopia de Ressonância Magnética/métodos , Espectrometria de Massas/métodos , Fenantridinas/análise , Compostos de Amônio Quaternário/análise , Espectrofotometria Ultravioleta/métodos , Tripanossomicidas/análise , Dimetil Sulfóxido/química , Isomerismo , Estrutura Molecular , Fenantridinas/química , Compostos de Amônio Quaternário/química , Solventes/química , Tripanossomicidas/química
12.
Molecules ; 20(11): 20161-72, 2015 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-26569200

RESUMO

Wissadula periplocifolia (L.) C. Presl (Malvaceae) is commonly used in Brazil to treat bee stings and as an antiseptic. The antioxidant properties of its extracts have been previously demonstrated, thus justifying a phytochemical investigation for its bioactive phenolic constituents. This has yielded five new sulphated flavonoids: 8-O-sulphate isoscutellarein (yannin) (1a); 4'-O-methyl-7-O-sulphate isoscutellarein (beltraonin) (1b); 7-O-sulphate acacetin (wissadulin) (2a); 4'-O-methyl-8-O-sulphate isoscutellarein (caicoine) (2b) and 3'-O-methyl-8-O-sulphate hypolaetin (pedroin) (3b) along with the known flavonoids 7,4'-di-O-methyl-8-O-sulphate isoscutellarein (4), acacetin, apigenin, isoscutellarein, 4'-O-methyl isoscutellarein, 7,4'-di-O-methylisoscutellarein, astragalin and tiliroside. The compounds were isolated by column chromatography and identified by NMR (¹H, (13)C, HMQC, HMBC and COSY) and LC-HRMS. A cell based assay was carried out to evaluate the preliminary cytotoxic properties of the flavonoids against UVW glioma and PC-3M prostate cancer cells as well as non-tumour cell lines. The obtained results showed that acacetin, tiliroside, a mixture of acacetin + apigenin and the sulphated flavonoids 2a + 2b exhibited inhibitory activity against at least one of the cell lines tested. Among the tested flavonoids acacetin and tiliroside showed lower IC50 values, presenting promising antitumor effects.


Assuntos
Flavonoides/química , Malvaceae/química , Extratos Vegetais/química , Sulfatos/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Flavonoides/farmacologia , Humanos , Concentração Inibidora 50 , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Extratos Vegetais/farmacologia
13.
Phytother Res ; 28(12): 1756-60, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25044090

RESUMO

Propolis is increasingly being explored as a source of biologically active compounds. Until now, there has been no study of Libyan propolis. Two samples were collected in North East Libya and tested for their activity against Trypanosoma brucei. Extracts from both samples had quite high activity. One of the samples was fractionated and yielded a number of active fractions. Three of the active fractions contained single compounds, which were found to be 13-epitorulosal, acetyl-13-epi-cupressic acid and 13-epi-cupressic acid, which have been described before in Mediterranean propolis. Two of the compounds had a minimum inhibitory concentration value of 1.56 µg/mL against T. brucei. The active fractions were also tested against macrophages infected with Leishmania donovani, and again moderate to strong activity was observed with the compounds having IC50 values in the range 5.1-21.9 µg/mL.


Assuntos
Antiprotozoários/farmacologia , Diterpenos/isolamento & purificação , Diterpenos/farmacologia , Própole/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Animais , Diterpenos/química , Concentração Inibidora 50 , Leishmania donovani/efeitos dos fármacos , Líbia , Macrófagos Peritoneais/parasitologia , Masculino , Camundongos Endogâmicos BALB C
14.
Pharm Biol ; 52(8): 983-7, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24597622

RESUMO

CONTEXT: Trypanosoma brucei brucei (T.b. brucei) infection causes death in cattle, while the current treatments have serious toxicity problems. However, natural products can be used to overcome the problems associated with parasitic diseases including T.b. brucei. OBJECTIVE: Artemisia elegantissima Pamp (Asteraceae) was evaluated phytochemically for its constituents and antitrypanosomal potential against T.b. brucei for the first time. Scopoletin isolated from A. elegantissima has shown better potential then the standard drug suramin, used against T.b. brucei. MATERIALS AND METHODS: The ethanol extract of the aerial parts of A. elegantissima was fractionated by column and preparative thin-layer chromatography into six fractions (A-F) yielding 13 compounds, these were evaluated for their antitrypanosomal activity against T.b. brucei at different concentrations. RESULTS: Thirteen compounds were isolated from A. elegantissima: (Z)-p-hydroxy cinnamic acid, stigmasterol, ß-sitosterol, betulinic acid, bis-dracunculin, dracunculin, scopoletin, apigenin, dihydroluteolin, scoparol, nepetin, bonanzin, and 3',4'-dihydroxy bonanzin. The fractions D-F were found to be active at the concentration of 20 µg/ml and three compounds isolated from these fractions, scopoletin (MIC ≤0.19 µg/ml), 3',4'-dihydroxy bonanzin (MIC = 6.25 µg/ml) and bonanzin (MIC = 20 µg/ml), were found to be highly active. DISCUSSION AND CONCLUSION: Artemisia elegantissima was phytochemically and biologically explored for its antitrypanosomal potential against T.b. brucei. The number and orientation of phenolic hydroxyl groups play an important role in the antitrypanosomal potential of coumarins and flavonoids. The compounds 3',4'-dihydroxy bonanzin and scopoletin with low MIC values, hold potential for use as antitrypanosomal drug leads.


Assuntos
Artemisia , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Animais , Compostos Fitoquímicos/isolamento & purificação , Componentes Aéreos da Planta , Extratos Vegetais/isolamento & purificação , Ovinos , Tripanossomicidas/isolamento & purificação , Trypanosoma brucei brucei/isolamento & purificação , Trypanosoma brucei brucei/fisiologia
15.
J Biomol Struct Dyn ; 42(5): 2449-2463, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37199276

RESUMO

Available anti-leishmanial drugs are associated with toxic side effects, necessitating the search for safe and effective alternatives. This study is focused on identifying traditional medicinal plant natural products for anti-leishmanial potential and possible mechanism of action. Compounds S and T. cordifolia residual fraction (TC-5) presented the best anti-leishmanial activity (IC50: 0.446 and 1.028 mg/ml) against promastigotes at 48 h and less cytotoxicity to THP-1 macrophages. These test agents elicited increased expression of pro-inflammatory cytokines; TNFα and IL-12. In infected untreated macrophages, NO release was suppressed but was significantly (p < 0.05) increased in infected cells treated with compound S. Importantly, Compound S was found to interact with LdTopoIIdimer in silico, resulting in a likely reduced ability of nucleic acid (dsDNA)-remodelling and, as a result, parasite proliferation in vitro. Thereby, Compound S possesses anti-leishmanial activity and this effect occurs via a Th1-mediated pro-inflammatory response. An increase in NO release and its inhibitory effect on LdTopoII may also contribute to the anti-leishmanial effect of compound S. These results show the potential of this compound as a potential starting point for the discovery of novel anti-leishmanial leads.Communicated by Ramaswamy H. Sarma.


Assuntos
Antiprotozoários , Leishmania donovani , Plantas Medicinais , Extratos Vegetais/farmacologia , Citocinas/metabolismo , Antiprotozoários/farmacologia
16.
J Ethnopharmacol ; 317: 116804, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37352945

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Malaria is a leading cause of death in many developing countries, especially in sub-Saharan Africa. Nigeria is endowed with an abundance of medicinal plants, many of which are used to treat malaria. Celtis durandii Engl. is one such plant used as a traditional antimalarial remedy in southeast Nigeria. However, its antiplasmodial potential is poorly explored. AIM OF THE STUDY: The study aimed at identifying the antiplasmodial components of C. durandii root extract through antiplasmodial activity-guided fractionation. MATERIALS AND METHODS: Dichloromethane/methanol mixture extract (1:1 v/v) of C. durandii root was prepared and partitioned against water to obtain the organic phase, which was further separated by column chromatography into nine (C1 - C9) fractions. The antiplasmodial activity was evaluated by in vitro screening of the different fractions against drug-sensitive and drug-resistant Plasmodium falciparum strains. Further purification of the active column fractions resulted in a potent anti-Plasmodial compound that was subsequently investigated for its effect on ß-hematin formation. Additionally, the isolated compound was characterized and identified as marmesin using mass spectrometry and nuclear magnetic resonance spectroscopy. RESULTS: Celtis durandii root extract exhibited promising antiplasmodial activity {IC50 (µg/ml) 5.92, 6.04, and 6.92} against PfW2mef, PfINDO, and Pf3D7 respectively. Pooled fractions with good antiplasmodial activity {IC50 (µg/ml) Pf3D7: 3.99; PfINDO: 2.24} and selectivity for the parasites (SI: 21) yielded a compound that was fourteen-fold potent in antiplasmodial activity against Pf3D7(IC50: 0.28 µg/ml). It also inhibited ß-hematin formation with an IC50 = 150 µM. Further studies using spectral data, literature, and chemical databases identified the purified compound as marmesin. CONCLUSION: This work has demonstrated that Celtis durandii root extract has good antiplasmodial activity against drug-sensitive and drug-resistant P. falciparum. The inhibition of ß-hematin formation by marmesin accounts in part for this activity.


Assuntos
Antimaláricos , Malária , Humanos , Extratos Vegetais/química , Malária/tratamento farmacológico , Plasmodium falciparum
17.
Nat Prod Res ; 36(19): 4943-4948, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34011227

RESUMO

A new eusdesmane sesquiterpenoid, characterised as 5-acetoxy-9aß-hydroxy-4aαH-3,5α, 8aß-trimethyl-4, 4a, 6, 7, 8a, 9-hexahydronaphtho-([2, 3 b]-dihydrofuran-2-one)-8-one or phaeusmane F acetate (1) has been isolated from the rhizomes of the South African variety of wild ginger (iphonochilus aethiopicus (Schweinf) B.L. Burtt). The compound was obtained after a series of column and gel filtration chromatography. Its structure was elucidated by NMR and Mass-Spectrometric analyses, including 1 D-, 2 D-NMR and HR-LCMS. This is an initial report of the compound from a Siphonochilus sp. Previously isolated similar compounds from the plant material were 4aαH-3,5α,8aß-trimethyl-4,4a,8a,9-tetrahydronaphtho[2,3b]-furan-8-one (siphonochilone) (2), 9aß-hydroxy-4aαH-3,5α,8aß-trimethyl-4,4a,8a,9-tetrahydronaphtho-([2,3b]-dihydrofuran-2-one)-8-one (3), 4aαH-3,5α,8aß-trimethyl-4,4a,8a,9-tetrahydronaphtho-([2,3b]-dihydrofuran-2-one)-8-one (4), 2-hydroxy-4aαH-3,5α,8aß-trimethyl-4,4a,8a,9-tetrahydro-naphtho[2,3b]- furan-8(5H)-one (5), 4aαH-3,5α,8aß-trimethyl-4,4a,8a-trihydronaphtho-([2,3b]-dihydrofuran-2-one)-8-one (6).[Formula: see text].


Assuntos
Asarum , Sesquiterpenos , Zingiberaceae , Furanos/química , Furanos/farmacologia , Sesquiterpenos/química , Sesquiterpenos/farmacologia , África do Sul , Zingiberaceae/química
18.
Nat Prod Res ; 35(21): 3619-3624, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31992089

RESUMO

The stem bark of Cassia sieberiana was extracted with methanol and the methanol extract partitioned with chloroform. Column chromatography of the chloroform fraction over silica gel yielded a novel benzofurochromene [2-(4-hydroxylphenyl)-7'-1, 2-dihydroxy-1-phenylpropyl)-4', 6'-dihydroxy [1] phenylbenzofuro (2, 3-c)-7'-chromene], lupeol and epiafzelechin. Their structures determined by Nuclear Magnetic resonance and mass spectrometry.[Figure: see text].


Assuntos
Cassia , Benzopiranos , Extratos Vegetais
19.
Nat Prod Res ; 35(24): 5588-5595, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32713200

RESUMO

The Nigerian and South African varieties of Siphonochilus aethiopicus were examined for their phytochemical constituents. The ethyl acetate extract of the rhizomes of the South African variety yielded a novel diarylheptanoid, 2,3-diacetoxy-7-(3'',4''-dihydroxy-5''-methoxyphenyl)-1-(4'-hydroxy-3'-methoxyphenyl)-5-heptene and the flavonoid 3,7-dimethoxyquercetin. From the hexane extract of the Nigerian variety, siphonochilone and another flavonoid, 3,4',7-trimethylkaempferol were isolated. The isolated compounds were characterised by NMR spectroscopic techniques and mass spectrometry. The diarylheptanoid was then assayed for antiplasmodial activity in vitro using a Plasmodium falciparum growth inhibition assay. At the concentrations tested, the compound inhibited parasite growth by 69 - 74%, without producing cytotoxic or significant haemolytic effects. The antiplasmodial activity of the compound is likely mediated by direct mechanism(s) in erythrocytic - stage parasites.


Assuntos
Antimaláricos , Zingiberaceae , Antimaláricos/farmacologia , Diarileptanoides , Extratos Vegetais/farmacologia , Plasmodium falciparum
20.
Front Chem ; 9: 624741, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33968894

RESUMO

The powdered roots of the medicinal plant Acacia nilotica were extracted with hexane and ethyl acetate, and the extracts were subjected to column chromatography for the isolation of potentially bioactive compounds and their screening against kinetoplastid pathogens. NMR and HREI mass spectrometric analyses identified two new diterpenes, characterized as 16, 19-dihydroxycassa-12-en-15-one (Sandynone, 1) and (5S, 7R, 8R, 9R, 10S, 13Z, 17S)-7,8:7,17:16,17-triepoxy-7,8-seco-cassa-13-ene (niloticane B, 2). The previously reported (5S,7R,8R,9R,10S) -(-)-7,8-seco-7, 8-oxacassa-13,15-diene-7,17-diol (3), (5S,7R,8R,9R,10S) -(-)-7,8-seco-7, 8-oxacassa-13,15-dien-7-ol-17-al (4), and (5S,7R,8R,9R,10S) -(-)-7,8-seco-7, 8-oxacassa-13,15-dien-7-ol (5) a, mixture of stigmasterol (6a) and sitosterol (6b), and lupeol (7) were also isolated. Several column fractions displayed significant activity against a panel of Trypanosoma and Leishmania spp., and from the most active fraction, compound 4 was isolated with high purity. The compound displayed high activity, particularly against T. brucei, T. evansi, and L. mexicana (0.88-11.7 µM) but only a modest effect against human embryonic kidney cells and no cross-resistance with the commonly used melaminophenyl arsenical and diamidine classes of trypanocides. The effect of compound 4 against L. mexicana promastigotes was irreversible after a 5-h exposure, leading to the sterilization of the culture between 24 and 48 h.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa