Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Toxicol ; 43(5): 472-490, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38897632

RESUMO

The subchronic toxicity and toxicokinetics of a combination of rabeprazole sodium and sodium bicarbonate were investigated in dogs by daily oral administration for 13 consecutive weeks with a 4-week recovery period. The dose groups consisted of control (vehicles), (5 + 200), (10 + 400), and (20 + 800) mg/kg of rabeprazole sodium + sodium bicarbonate, 20 mg/kg of rabeprazole sodium only, and 800 mg/kg of sodium bicarbonate only. Esophageal ulceration accompanied by inflammation was observed in only one animal in the male (20 + 800) mg/kg rabeprazole sodium + sodium bicarbonate group. However, the severity of the ulceration was moderate, and the site of occurrence was focally extensive; thus, it was assumed to be a treatment-related effect of rabeprazole sodium + sodium bicarbonate. In the toxicokinetics component of this study, systemic exposure to rabeprazole sodium (AUClast and Cmax at Day 91) was greater in males than females, suggesting sex differences. AUClast and Cmax at Day 91 were increased compared to those on Day 1 in a dose-dependent manner. A delayed Tmax and no drug accumulation were observed after repeated dosage. In conclusion, we suggest under the conditions of this study that the no-observed-adverse-effect level (NOAEL) of the combination of rabeprazole sodium + sodium bicarbonate in male and female dogs is (10 + 400) and (20 + 800) mg/kg, respectively.


Assuntos
Rabeprazol , Bicarbonato de Sódio , Animais , Cães , Rabeprazol/farmacocinética , Rabeprazol/toxicidade , Rabeprazol/administração & dosagem , Masculino , Feminino , Administração Oral , Bicarbonato de Sódio/farmacocinética , Bicarbonato de Sódio/toxicidade , Bicarbonato de Sódio/administração & dosagem , Toxicocinética , Nível de Efeito Adverso não Observado , Área Sob a Curva , Relação Dose-Resposta a Droga , Combinação de Medicamentos , Testes de Toxicidade Subcrônica
2.
Anal Chem ; 95(32): 12177-12183, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37535805

RESUMO

Macrophages are key components of the innate immune system that have essential functions in physiological processes and diseases. The phenotypic plasticity of macrophages allows cells to be polarized into a multidimensional spectrum of phenotypes, broadly classed as pro-inflammatory (M1) and anti-inflammatory (M2) states. Repolarization of M1 to M2 phenotypes alters the immune response to ameliorate autoimmune and inflammation-associated diseases. Detection of this repolarization, however, is challenging to execute in high-throughput applications. In this work, we demonstrate the ability of a single polymer fabricated to provide a six-channel sensor array that can determine macrophage polarization phenotypes. This sensing platform provides a sensitive and high-throughput tool for detecting drug-induced M1-to-M2 repolarization, allowing the identification of new therapeutic leads for inflammatory diseases. The ability of this sensor array to discriminate different M2 subtypes induced by drugs can also improve the efficacy evaluation of anti-inflammatory drugs and avoid adverse effects.


Assuntos
Anti-Inflamatórios , Macrófagos , Humanos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Inflamação/tratamento farmacológico , Fenótipo
3.
Pharm Res ; 39(6): 1197-1204, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35297498

RESUMO

PURPOSE: Cytosolic delivery of proteins accesses intracellular targets for chemotherapy and immunomodulation. Current delivery systems utilize inefficient endosomal pathways of uptake and escape that lead to degradation of delivered cargo. Cationic poly(oxanorbornene)imide (PONI) polymers enable highly efficient cytosolic delivery of co-engineered proteins, but aggregation and denaturation in solution limits shelf life. In the present study we evaluate polymer-protein nanocomposite vehicles as candidates for lyophilization and point-of-care resuspension to provide a transferrable technology for cytosolic protein delivery. METHODS: Self-assembled nanocomposites of engineered poly(glutamate)-tagged (E-tagged) proteins and guanidinium-functionalized PONI homopolymers were generated, lyophilized, and stored for 2 weeks. After reconstitution and delivery, cytosolic access of E-tagged GFP cargo (GFPE15) was assessed through diffuse cytosolic and nuclear fluorescence, and cell killing with chemotherapeutic enzyme Granzyme A (GrAE10). Efficiency was quantified between freshly prepared and lyophilized samples. RESULTS: Reconstituted nanocomposites retained key structural features of freshly prepared assemblies, with minimal loss of material. Cytosolic delivery (> 80% efficiency of freshly prepared nanocomposites) of GFPE15 was validated in several cell lines, with intracellular access validated and quantified through diffusion into the nucleus. Delivery of GrAE10 elicited significant tumorigenic cell death. Intracellular access of cytotoxic protein was validated through cell viability. CONCLUSION: Reconstituted nanocomposites achieved efficient cytosolic delivery of protein cargo and demonstrated therapeutic applicability with delivery of GrAE10. Overall, this strategy represents a versatile and highly translatable method for cytosolic delivery of proteins.


Assuntos
Polímeros , Proteínas , Citosol/metabolismo , Endossomos/metabolismo , Liofilização , Polímeros/química , Proteínas/química
4.
J Am Chem Soc ; 143(12): 4758-4765, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33705125

RESUMO

Intracellular protein delivery enables selective regulation of cellular metabolism, signaling, and development through introduction of defined protein quantities into the cell. Most applications require that the delivered protein has access to the cytosol, either for protein activity or as a gateway to other organelles such as the nucleus. The vast majority of delivery vehicles employ an endosomal pathway however, and efficient release of entrapped protein cargo from the endosome remains a challenge. Recent research has made significant advances toward efficient cytosolic delivery of proteins using polymers, but the influence of polymer architecture on protein delivery is yet to be investigated. Here, we developed a family of dendronized polymers that enable systematic alterations of charge density and structure. We demonstrate that while modulation of surface functionality has a significant effect on overall delivery efficiency, the endosomal release rate can be highly regulated by manipulating polymer architecture. Notably, we show that large, multivalent structures cause slower sustained release, while rigid spherical structures result in rapid burst release.


Assuntos
Citosol/metabolismo , Polímeros/química , Engenharia de Proteínas , Proteínas/metabolismo , Animais , Linhagem Celular , Citosol/química , Humanos , Camundongos , Estrutura Molecular , Polímeros/metabolismo , Proteínas/química
5.
Bioconjug Chem ; 32(5): 891-896, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-33872490

RESUMO

Intracellular protein delivery is a transformative tool for biologics research and medicine. Delivery into the cytosol allows proteins to diffuse throughout the cell and access subcellular organelles. Inefficient delivery caused by endosomal entrapment is often misidentified as cytosolic delivery. This inaccuracy muddles what should be a key checkpoint in assessing delivery efficiency. Green fluorescent protein (GFP) is a robust cargo small enough to passively diffuse from the cytosol into the nucleus. Fluorescence of GFP in the nucleus is a direct readout for cytosolic access and effective delivery. Here, we highlight recent examples from the literature for the accurate assessment of cytosolic protein delivery using GFP fluorescence in the cytosol and nucleus.


Assuntos
Proteínas de Bactérias/metabolismo , Núcleo Celular/metabolismo , Citosol/metabolismo , Proteínas Luminescentes/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Humanos
6.
J Am Chem Soc ; 142(9): 4349-4355, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32049533

RESUMO

Nanocarrier-mediated protein delivery is a promising strategy for fundamental research and therapeutic applications. However, the efficacy of the current platforms for delivery into cells is limited by endosomal entrapment of delivered protein cargo with concomitantly inefficient access to the cytosol and other organelles, including the nucleus. We report here a robust, versatile polymeric-protein nanocomposite (PPNC) platform capable of efficient (≥90%) delivery of proteins to the cytosol. We synthesized a library of guanidinium-functionalized poly(oxanorborneneimide) (PONI) homopolymers with varying molecular weights to stabilize and deliver engineered proteins featuring terminal oligoglutamate "E-tags". The polymers were screened for cytosolic delivery efficiency using imaging flow cytometry with cytosolic delivery validated using confocal microscopy and activity of the delivered proteins demonstrated through functional assays. These studies indicate that the PPNC platform provides highly effective and tunable cytosolic delivery over a wide range of formulations, making them robust agents for therapeutic protein delivery.


Assuntos
Portadores de Fármacos/metabolismo , Integrases/metabolismo , Proteínas Luminescentes/metabolismo , Ácido Poliglutâmico/metabolismo , Polímeros/metabolismo , Portadores de Fármacos/síntese química , Guanidinas/síntese química , Guanidinas/metabolismo , Células HEK293 , Células HeLa , Humanos , Imidas/síntese química , Imidas/metabolismo , Nanocompostos/química , Polímeros/síntese química , Engenharia de Proteínas , Proteína Vermelha Fluorescente
8.
Biochem Biophys Res Commun ; 478(4): 1674-81, 2016 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-27592554

RESUMO

Ornithine decarboxylase 1 (ODC1), a metabolic enzyme critically involved in the polyamine biosynthesis, is commonly upregulated in hepatocellular carcinoma (HCC). Despite its altered expression in human HCC tissues, the molecular mechanism by which ODC1 alters the course of HCC progression and functions in HCC cell survival is unknown. Here we identified that silencing of ODC1 expression with small interfering (si) RNA causes inhibition of HCC cell growth through blockade of cell cycle progression and induction of apoptosis. Next, to obtain insights into the molecular changes in response to ODC1 knockdown, global changes in gene expression were examined using RNA sequencing. It revealed that 119 genes show same directional regulation (76 up- and 43 down-regulated) in both Huh1 and Huh7 cells and were considered as a common ODC1 knockdown signature. Particularly, we found through a network analysis that KLF2, which is known to inhibit PPARγ expression and adipogenesis, was commonly up-regulated. Subsequent Western blotting affirmed that the downregulation of ODC1 was accompanied by a decrease in the levels of PPARγ as well as of PARP-1, cyclin E1 and pro-caspase 9 delaying cell cycle progression and accelerating apoptotic signaling. Following the down-regulation of PPARγ expression, ODC1 silencing resulted in a strong inhibition in the expression of important regulators of glucose transport and lipid biogenesis, and caused a marked decrease in lipid droplet accumulation. In addition, ODC1 silencing significantly inhibited the growth of human HCC xenografts in nude mice. These findings indicate that the function of ODC1 is correlated with HCC lipogenesis and suggest that targeting ODC1 could be an attractive option for molecular therapy of HCC.


Assuntos
Carcinoma Hepatocelular/genética , Proliferação de Células/genética , Metabolismo dos Lipídeos/genética , Neoplasias Hepáticas/genética , Ornitina Descarboxilase/genética , Interferência de RNA , Animais , Apoptose/genética , Western Blotting , Carcinoma Hepatocelular/enzimologia , Carcinoma Hepatocelular/patologia , Caspase 9/genética , Caspase 9/metabolismo , Ciclo Celular/genética , Linhagem Celular Tumoral , Ciclina E/genética , Ciclina E/metabolismo , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/patologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Ornitina Descarboxilase/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Terapêutica com RNAi/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
9.
Int J Hyperthermia ; 32(6): 648-56, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27269053

RESUMO

PURPOSE: Modulated electro-hyperthermia (mEHT) has been shown to be effective against various types of human tumours, including hepatocellular carcinoma (HCC). Here we aimed to investigate the molecular mechanism underlying the cytotoxic effects of mEHT to HCC cells. MATERIALS AND METHODS: Human liver cancer cell lines, Huh7 and HepG2, were treated with mEHT (42 °C/60 min) three times at 2-day intervals. Growth inhibition and apoptotic induction were evaluated using MTS, microscopic analysis, a clonogenic assay, annexin V/PI staining and a ccK18 ELISA. Global changes in gene expression were examined using RNA sequencing to obtain insights into molecular changes in response to mEHT. For in vivo evaluation of mEHT we used HepG2 HCC xenografts grown in nude mice. RESULTS: mEHT suppressed HCC cell proliferation and long-term colony formation through induction of apoptosis. The growth inhibitory effects are induced through a subset of molecular changes. Notably the expression level of septin 4 (SEPT4) (involved in pro-apoptotic activity and growth suppression) was up-regulated, whereas a key regulator of invasiveness G-Protein coupled receptor 64 (GPR64) was repressed. Subsequent Western blotting confirmed that the common increase in tumour suppressor SEPT4 in both Huh7 and HepG2 cells is accompanied by the restoration of cyclin-dependent kinase (CDK) inhibitor p21 and decrease in pro-caspase 7 and pro-caspase 3, thereby accelerating apoptotic signalling in HCC cells. Additionally, mEHT significantly inhibited the growth of human HCC xenografts in nude mice. CONCLUSIONS: These findings suggest that apoptotic cell death induced by mEHT is mediated by the up-regulation of tumour suppressor SEPT4 in human HCC cells.


Assuntos
Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/terapia , Hipertermia Induzida , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/terapia , Septinas/metabolismo , Animais , Apoptose , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Neoplasias Hepáticas/patologia , Camundongos Nus , Carga Tumoral , Regulação para Cima
10.
Int J Hyperthermia ; 31(7): 784-92, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26367194

RESUMO

PURPOSE: Modulated electro-hyperthermia (mEHT), also known as oncothermia, shows remarkable treatment efficacies for various types of tumours, including glioma. The aim of the present study was to investigate the molecular mechanism underlying phenotypic changes in oncothermic cancer cells. MATERIALS AND METHODS: U87-MG and A172 human glioma cells were exposed to mEHT (42 °C/60 min) three times with a 2-day interval and subsequently tested for growth inhibition using MTS, FACS and microscopic analysis. To obtain insights into the molecular changes in response to mEHT, global changes in gene expression were examined using RNA sequencing. For in vivo evaluation of mEHT, we used U87-MG glioma xenografts grown in nude mice. RESULTS: mEHT inhibited glioma cell growth through the strong induction of apoptosis. The transcriptomic analysis of differential gene expression under mEHT showed that the anti-proliferative effects were induced through a subset of molecular alterations, including the up-regulation of E2F1 and CPSF2 and the down-regulation of ADAR and PSAT1. Subsequent Western blotting revealed that mEHT increased the levels of E2F1 and p53 and decreased the level of PARP-1, accelerating apoptotic signalling in glioma cells. mEHT significantly suppressed the growth of human glioma xenografts in nude mice. We also observed that mEHT dramatically reduced the portion of CD133(+) glioma stem cell population and suppressed cancer cell migration and sphere formation. CONCLUSIONS: These findings suggest that mEHT suppresses glioma cell proliferation and mobility through the induction of E2F1-mediated apoptosis and might be an effective treatment for eradicating brain tumours.


Assuntos
Apoptose/fisiologia , Neoplasias Encefálicas/terapia , Fator de Transcrição E2F1/fisiologia , Terapia por Estimulação Elétrica , Glioma/terapia , Hipertermia Induzida/métodos , Animais , Neoplasias Encefálicas/patologia , Citometria de Fluxo , Glioma/patologia , Humanos , Camundongos , Camundongos Nus
11.
ACS Nano ; 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39287559

RESUMO

The antibacterial efficacy and specificity of lytic bacteriophages (phages) make them promising therapeutics for treatment of multidrug-resistant bacterial infections. Restricted penetration of phages through the protective matrix of biofilms, however, may limit their efficacy against biofilm infections. Here, engineered polymers were used to generate noncovalent phage-polymer nanoassemblies (PPNs) that penetrate bacterial biofilms and kill resident bacteria. Phage K, active against multiple strains of Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA), was assembled with cationic poly(oxanorbornene) polymers into PPNs. The PPNs retained phage infectivity, while demonstrating enhanced biofilm penetration and killing relative to free phages. PPNs achieved 3-log10 bacterial reduction (∼99.9%) against MRSA biofilms in vitro. PPNs were then incorporated into Poloxamer 407 (P407) hydrogels and applied onto in vivo wound biofilms, demonstrating controlled and sustained release. Hydrogel-incorporated PPNs were effective in a murine MRSA wound biofilm model, showing a 1.5-log10 reduction in bacterial load compared to a 0.5 log reduction with phage K in P407 hydrogel. Overall, this work showcases the therapeutic potential of phage K engineered with cationic polymers for treating wound biofilm infections.

12.
ACS Nano ; 18(26): 16808-16818, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38870478

RESUMO

Amidst the rapid growth of protein therapeutics as a drug class, there is an increased focus on designing systems to effectively deliver proteins to target organs. Quantitative monitoring of protein distributions in tissues is essential for optimal development of delivery systems; however, existing strategies can have limited accuracy, making it difficult to assess suborgan dosing. Here, we describe a quantitative imaging approach that utilizes metal-coded mass tags and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to quantify the suborgan distributions of proteins in tissues that have been delivered by polymeric nanocarriers. Using this approach, we measure nanomole per gram levels of proteins as delivered by guanidinium-functionalized poly(oxanorborneneimide) (PONI) polymers to various tissues, including the alveolar region of the lung. Due to the multiplexing capability of the LA-ICP-MS imaging, we are also able to simultaneously quantify protein and polymer distributions, obtaining valuable information about the relative excretion pathways of the protein cargo and carrier. This imaging approach will facilitate quantitative correlations between nanocarrier properties and protein cargo biodistributions.


Assuntos
Polímeros , Polímeros/química , Animais , Portadores de Fármacos/química , Proteínas/química , Proteínas/análise , Camundongos , Nanopartículas/química , Espectrometria de Massas , Distribuição Tecidual
13.
Pharmaceutics ; 15(1)2023 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-36678847

RESUMO

Current intracellular protein delivery strategies face the challenge of endosomal entrapment and consequent degradation of protein cargo. Methods to efficiently deliver proteins directly to the cytosol have the potential to overcome this hurdle. Here, we report the use of a straightforward approach of protein modification using citraconic anhydride to impart an overall negative charge on the proteins, enabling them to assemble with positively charged nano vectors. This strategy uses anhydride-modified proteins to electrostatically form polymer-protein nanocomposites with a cationic guanidinium-functionalized polymer. These supramolecular self-assemblies demonstrated the efficient cytosolic delivery of modified proteins through a membrane fusion-like mechanism. This approach was validated on five cell lines and seven proteins as cargo. Retention of protein function was confirmed through efficient cell killing via the intracellular enzymatic activity of RNase A. This platform provides a versatile, straightforward, and single-step method of protein modification and efficient direct cytosolic protein delivery.

14.
J Control Release ; 362: 513-523, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37666301

RESUMO

Integration of antimicrobial polymeric nanoparticles into hydrogel materials presents a promising strategy to address multidrug-resistant biofilm infections. Here we report an injectable hydrogel loaded with engineered cationic antimicrobial polymeric nanoparticles (PNPs) for the effective topical treatment of severe wound biofilm infections. The PNPs demonstrated biofilm penetration and disruption, resulting in the eradication of resistant and persister cells that reside within the biofilm. Significantly, PNPs did not elicit resistance development even after multiple exposures to sub-therapeutic doses. In vitro studies showed PNPs significantly reduced prolonged inflammation due to infection and promoted fibroblast migration. These PNPs were then incorporated into Poloxamer 407 (P407) hydrogels and utilized as an inert carrier for PNPs to provide a controlled and sustained topical release of the antimicrobial nanoparticles at the wound area. In vivo studies using a mature (4-day) wound biofilm infection in a murine model mimicking severe human wound infections demonstrated provided 99% bacterial biofilm clearance and significantly enhanced wound healing. Overall, this work demonstrated the efficacy and selectivity of the antimicrobial polymer-loaded hydrogel platform as a topical treatment for difficult-to-treat wound biofilm infections.

15.
Mater Horiz ; 10(12): 5500-5507, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-37815454

RESUMO

Treatment of wound biofilm infections faces challenges from both pathogens and uncontrolled host immune response. Treating both issues through a single vector would provide enhanced wound healing. Here, we report the use of a potent cationic antimicrobial polymer to generate siRNA polyplexes for dual-mode treatment of wound biofilms in vivo. These polyplexes act both as an antibiofilm agent and a delivery vehicle for siRNA for the knockdown of biofilm-associated pro-inflammatory MMP9 in host macrophages. The resulting polyplexes were effective in vitro, eradicating MRSA biofilms and efficiently delivering siRNA to macrophages in vitro with concomitant knockdown of MMP9. These polyplexes were likewise effective in an in vivo murine wound biofilm model, significantly reducing bacterial load in the wound (∼99% bacterial clearance) and reducing MMP9 expression by 80% (qRT-PCR). This combination therapeutic strategy dramatically reduced wound purulence and significantly expedited wound healing. Taken together, these polyplexes provide an effective and translatable strategy for managing biofilm-infected wounds.


Assuntos
Anti-Infecciosos , Metaloproteinase 9 da Matriz , Animais , Camundongos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/uso terapêutico , Cicatrização/genética , Biofilmes
16.
Nanoscale ; 15(24): 10351-10359, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37288531

RESUMO

Vaccination through cellular transfection of nucleotide-based vaccines is a powerful approach to combatting disease. Plasmid DNA (pDNA) vaccines are particularly promising vectors for non-viral immunomodulation that afford high degrees of potency and flexibility. Versatile guanidinium-functionalized poly(oxanorbornene)imide (PONI-Guan) homopolymers were used to facilitate non-disruptive pDNA condensation into discrete polyplexes, enabling efficient in vitro transfection of endothelial cells and HD-11 macrophages. Translation of these vectors for vaccination of white leghorn chickens against Newcastle disease virus (NDV) elicited strong humoral immune responses against the virus. This approach presents a highly versatile method for targeted immunomodulation in vivo, with the potential for translatability as a non-viral vaccine platform.


Assuntos
Galinhas , Polímeros , Animais , Galinhas/genética , Células Endoteliais , Plasmídeos/genética , DNA/genética , Vacinação
17.
ACS Nano ; 17(5): 4315-4326, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36802503

RESUMO

Uncontrolled inflammation is responsible for acute and chronic diseases in the lung. Regulating expression of pro-inflammatory genes in pulmonary tissue using small interfering RNA (siRNA) is a promising approach to combatting respiratory diseases. However, siRNA therapeutics are generally hindered at the cellular level by endosomal entrapment of delivered cargo and at the organismal level by inefficient localization in pulmonary tissue. Here we report efficient anti-inflammatory activity in vitro and in vivo using polyplexes of siRNA and an engineered cationic polymer (PONI-Guan). PONI-Guan/siRNA polyplexes efficiently deliver siRNA cargo to the cytosol for highly efficient gene knockdown. Significantly, these polyplexes exhibit inherent targeting to inflamed lung tissue following intravenous administration in vivo. This strategy achieved effective (>70%) knockdown of gene expression in vitro and efficient (>80%) silencing of TNF-α expression in lipopolysaccharide (LPS)-challenged mice using a low (0.28 mg/kg) siRNA dosage.


Assuntos
Pneumonia , Polímeros , Animais , Camundongos , RNA Interferente Pequeno , Polímeros/metabolismo , RNA de Cadeia Dupla/metabolismo , Endossomos/metabolismo , Pneumonia/terapia , Pneumonia/metabolismo
18.
J Control Release ; 357: 31-39, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36948419

RESUMO

Bioorthogonal catalysis via transition metal catalysts (TMCs) enables the generation of therapeutics locally through chemical reactions not accessible by biological systems. This localization can enhance the efficacy of anticancer treatment while minimizing off-target effects. The encapsulation of TMCs into nanomaterials generates "nanozymes" to activate imaging and therapeutic agents. Here, we report the use of cationic bioorthogonal nanozymes to create localized "drug factories" for cancer therapy in vivo. These nanozymes remained present at the tumor site at least seven days after a single injection due to the interactions between cationic surface ligands and negatively charged cell membranes and tissue components. The prodrug was then administered systemically, and the nanozymes continuously converted the non-toxic molecules into active drugs locally. This strategy substantially reduced the tumor growth in an aggressive breast cancer model, with significantly reduced liver damage compared to traditional chemotherapy.


Assuntos
Neoplasias da Mama , Nanoestruturas , Humanos , Feminino , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Diagnóstico por Imagem , Catálise , Membrana Celular
19.
ACS Nano ; 16(5): 7323-7330, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35435664

RESUMO

Current strategies for the delivery of proteins into cells face general challenges of endosomal entrapment and concomitant degradation of protein cargo. Efficient delivery directly to the cytosol overcomes this obstacle: we report here the use of biotin-streptavidin tethering to provide a modular approach to the generation of nanovectors capable of a cytosolic delivery of biotinylated proteins. This strategy uses streptavidin to organize biotinylated protein and biotinylated oligo(glutamate) peptide into modular complexes that are then electrostatically self-assembled with a cationic guanidinium-functionalized polymer. The resulting polymer-protein nanocomposites demonstrate efficient cytosolic delivery of six biotinylated protein cargos of varying size, charge, and quaternary structure. Retention of protein function was established through efficient cell killing via delivery of the chemotherapeutic enzyme granzyme A. This platform represents a versatile and modular approach to intracellular delivery through the noncovalent tethering of multiple components into a single delivery vector.


Assuntos
Biotina , Nanocompostos , Estreptavidina/química , Biotina/química , Citosol/metabolismo , Proteínas/química , Polímeros/química
20.
Mater Horiz ; 8(12): 3424-3431, 2021 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-34700339

RESUMO

Bioorthogonal transformation of imaging and therapeutic substrates using transition metal catalysts (TMCs) provides a toolkit with diverse applications in biomedicine. Controlled localization of bioorthogonal catalysis is key for enhancing their therapeutic efficacy by minimizing off-target effects. Red blood cells (RBCs) are highly biocompatible and are susceptible to hemolysis by bacterial toxins, providing them with intrinsic targeting to bacterial infections. A hitchhiking strategy using RBCs is reported, that activates bioorthogonal catalysis at infection sites. A library of nanoparticles embedded with TMCs (nanozymes) featuring diverse functional groups with different binding ability to RBCs is generated. These engineered nanozymes bind to RBCs and subsequently release upon hemolysis by bacterial toxins, resulting in selective accumulation at the site of bacterial infections. The antimicrobial action is specific: catalytic activation of pro-antibiotics eradicated pathogenic biofilms without harming non-virulent bacterial species.


Assuntos
Infecções Bacterianas , Nanopartículas , Elementos de Transição , Infecções Bacterianas/tratamento farmacológico , Catálise , Eritrócitos , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa