Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 367
Filtrar
1.
Annu Rev Microbiol ; 74: 655-671, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32689914

RESUMO

Human-adapted bacterial pathogens use a mechanism called phase variation to randomly switch the expression of individual genes to generate a phenotypically diverse population to adapt to challenges within and between human hosts. There are increasing reports of restriction-modification systems that exhibit phase-variable expression. The outcome of phase variation of these systems is global changes in DNA methylation. Analysis of phase-variable Type I and Type III restriction-modification systems in multiple human-adapted bacterial pathogens has demonstrated that global changes in methylation regulate the expression of multiple genes. These systems are called phasevarions (phase-variable regulons). Phasevarion switching alters virulence phenotypes and facilitates evasion of host immune responses. This review describes the characteristics of phasevarions and implications for pathogenesis and immune evasion. We present and discuss examples of phasevarion systems in the major human pathogens Haemophilus influenzae, Neisseria meningitidis, Neisseria gonorrhoeae, Helicobacter pylori, Moraxella catarrhalis, and Streptococcus pneumoniae.


Assuntos
Bactérias/genética , Bactérias/patogenicidade , Epigênese Genética , Regulação Bacteriana da Expressão Gênica , Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , Metilação de DNA , Enzimas de Restrição-Modificação do DNA/genética , Enzimas de Restrição-Modificação do DNA/metabolismo , Humanos , Regulon , Virulência
2.
Nucleic Acids Res ; 51(7): 3240-3260, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36840716

RESUMO

Actinobacillus pleuropneumoniae is the cause of porcine pleuropneumonia, a severe respiratory tract infection that is responsible for major economic losses to the swine industry. Many host-adapted bacterial pathogens encode systems known as phasevarions (phase-variable regulons). Phasevarions result from variable expression of cytoplasmic DNA methyltransferases. Variable expression results in genome-wide methylation differences within a bacterial population, leading to altered expression of multiple genes via epigenetic mechanisms. Our examination of a diverse population of A. pleuropneumoniae strains determined that Type I and Type III DNA methyltransferases with the hallmarks of phase variation were present in this species. We demonstrate that phase variation is occurring in these methyltransferases, and show associations between particular Type III methyltransferase alleles and serovar. Using Pacific BioSciences Single-Molecule, Real-Time (SMRT) sequencing and Oxford Nanopore sequencing, we demonstrate the presence of the first ever characterised phase-variable, cytosine-specific Type III DNA methyltransferase. Phase variation of distinct Type III DNA methyltransferase in A. pleuropneumoniae results in the regulation of distinct phasevarions, and in multiple phenotypic differences relevant to pathobiology. Our characterisation of these newly described phasevarions in A. pleuropneumoniae will aid in the selection of stably expressed antigens, and direct and inform development of a rationally designed subunit vaccine against this major veterinary pathogen.


Assuntos
Actinobacillus pleuropneumoniae , Variação de Fase , Animais , Suínos , Actinobacillus pleuropneumoniae/genética , Actinobacillus pleuropneumoniae/metabolismo , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , Metilação de DNA , Metiltransferases/genética , Metiltransferases/metabolismo , Bactérias/genética , DNA/metabolismo
3.
PLoS Pathog ; 18(6): e1010582, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35700218

RESUMO

Extra-intestinal pathogenic Escherichia coli (ExPEC) belong to a critical priority group of antibiotic resistant pathogens. ExPEC establish gut reservoirs that seed infection of the urinary tract and bloodstream, but the mechanisms of gut colonisation remain to be properly understood. Ucl fimbriae are attachment organelles that facilitate ExPEC adherence. Here, we investigated cellular receptors for Ucl fimbriae and Ucl expression to define molecular mechanisms of Ucl-mediated ExPEC colonisation of the gut. We demonstrate differential expression of Ucl fimbriae in ExPEC sequence types associated with disseminated infection. Genome editing of strains from two common sequence types, F11 (ST127) and UTI89 (ST95), identified a single nucleotide polymorphism in the ucl promoter that changes fimbriae expression via activation by the global stress-response regulator OxyR, leading to altered gut colonisation. Structure-function analysis of the Ucl fimbriae tip-adhesin (UclD) identified high-affinity glycan receptor targets, with highest affinity for sialyllacto-N-fucopentose VI, a structure likely to be expressed on the gut epithelium. Comparison of the UclD adhesin to the homologous UcaD tip-adhesin from Proteus mirabilis revealed that although they possess a similar tertiary structure, apart from lacto-N-fucopentose VI that bound to both adhesins at low-micromolar affinity, they recognize different fucose- and glucose-containing oligosaccharides. Competitive surface plasmon resonance analysis together with co-structural investigation of UcaD in complex with monosaccharides revealed a broad-specificity glycan binding pocket shared between UcaD and UclD that could accommodate these interactions. Overall, our study describes a mechanism of adaptation that augments establishment of an ExPEC gut reservoir to seed disseminated infections, providing a pathway for the development of targeted anti-adhesion therapeutics.


Assuntos
Infecções por Escherichia coli , Escherichia coli Extraintestinal Patogênica , Adesinas Bacterianas/metabolismo , Adesinas de Escherichia coli/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Infecções por Escherichia coli/metabolismo , Escherichia coli Extraintestinal Patogênica/genética , Escherichia coli Extraintestinal Patogênica/metabolismo , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/metabolismo , Humanos , Enteropatias , Polissacarídeos/metabolismo
4.
Antimicrob Agents Chemother ; 67(1): e0096822, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36602335

RESUMO

Neisseria gonorrhoeae has developed resistance to all previous antibiotics used for treatment. This highlights a crucial need for novel antimicrobials to treat gonococcal infections. We previously showed that carbamazepine (Cz), one of the most commonly prescribed antiepileptic drugs, can block the interaction between gonococcal pili and the I-domain region of human complement receptor 3 (CR3)-an interaction that is vital for infection of the female cervix. We also show that Cz can completely clear an established N. gonorrhoeae infection of primary human cervical cells. In this study, we quantified Cz in serum, saliva, and vaginal fluid collected from 16 women who were, or were not, regularly taking Cz. We detected Cz in lower reproductive tract mucosal secretions in the test group (women taking Cz) at potentially therapeutic levels using a competitive ELISA. Furthermore, we found that Cz concentrations present in vaginal fluid from women taking this drug were sufficient to result in a greater than 99% reduction (within 24 h) in the number of viable gonococci recovered from ex vivo, human, primary cervical cell infections. These data provide strong support for the further development of Cz as a novel, host-targeted therapy to treat gonococcal cervicitis.


Assuntos
Epilepsia , Gonorreia , Humanos , Feminino , Reposicionamento de Medicamentos , Gonorreia/tratamento farmacológico , Neisseria gonorrhoeae , Carbamazepina/uso terapêutico , Carbamazepina/farmacologia
5.
Biochem Biophys Res Commun ; 642: 162-166, 2023 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-36580827

RESUMO

Cutaneous melanoma is one of the most aggressive and deadly types of skin cancer and rates of disease are continuing to increase worldwide. Currently, no serum biomarkers exist for the early detection of cutaneous melanoma. Normal human cells cannot make the sialic acid sugar, Neu5Gc, yet human tumor cells express Neu5Gc and Neu5Gc-containing glycoconjugates have been proposed as tumor biomarkers. We engineered a Neu5Gc-specific lectin based on the pentameric B-subunit of the Shiga toxigenic Escherichia coli subtilase cytotoxin, termed SubB2M. We have detected elevated Neu5Gc-containing biomarkers in the sera of ovarian and breast cancer patients in a highly sensitive surface plasmon resonance (SPR)-based assay using our SubB2M lectin. Here, we used the SubB2M-SPR assay to investigate Neu5Gc-containing glycoconjugates in the serum of cutaneous melanoma patients. We found elevated total serum Neu5Gc levels in primary (n = 24) and metastatic (n = 38) patients compared to cancer-free controls (n = 34). Serum Neu5Gc levels detected with SubB2M can distinguish cutaneous melanoma patients from cancer-free controls with high sensitivity and specificity as determined by ROC curve analysis. These data indicate that serum Neu5Gc-containing glycoconjugates are a novel class of biomarkers for cutaneous melanoma, particularly for primary melanoma, and have the potential to contribute to the early diagnosis of this disease.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/diagnóstico , Neoplasias Cutâneas/diagnóstico , Ácidos Neuramínicos , Lectinas , Biomarcadores Tumorais , Glicoconjugados , Melanoma Maligno Cutâneo
6.
Gynecol Oncol ; 179: 85-90, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37944330

RESUMO

OBJECTIVE: Aberrant ß-catenin distribution has been theorized as a predictive biomarker for recurrence in early stage, low grade endometrioid endometrial cancer. METHODS: This retrospective single-institution cohort study reviewed 410 patients with endometrial cancer from May 2018 to May 2022. Only endometrioid histology was included. Demographic and clinicopathological data were collected from the medical records. Univariate and multivariate logistic regressions, and sensitivity analyses for early stage, low grade and no specific molecular profile (NSMP) tumors were performed. RESULTS: 297 patients were included for analysis. Most patients were over 60 years old, White, and with a BMI >30 and early stage low grade disease. Aberrant ß-catenin distribution was found in 135 patients (45.5%) and wild type membranous ß-catenin distribution in 162 (54.5%). While TP53 mutation correlated with endometrial cancer recurrence in this cohort (OR = 4.78), aberrant ß-catenin distribution did not correlate in the overall population (OR = 0.75), the early stage low grade cancers (OR = 0.84), or the NSMP group (OR = 1.41) on univariate or multivariate analysis. No correlation between ß-catenin distribution and local (OR = 0.61) or distant recurrences (OR = 0.90) was detected. CONCLUSIONS: Aberrant ß-catenin distribution did not significantly correlate with recurrence in endometrioid endometrial cancer, nor in the early stage, low grade and NSMP sub-cohorts.


Assuntos
Carcinoma Endometrioide , Neoplasias do Endométrio , Feminino , Humanos , Pessoa de Meia-Idade , beta Catenina/genética , Cateninas , Estudos Retrospectivos , Estudos de Coortes , Recidiva Local de Neoplasia/patologia , Carcinoma Endometrioide/genética , Carcinoma Endometrioide/patologia , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/patologia
7.
Nucleic Acids Res ; 49(2): e7, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-32710622

RESUMO

Traditional epitranscriptomics relies on capturing a single RNA modification by antibody or chemical treatment, combined with short-read sequencing to identify its transcriptomic location. This approach is labor-intensive and may introduce experimental artifacts. Direct sequencing of native RNA using Oxford Nanopore Technologies (ONT) can allow for directly detecting the RNA base modifications, although these modifications might appear as sequencing errors. The percent Error of Specific Bases (%ESB) was higher for native RNA than unmodified RNA, which enabled the detection of ribonucleotide modification sites. Based on the %ESB differences, we developed a bioinformatic tool, epitranscriptional landscape inferring from glitches of ONT signals (ELIGOS), that is based on various types of synthetic modified RNA and applied to rRNA and mRNA. ELIGOS is able to accurately predict known classes of RNA methylation sites (AUC > 0.93) in rRNAs from Escherichiacoli, yeast, and human cells, using either unmodified in vitro transcription RNA or a background error model, which mimics the systematic error of direct RNA sequencing as the reference. The well-known DRACH/RRACH motif was localized and identified, consistent with previous studies, using differential analysis of ELIGOS to study the impact of RNA m6A methyltransferase by comparing wild type and knockouts in yeast and mouse cells. Lastly, the DRACH motif could also be identified in the mRNA of three human cell lines. The mRNA modification identified by ELIGOS is at the level of individual base resolution. In summary, we have developed a bioinformatic software package to uncover native RNA modifications.


Assuntos
Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Processamento Pós-Transcricional do RNA , RNA-Seq , Erro Científico Experimental , Software , Adenina/análogos & derivados , Adenina/análise , Animais , Linhagem Celular , Escherichia coli/genética , Humanos , Meiose , Metiltransferases/deficiência , Metiltransferases/metabolismo , Camundongos , Camundongos Knockout , Motivos de Nucleotídeos , RNA Bacteriano/genética , RNA Fúngico/genética , RNA Mensageiro/genética , RNA Ribossômico/genética , Curva ROC , Saccharomyces cerevisiae/genética , Análise de Sequência de DNA , Moldes Genéticos , Transcrição Gênica
8.
Proc Natl Acad Sci U S A ; 117(1): 717-726, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31871197

RESUMO

Mechanosensitive ion channels are crucial for normal cell function and facilitate physiological function, such as blood pressure regulation. So far little is known about the molecular mechanisms of how channels sense mechanical force. Canonical vertebrate epithelial Na+ channel (ENaC) formed by α-, ß-, and γ-subunits is a shear force (SF) sensor and a member of the ENaC/degenerin protein family. ENaC activity in epithelial cells contributes to electrolyte/fluid-homeostasis and blood pressure regulation. Furthermore, ENaC in endothelial cells mediates vascular responsiveness to regulate blood pressure. Here, we provide evidence that ENaC's ability to mediate SF responsiveness relies on the "force-from-filament" principle involving extracellular tethers and the extracellular matrix (ECM). Two glycosylated asparagines, respectively their N-glycans localized in the palm and knuckle domains of αENaC, were identified as potential tethers. Decreased SF-induced ENaC currents were observed following removal of the ECM/glycocalyx, replacement of these glycosylated asparagines, or removal of N-glycans. Endothelial-specific overexpression of αENaC in mice induced hypertension. In contrast, expression of αENaC lacking these glycosylated asparagines blunted this effect. In summary, glycosylated asparagines in the palm and knuckle domains of αENaC are important for SF sensing. In accordance with the force-from-filament principle, they may provide a connection to the ECM that facilitates vascular responsiveness contributing to blood pressure regulation.


Assuntos
Asparagina/metabolismo , Canais Epiteliais de Sódio/metabolismo , Matriz Extracelular/metabolismo , Domínios Proteicos/genética , Animais , Asparagina/química , Modelos Animais de Doenças , Células Endoteliais , Endotélio Vascular/citologia , Endotélio Vascular/patologia , Endotélio Vascular/fisiopatologia , Canais Epiteliais de Sódio/química , Canais Epiteliais de Sódio/genética , Feminino , Glicosilação , Células HEK293 , Humanos , Hipertensão/etiologia , Hipertensão/patologia , Hipertensão/fisiopatologia , Masculino , Camundongos , Camundongos Transgênicos , Mutagênese Sítio-Dirigida , Oócitos , Técnicas de Patch-Clamp , Mutação Puntual , Polissacarídeos/química , Estresse Mecânico , Xenopus laevis
9.
Infect Immun ; 90(4): e0056521, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35258316

RESUMO

Lav is an autotransporter protein found in pathogenic Haemophilus and Neisseria species. Lav in nontypeable Haemophilus influenzae (NTHi) is phase-variable: the gene reversibly switches ON-OFF via changes in length of a locus-located GCAA(n) simple DNA sequence repeat tract. The expression status of lav was examined in carriage and invasive collections of NTHi, where it was predominantly not expressed (OFF). Phenotypic study showed lav expression (ON) results in increased adherence to human lung cells and denser biofilm formation. A survey of Haemophilus species genome sequences showed lav is present in ∼60% of NTHi strains, but lav is not present in most typeable H. influenzae strains. Sequence analysis revealed a total of five distinct variants of the Lav passenger domain present in Haemophilus spp., with these five variants showing a distinct lineage distribution. Determining the role of Lav in NTHi will help understand the role of this protein during distinct pathologies.


Assuntos
Infecções por Haemophilus , Haemophilus influenzae , Biofilmes , Haemophilus influenzae/genética , Haemophilus influenzae/metabolismo , Humanos , Sistemas de Secreção Tipo V/genética , Sistemas de Secreção Tipo V/metabolismo
10.
Antimicrob Agents Chemother ; 66(9): e0231821, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35980187

RESUMO

Multidrug-resistant (MDR) N. gonorrhoeae is a current public health threat. New therapies are urgently needed. PBT2 is an ionophore that disrupts metal homeostasis. PBT2 administered with zinc is shown to reverse resistance to antibiotics in several bacterial pathogens. Here we show that both N. meningitidis and MDR N. gonorrhoeae are sensitive to killing by PBT2 alone. PBT2 is, thus, a candidate therapeutic for MDR N. gonorrhoeae infections.


Assuntos
Gonorreia , Neisseria meningitidis , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Gonorreia/tratamento farmacológico , Gonorreia/microbiologia , Humanos , Ionóforos/farmacologia , Ionóforos/uso terapêutico , Testes de Sensibilidade Microbiana , Neisseria gonorrhoeae , Zinco
11.
Microbiology (Reading) ; 168(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35316172

RESUMO

N -glycolylneuraminic acid (Neu5Gc), and its precursor N-acetylneuraminic acid (Neu5Ac), commonly referred to as sialic acids, are two of the most common glycans found in mammals. Humans carry a mutation in the enzyme that converts Neu5Ac into Neu5Gc, and as such, expression of Neu5Ac can be thought of as a 'human specific' trait. Bacteria can utilize sialic acids as a carbon and energy source and have evolved multiple ways to take up sialic acids. In order to generate free sialic acid, many bacteria produce sialidases that cleave sialic acid residues from complex glycan structures. In addition, sialidases allow escape from innate immune mechanisms, and can synergize with other virulence factors such as toxins. Human-adapted pathogens have evolved a preference for Neu5Ac, with many bacterial adhesins, and major classes of toxin, specifically recognizing Neu5Ac containing glycans as receptors. The preference of human-adapted pathogens for Neu5Ac also occurs during biosynthesis of surface structures such as lipo-oligosaccharide (LOS), lipo-polysaccharide (LPS) and polysaccharide capsules, subverting the human host immune system by mimicking the host. This review aims to provide an update on the advances made in understanding the role of sialic acid in bacteria-host interactions made in the last 5-10 years, and put these findings into context by highlighting key historical discoveries. We provide a particular focus on 'molecular mimicry' and incorporation of sialic acid onto the bacterial outer-surface, and the role of sialic acid as a receptor for bacterial adhesins and toxins.


Assuntos
Ácido N-Acetilneuramínico , Ácidos Siálicos , Animais , Bactérias/genética , Bactérias/metabolismo , Humanos , Mamíferos/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Neuraminidase , Ácidos Siálicos/metabolismo , Fatores de Virulência
12.
BMC Cancer ; 22(1): 334, 2022 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35346112

RESUMO

BACKGROUND: Normal human tissues do not express glycans terminating with the sialic acid N-glycolylneuraminic acid (Neu5Gc), yet Neu5Gc-containing glycans have been consistently found in human tumor tissues, cells and secretions and have been proposed as a cancer biomarker. We engineered a Neu5Gc-specific lectin called SubB2M, and previously reported elevated Neu5Gc biomarkers in serum from ovarian cancer patients using a Surface Plasmon Resonance (SPR)-based assay. Here we report an optimized SubB2M SPR-based assay and use this new assay to analyse sera from breast cancer patients for Neu5Gc levels. METHODS: To enhance specificity of our SPR-based assay, we included a non-sialic acid binding version of SubB, SubBA12, to control for any non-specific binding to SubB2M, which improved discrimination of cancer-free controls from early-stage ovarian cancer. We analysed 96 serum samples from breast cancer patients at all stages of disease compared to 22 cancer-free controls using our optimized SubB2M-A12-SPR assay. We also analysed a collection of serum samples collected at 6 monthly intervals from breast cancer patients at high risk for disease recurrence or spread. RESULTS: Analysis of sera from breast cancer cases revealed significantly elevated levels of Neu5Gc biomarkers at all stages of breast cancer. We show that Neu5Gc serum biomarker levels can discriminate breast cancer patients from cancer-free individuals with 98.96% sensitivity and 100% specificity. Analysis of serum collected prospectively, post-diagnosis, from breast cancer patients at high risk for disease recurrence showed a trend for a decrease in Neu5Gc levels immediately following treatment for those in remission. CONCLUSIONS: Neu5Gc serum biomarkers are a promising new tool for early detection and disease monitoring for breast cancer that may complement current imaging- and biopsy-based approaches.


Assuntos
Neoplasias da Mama , Biomarcadores Tumorais , Neoplasias da Mama/diagnóstico , Feminino , Humanos , Recidiva Local de Neoplasia , Ácidos Neuramínicos/metabolismo
13.
Am J Physiol Cell Physiol ; 321(6): C1028-C1059, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34669510

RESUMO

The major transmembrane protein of the red blood cell, known as band 3, AE1, and SLC4A1, has two main functions: 1) catalysis of Cl-/[Formula: see text] exchange, one of the steps in CO2 excretion, and 2) anchoring the membrane skeleton. This review summarizes the 150-year history of research on red cell anion transport and band 3 as an experimental system for studying membrane protein structure and ion transport mechanisms. Important early findings were that red cell Cl- transport is a tightly coupled 1:1 exchange and band 3 is labeled by stilbenesulfonate derivatives that inhibit anion transport. Biochemical studies showed that the protein is dimeric or tetrameric (paired dimers) and that there is one stilbenedisulfonate binding site per subunit of the dimer. Transport kinetics and inhibitor characteristics supported the idea that the transporter acts by an alternating access mechanism with intrinsic asymmetry. The sequence of band 3 cDNA provided a framework for detailed study of protein topology and amino acid residues important for transport. The identification of genetic variants produced insights into the roles of band 3 in red cell abnormalities and distal renal tubular acidosis. The publication of the membrane domain crystal structure made it possible to propose concrete molecular models of transport. Future research directions include improving our understanding of the transport mechanism at the molecular level and of the integrative relationships among band 3, hemoglobin, carbonic anhydrase, and gradients (both transmembrane and subcellular) of [Formula: see text], Cl-, O2, CO2, pH, and nitric oxide (NO) metabolites during pulmonary and systemic capillary gas exchange.


Assuntos
Proteína 1 de Troca de Ânion do Eritrócito/metabolismo , Membrana Celular/metabolismo , Eritrócitos/metabolismo , Animais , Fenômenos Fisiológicos Celulares/fisiologia , Humanos , Transporte de Íons/fisiologia , Proteínas de Membrana Transportadoras/metabolismo
14.
J Biol Chem ; 295(50): 17241-17250, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33051210

RESUMO

Leukocidin ED (LukED) is a pore-forming toxin produced by Staphylococcus aureus, which lyses host cells and promotes virulence of the bacteria. LukED enables S. aureus to acquire iron by lysing erythrocytes, which depends on targeting the host receptor Duffy antigen receptor for chemokines (DARC). The toxin also targets DARC on the endothelium, contributing to the lethality observed during bloodstream infection in mice. LukED is comprised of two monomers: LukE and LukD. LukE binds to DARC and facilitates hemolysis, but the closely related Panton-Valentine leukocidin S (LukS-PV) does not bind to DARC and is not hemolytic. The interaction of LukE with DARC and the role this plays in hemolysis are incompletely characterized. To determine the domain(s) of LukE that are critical for DARC binding, we studied the hemolytic function of LukE-LukS-PV chimeras, in which areas of sequence divergence (divergence regions, or DRs) were swapped between the toxins. We found that two regions of LukE's rim domain contribute to hemolysis, namely residues 57-75 (DR1) and residues 182-196 (DR4). Interestingly, LukE DR1 is sufficient to render LukS-PV capable of DARC binding and hemolysis. Further, LukE, by binding DARC through DR1, promotes the recruitment of LukD to erythrocytes, likely by facilitating LukED oligomer formation. Finally, we show that LukE targets murine Darc through DR1 in vivo to cause host lethality. These findings expand our biochemical understanding of the LukE-DARC interaction and the role that this toxin-receptor pair plays in S. aureus pathophysiology.


Assuntos
Proteínas de Bactérias , Sistema do Grupo Sanguíneo Duffy , Eritrócitos , Exotoxinas , Proteínas Hemolisinas , Receptores de Superfície Celular , Staphylococcus aureus , Animais , Humanos , Camundongos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sistema do Grupo Sanguíneo Duffy/química , Sistema do Grupo Sanguíneo Duffy/genética , Sistema do Grupo Sanguíneo Duffy/metabolismo , Eritrócitos/química , Eritrócitos/metabolismo , Exotoxinas/química , Exotoxinas/genética , Exotoxinas/metabolismo , Domínios Proteicos , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Staphylococcus aureus/química , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo
15.
Gastroenterology ; 159(4): 1431-1443.e6, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32574621

RESUMO

BACKGROUND & AIMS: The protease plasmin is an important wound healing factor, but it is not clear how it affects gastrointestinal infection-mediated damage, such as that resulting from Clostridioides difficile. We investigated the role of plasmin in C difficile-associated disease. This bacterium produces a spore form that is required for infection, so we also investigated the effects of plasmin on spores. METHODS: C57BL/6J mice expressing the precursor to plasmin, the zymogen human plasminogen (hPLG), or infused with hPLG were infected with C difficile, and disease progression was monitored. Gut tissues were collected, and cytokine production and tissue damage were analyzed by using proteomic and cytokine arrays. Antibodies that inhibit either hPLG activation or plasmin activity were developed and structurally characterized, and their effects were tested in mice. Spores were isolated from infected patients or mice and visualized using super-resolution microscopy; the functional consequences of hPLG binding to spores were determined. RESULTS: hPLG localized to the toxin-damaged gut, resulting in immune dysregulation with an increased abundance of cytokines (such as interleukin [IL] 1A, IL1B, IL3, IL10, IL12B, MCP1, MP1A, MP1B, GCSF, GMCSF, KC, TIMP-1), tissue degradation, and reduced survival. Administration of antibodies that inhibit plasminogen activation reduced disease severity in mice. C difficile spores bound specifically to hPLG and active plasmin degraded their surface, facilitating rapid germination. CONCLUSIONS: We found that hPLG is recruited to the damaged gut, exacerbating C difficile disease in mice. hPLG binds to C difficile spores, and, upon activation to plasmin, remodels the spore surface, facilitating rapid spore germination. Inhibitors of plasminogen activation might be developed for treatment of C difficile or other infection-mediated gastrointestinal diseases.


Assuntos
Clostridioides difficile/efeitos dos fármacos , Enterocolite Pseudomembranosa/etiologia , Enterocolite Pseudomembranosa/patologia , Plasminogênio/farmacologia , Esporos Bacterianos/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Humanos , Intestino Delgado , Camundongos , Camundongos Endogâmicos C57BL
16.
J Antimicrob Chemother ; 76(11): 2850-2853, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34450628

RESUMO

BACKGROUND: Neisseria gonorrhoeae is a Gram-negative bacterial pathogen that causes gonorrhoea. No vaccine is available to prevent gonorrhoea and the emergence of MDR N. gonorrhoeae strains represents an immediate public health threat. OBJECTIVES: To evaluate whether PBT2/zinc may sensitize MDR N. gonorrhoeae to natural cationic antimicrobial peptides. METHODS: MDR strains that contain differing resistance mechanisms against numerous antibiotics were tested in MIC assays. MIC assays were performed using the broth microdilution method according to CLSI guidelines in a microtitre plate. Serially diluted LL-37 or PG-1 was tested in combination with a sub-inhibitory concentration of PBT2/zinc. Serially diluted tetracycline was also tested with sub-inhibitory concentrations of PBT2/zinc and LL-37. SWATH-MS proteomic analysis of N. gonorrhoeae treated with PBT2/zinc, LL-37 and/or tetracycline was performed to determine the mechanism(s) of N. gonorrhoeae susceptibility to antibiotics and peptides. RESULTS: Sub-inhibitory concentrations of LL-37 and PBT2/zinc synergized to render strain WHO-Z susceptible to tetracycline, whereas the killing effect of PG-1 and PBT2/zinc was additive. SWATH-MS proteomic analysis suggested that PBT2/zinc most likely leads to a loss of membrane integrity and increased protein misfolding and, in turn, results in bacterial death. CONCLUSIONS: Here we show that PBT2, a candidate Alzheimer's and Huntington's disease drug, can be repurposed to render MDR N. gonorrhoeae more susceptible to the endogenous antimicrobial peptides LL-37 and PG-1. In the presence of LL-37, PBT2/zinc can synergize with tetracycline to restore tetracycline susceptibility to gonococci resistant to this antibiotic.


Assuntos
Doença de Alzheimer , Gonorreia , Doença de Huntington , Preparações Farmacêuticas , Doença de Alzheimer/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos , Gonorreia/tratamento farmacológico , Humanos , Doença de Huntington/tratamento farmacológico , Testes de Sensibilidade Microbiana , Neisseria gonorrhoeae , Proteômica
17.
Nat Chem Biol ; 15(6): 556-559, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31086327

RESUMO

Inhibition of the NLRP3 inflammasome is a promising strategy for the development of new treatments for inflammatory diseases. MCC950 is a potent and specific small-molecule inhibitor of the NLRP3 pathway, but its molecular target is not defined. Here, we show that MCC950 directly interacts with the Walker B motif within the NLRP3 NACHT domain, thereby blocking ATP hydrolysis and inhibiting NLRP3 activation and inflammasome formation.


Assuntos
Trifosfato de Adenosina/antagonistas & inibidores , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Inflamassomos/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Sulfonas/farmacologia , Trifosfato de Adenosina/metabolismo , Sítios de Ligação/efeitos dos fármacos , Furanos , Compostos Heterocíclicos de 4 ou mais Anéis/química , Humanos , Hidrólise/efeitos dos fármacos , Indenos , Inflamassomos/biossíntese , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Sulfonamidas , Sulfonas/química
18.
FASEB J ; 34(1): 1038-1051, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914596

RESUMO

Over recent years several examples of randomly switching methyltransferases, associated with Type III restriction-modification (R-M) systems, have been described in pathogenic bacteria. In every case examined, changes in simple DNA sequence repeats result in variable methyltransferase expression and result in global changes in gene expression, and differentiation of the bacterial cell into distinct phenotypes. These epigenetic regulatory systems are called phasevarions, phase-variable regulons, and are widespread in bacteria, with 17.4% of Type III R-M system containing simple DNA sequence repeats. A distinct, recombination-driven random switching system has also been described in Streptococci in Type I R-M systems that also regulate gene expression. Here, we interrogate the most extensive and well-curated database of R-M systems, REBASE, by searching for all possible simple DNA sequence repeats in the hsdRMS genes that encode Type I R-M systems. We report that 7.9% of hsdS, 2% of hsdM, and of 4.3% of hsdR genes contain simple sequence repeats that are capable of mediating phase variation. Phase variation of both hsdM and hsdS genes will lead to differential methyltransferase expression or specificity, and thereby the potential to control phasevarions. These data suggest that in addition to well characterized phasevarions controlled by Type III mod genes, and the previously described Streptococcal Type I R-M systems that switch via recombination, approximately 10% of all Type I R-M systems surveyed herein have independently evolved the ability to randomly switch expression via simple DNA sequence repeats.


Assuntos
Epigênese Genética , Repetições de Microssatélites , Regulon , Proteínas de Bactérias/genética , Biologia Computacional , DNA/análise , Metilação de DNA , Metilases de Modificação do DNA/metabolismo , Enzimas de Restrição-Modificação do DNA/genética , Enzimas de Restrição-Modificação do DNA/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo I/genética , Fusobacterium nucleatum , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Mannheimia haemolytica , Metiltransferases/metabolismo , Fenótipo , Pseudomonas aeruginosa , Salmonella enterica
19.
J Org Chem ; 86(13): 8945-8954, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34161091

RESUMO

The NXS (X = Cl, Br)-mediated halogenation of a series of (E)-α-trimethylsilyl-ß-alkyl(aryl)-α,ß-unsaturated esters in dimethylformamide (DMF) has furnished (Z)-ß-substituted-α-halogenated-α,ß-unsaturated ester products in moderate to high isolated yields (58-90%) with dr values of >20:1 coupled with the inversion of olefin stereochemistry. The reaction process was hypothesized to include an initial halonium cation intermediate, followed by regioselective ring opening with DMF. Subsequent anti-E2-type concomitant elimination allowed for the stereoselective formation of the product vinylic bromo-and chloroesters.


Assuntos
Ésteres , Halogenação , Alcenos , Estereoisomerismo , Succinimidas
20.
J Electrocardiol ; 69S: 7-11, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34548191

RESUMO

Automated interpretation of the 12-lead ECG has remained an underpinning interest in decades of research that has seen a diversity of computing applications in cardiology. The application of computers in cardiology began in the 1960s with early research focusing on the conversion of analogue ECG signals (voltages) to digital samples. Alongside this, software techniques that automated the extraction of wave measurements and provided basic diagnostic statements, began to emerge. In the years since then there have been many significant milestones which include the widespread commercialisation of 12-lead ECG interpretation software, associated clinical utility and the development of the related regulatory frameworks to promote standardised development. In the past few years, the research community has seen a significant rejuvenation in the development of ECG interpretation programs. This is evident in the research literature where a large number of studies have emerged tackling a variety of automated ECG interpretation problems. This is largely due to two factors. Specifically, the technical advances, both software and hardware, that have facilitated the broad adoption of modern artificial intelligence (AI) techniques, and, the increasing availability of large datasets that support modern AI approaches. In this article we provide a very high-level overview of the operation of and approach to the development of early 12-lead ECG interpretation programs and we contrast this to the approaches that are now seen in emerging AI approaches. Our overview is mainly focused on highlighting differences in how input data are handled prior to generation of the diagnostic statement.


Assuntos
Cardiologia , Aprendizado Profundo , Algoritmos , Inteligência Artificial , Eletrocardiografia , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa