Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 25(29): 7225-7226, 2019 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-31050069

RESUMO

This is a response to the paper published by S. A. Kadam, H. Li, R. F. Wormsbacher, A. Travert, Chem. Eur. J. 2018, 24, 5489. Key consistencies between our reported results and those reported in this work are also highlighted.

2.
Chemphyschem ; 19(4): 341-358, 2018 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-29239509

RESUMO

Acidic zeolites are effective catalysts for the cracking of large hydrocarbon molecules into lower molecular weight products required for transportation fuels. However, the ways in which the zeolite structure affects the catalytic activity at Brønsted protons are not fully understood. One way to characterize the influence of the zeolite structure on the catalysis is to study alkane cracking and dehydrogenation at very low conversion, conditions for which the kinetics are well defined. To understand the effects of zeolite structure on the measured rate coefficient (kapp ), it is necessary to identify the equilibrium constant for adsorption into the reactant state (Kads-H+ ) and the intrinsic rate coefficient of the reaction (kint ) at reaction temperatures, since kapp is proportional to the product of Kads-H+ and kint . We show that Kads-H+ cannot be calculated from experimental adsorption data collected near ambient temperature, but can, however, be estimated accurately from configurational-bias Monte Carlo (CBMC) simulations. Using monomolecular cracking and dehydrogenation of C3 -C6 alkanes as an example, we review recent efforts aimed at elucidating the influence of the acid site location and the zeolite framework structure on the observed values of kapp and its components, Kads-H+ and kint .

3.
J Am Chem Soc ; 138(14): 4739-56, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-26909765

RESUMO

The effects of zeolite structure on the kinetics of n-butane monomolecular cracking and dehydrogenation are investigated for eight zeolites differing in the topology of channels and cages. Monte Carlo simulations are used to calculate enthalpy and entropy changes for adsorption (ΔHads-H+ and ΔSads-H+) of gas-phase alkanes onto Brønsted protons. These parameters are used to extract intrinsic activation enthalpies (ΔHint‡), entropies (ΔSint‡), and rate coefficients (kint) from measured data. As ΔSads-H+ decreases (i.e., as confinement increases), ΔHint‡ and ΔSint‡ for terminal cracking and dehydrogenation decrease for a given channel topology. These results, together with positive values observed for ΔSint‡, indicate that the transition states for these reactions resemble products. For central cracking (an earlier transition state), ΔHint‡ is relatively constant, while ΔSint‡ increases as ΔSads-H+ decreases because less entropy is lost upon protonation of the alkane. Concurrently, selectivities to terminal cracking and dehydrogenation decrease relative to central cracking because ΔSint‡ decreases for the former reactions. Depending on channel topology, changes in the measured rate coefficients (kapp) with confinement are driven by changes in kint or by changes in the adsorption equilibrium constant (Kads-H+). Values of ΔSint‡ and ΔHint‡ are positively correlated, consistent with weaker interactions between the zeolite and transition state and with the greater freedom of movement of product fragments within more spacious pores. These results differ from earlier reports that ΔHint‡ and ΔSint‡ are structure-insensitive and that kapp is dominated by Kads-H+. They also suggest that ΔSads-H+ is a meaningful descriptor of confinement for zeolites having similar channel topologies.


Assuntos
Butanos/química , Zeolitas/química , Adsorção , Simulação por Computador , Hidrogenação , Cinética , Método de Monte Carlo , Termodinâmica , Difração de Raios X
4.
J Am Chem Soc ; 135(51): 19193-207, 2013 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-24237304

RESUMO

The aim of this study was to investigate the influence of Si/Al ratio on the locations of exchangeable cations in H-MFI and on the monomolecular cracking and dehydrogenation reactions of n-butane. On the basis of UV-visible spectroscopic analysis of Co(II) exchanged into MFI, it was inferred that the fraction of Co(II) (and, by extension, Brønsted protons) located at channel intersections relative to straight and sinusoidal channels increases with increasing Al content. Concurrently, turnover frequencies for all monomolecular reactions, and the selectivities to dehydrogenation versus cracking and to terminal cracking versus central cracking, generally increased. The changes in selectivity with Al content are consistent with the finding that the transition-state geometry for dehydrogenation is bulky and resembles a product state, and should therefore exhibit a stronger preference to occur at channel intersections relative to cracking. Increases in turnover frequencies are attributed partly to increases in intrinsic activation entropies that compensate for concurrent increases in intrinsic activation energies, most strongly for dehydrogenation and terminal cracking, resulting in increased selectivity to these reactions at higher Al content. This interpretation contrasts with the view that intrinsic activation barriers are constant. It is also observed that isobutene inhibits the rate of n-butane dehydrogenation. Theoretical calculations indicate that this effect originates from adsorption of isobutene at the channel intersections. Because cracking reaction rates are not affected by the presence of isobutene, this result suggests that the preference of dehydrogenation to occur at channel intersections is much stronger than the preference for cracking to occur at these locations.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa