Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Cell ; 186(26): 5892-5909.e22, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38091994

RESUMO

Different functional regions of brain are fundamental for basic neurophysiological activities. However, the regional specification remains largely unexplored during human brain development. Here, by combining spatial transcriptomics (scStereo-seq) and scRNA-seq, we built a spatiotemporal developmental atlas of multiple human brain regions from 6-23 gestational weeks (GWs). We discovered that, around GW8, radial glia (RG) cells have displayed regional heterogeneity and specific spatial distribution. Interestingly, we found that the regional heterogeneity of RG subtypes contributed to the subsequent neuronal specification. Specifically, two diencephalon-specific subtypes gave rise to glutamatergic and GABAergic neurons, whereas subtypes in ventral midbrain were associated with the dopaminergic neurons. Similar GABAergic neuronal subtypes were shared between neocortex and diencephalon. Additionally, we revealed that cell-cell interactions between oligodendrocyte precursor cells and GABAergic neurons influenced and promoted neuronal development coupled with regional specification. Altogether, this study provides comprehensive insights into the regional specification in the developing human brain.


Assuntos
Encéfalo , Transcriptoma , Humanos , Neurônios Dopaminérgicos , Neurônios GABAérgicos , Mesencéfalo , Neocórtex , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo
2.
Genomics ; 116(3): 110853, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38701988

RESUMO

Atg8 family proteins play crucial roles in autophagy to maintain cellular homeostasis. However, the physiological roles of Atg8 family proteins have not been systematically determined. In this study, we generated Atg8a and Atg8b (homologs of Atg8 in Drosophila melanogaster) knockout flies. We found that the loss of Atg8a affected autophagy and resulted in partial lethality, abnormal wings, decreased lifespan, and decreased climbing ability in flies. Furthermore, the loss of Atg8a resulted in reduced muscle integrity and the progressive degeneration of the neuron system. We also found that the phosphorylation at Ser88 of Atg8a is important for autophagy and neuronal integrity. The loss of Atg8b did not affect autophagy but induced male sterility in flies. Here, we take full advantage of the fly system to elucidate the physiological function of Atg8a and Atg8b in Drosophila.


Assuntos
Família da Proteína 8 Relacionada à Autofagia , Autofagia , Proteínas de Drosophila , Drosophila melanogaster , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Masculino , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Drosophila melanogaster/metabolismo , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Família da Proteína 8 Relacionada à Autofagia/genética , Fosforilação , Longevidade , Neurônios/metabolismo , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo
3.
EMBO Rep ; 23(3): e53602, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34935271

RESUMO

Cortical expansion and folding are key processes in human brain development and evolution and are considered to be principal elements of intellectual ability. How cortical folding has evolved and is induced during embryo development is not well understood. Here, we show that the expression of human FOXM1 promotes basal progenitor cell proliferation and induces cortical thickening and folding in mice. Human-specific protein sequences further promote the generation of basal progenitor cells. Human FOXM1 increases the proliferation of neural progenitors by binding to the Lin28a promoter and increasing Lin28a expression. Furthermore, overexpression of LIN28A rescues the proliferation of human FOXM1 knockout neural progenitor cells. Together, our findings demonstrate that a human gene can increase the number of basal progenitor cells in mice, leading to brain size increase and gyrification, and may thus contribute to evolutionary brain development and cortical expansion.


Assuntos
Encéfalo/citologia , Proliferação de Células , Proteína Forkhead Box M1 , Células-Tronco Neurais , Animais , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Humanos , Camundongos , Células-Tronco Neurais/citologia , Proteínas de Ligação a RNA
4.
Bioconjug Chem ; 34(10): 1719-1726, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37767911

RESUMO

Lipid raft-specific glycosylation has been implicated in many biological processes, including intracellular trafficking, cell adhesion, signal transduction, and host-pathogen interactions. The major predicament in lipid raft-specific glycosylation research is the unavailability of tools for tracking and manipulating glycans on lipid rafts at the microstructural level. To overcome this challenge, we developed a multifunctional proximity labeling (MPL) platform that relies on cholera toxin B subunit to localize horseradish peroxidase on lipid rafts. In addition to the prevailing electron-rich amino acids, modified sialic acid was included in the horseradish peroxidase-mediated proximity labeling substrate via purposefully designed chemical transformation reactions. In combination with sialic acid editing, the self-renewal of lipid raft-specific sialic acid was visualized. The MPL method enabled tracking of lipid raft dynamics under methyl-ß-cyclodextrin and mevinolin treatments; in particular, the alteration of lipid rafts markedly affected cell migration. Furthermore, we embedded functional molecules into the method and implemented raft-specific sialic acid gradient engineering. Our novel strategy presents opportunities for tailoring lipid raft-specific sialic acids, thereby regulating interactions associated with lipid raft regions (such as cell-virus and cell-microenvironment interactions), and can aid in the development of lipid raft-based therapeutic regimens for tumors.


Assuntos
Ácido N-Acetilneuramínico , Ácidos Siálicos , Movimento Celular , Ácidos Siálicos/metabolismo , Microdomínios da Membrana/metabolismo , Peroxidase do Rábano Silvestre/metabolismo
5.
Mol Psychiatry ; 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35858990

RESUMO

Microglia are resident macrophages of the central nervous system that selectively emerge in embryonic cortical proliferative zones and regulate neurogenesis by altering molecular and phenotypic states. Despite their important roles in inflammatory phagocytosis and neurodegenerative diseases, microglial homeostasis during early brain development has not been fully elucidated. Here, we demonstrate a notable interplay between microglial homeostasis and neural progenitor cell signal transduction during embryonic neurogenesis. ARID1A, an epigenetic subunit of the SWI/SNF chromatin-remodeling complex, disrupts genome-wide H3K9me3 occupancy in microglia and changes the epigenetic chromatin landscape of regulatory elements that influence the switching of microglial states. Perturbation of microglial homeostasis impairs the release of PRG3, which regulates neural progenitor cell self-renewal and differentiation during embryonic development. Furthermore, the loss of microglia-driven PRG3 alters the downstream cascade of the Wnt/ß-catenin signaling pathway through its interaction with the neural progenitor receptor LRP6, which leads to misplaced regulation in neuronal development and causes autism-like behaviors at later stages. Thus, during early fetal brain development, microglia progress toward a more homeostatic competent phenotype, which might render neural progenitor cells respond to environmental cross-talk perturbations.

6.
EMBO Rep ; 22(7): e52150, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34046991

RESUMO

The development of the nervous system requires precise regulation. Any disturbance in the regulation process can lead to neurological developmental diseases, such as autism and schizophrenia. Histone variants are important components of epigenetic regulation. The function and mechanisms of the macroH2A (mH2A) histone variant during brain development are unknown. Here, we show that deletion of the mH2A isoform mH2A1.2 interferes with neural stem cell differentiation in mice. Deletion of mH2A1.2 affects neurodevelopment, enhances neural progenitor cell (NPC) proliferation, and reduces NPC differentiation in the developing mouse brain. mH2A1.2-deficient mice exhibit autism-like behaviors, such as deficits in social behavior and exploratory abilities. We identify NKX2.2 as an important downstream effector gene and show that NKX2.2 expression is reduced after mH2A1.2 deletion and that overexpression of NKX2.2 rescues neuronal abnormalities caused by mH2A1.2 loss. Our study reveals that mH2A1.2 reduces the proliferation of neural progenitors and enhances neuronal differentiation during embryonic neurogenesis and that these effects are at least in part mediated by NKX2.2. These findings provide a basis for studying the relationship between mH2A1.2 and neurological disorders.


Assuntos
Transtorno Autístico , Histonas , Animais , Transtorno Autístico/genética , Diferenciação Celular , Proliferação de Células/genética , Epigênese Genética , Histonas/deficiência , Histonas/metabolismo , Proteína Homeobox Nkx-2.2 , Camundongos , Sistema Nervoso/metabolismo , Neurogênese/genética
7.
Proc Natl Acad Sci U S A ; 117(17): 9413-9422, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32291340

RESUMO

Astrogenesis is repressed in the early embryonic period and occurs in the late embryonic period. A variety of external and internal signals contribute to the sequential differentiation of neural stem cells. Here, we discovered that immune-related CD93 plays a critical negative role in the regulation of astrogenesis in the mouse cerebral cortex. We show that CD93 expression is detected in neural stem cells and neurons but not in astrocytes and declines as differentiation proceeds. Cd93 knockout increases astrogenesis at the expense of neuron production during the late embryonic period. CD93 responds to the extracellular matrix protein Multimerin 2 (MMRN2) to trigger the repression of astrogenesis. Mechanistically, CD93 delivers signals to ß-Catenin through a series of phosphorylation cascades, and then ß-Catenin transduces these signals to the nucleus to activate Zfp503 transcription. The transcriptional repressor ZFP503 inhibits the transcription of glial fibrillary acidic protein (Gfap) by binding to the Gfap promoter with the assistance of Grg5. Furthermore, Cd93 knockout mice exhibit autism-like behaviors. Taken together, our results reveal that CD93 is a negative regulator of the onset of astrogenesis and provide insight into therapy for psychiatric disorders.


Assuntos
Astrócitos/fisiologia , Proteínas da Matriz Extracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Glicoproteínas de Membrana/metabolismo , Subfamília D de Receptores Semelhantes a Lectina de Células NK/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Transtorno Autístico , Córtex Cerebral/citologia , Córtex Cerebral/embriologia , Eletroporação , Proteínas da Matriz Extracelular/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Inflamação , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos ICR , Subfamília D de Receptores Semelhantes a Lectina de Células NK/genética , Proteínas do Tecido Nervoso/genética , Neurogênese , Neuroglia , Gravidez
8.
Mol Psychiatry ; 26(8): 4221-4233, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-32393787

RESUMO

Major depressive disorder (MDD) is the most common psychiatric disease worldwide. The precise molecular and cellular mechanisms underlying this disorder remain largely unknown. Wilms' tumor 1 (Wt1), a transcription factor, plays critical roles in cancer and organ development. Importantly, deletion of the 11p13 region that contains the WT1 gene is a major cause of WARG syndrome (Wilms' tumor, aniridia, genitourinary anomalies, and mental retardation), which is characterized by psychiatric disease, including depression. However, the roles and mechanisms of WT1 in embryonic neurogenesis and psychiatric disease remain unclear. Here, we demonstrate that the brain-specific deletion of Wt1 results in abnormal cell distribution during embryonic neurogenesis, which is accompanied by enhanced proliferation of neural progenitors and reduced neuronal differentiation. Moreover, neurons exhibit abnormal morphology during cortical development following Wt1 ablation. Furthermore, Wt1cKO mice exhibit depressive-like behaviors, including immobility, despair, and anhedonia. Mechanistically, Wt1 recruits Tet2 to the promoter of erythropoietin (Epo), which results in enhanced 5-hydroxymethylcytosine (5hmC) levels and the promotion of Epo expression. Either Epo plasmid electroporation or Epo protein injection can partially restore the deficiency caused by Wt1 deletion. Importantly, administration of Epo to both embryos and adults can ameliorate the depressive-like behavior of Wt1cKO mice. In addition, WT1 plays a similar role in human neural progenitor cells (hNPCs) proliferation and differentiation. Taken together, our findings reveal the critical role and regulatory mechanism of Wt1 in embryonic neurogenesis and behavioral modulation, which could contribute to the understanding of MDD etiology and therapy.


Assuntos
Proteínas de Ligação a DNA , Transtorno Depressivo Maior , Dioxigenases , Eritropoetina , Proteínas WT1 , Animais , Encéfalo , Proteínas de Ligação a DNA/genética , Transtorno Depressivo Maior/genética , Dioxigenases/genética , Deleção de Genes , Camundongos , Proteínas WT1/genética
9.
EMBO Rep ; 21(8): e49239, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32510763

RESUMO

Recently, de novo mutations of transcription factor 20 (TCF20) were found in patients with autism by large-scale exome sequencing. However, how TCF20 modulates brain development and whether its dysfunction causes ASD remain unclear. Here, we show that TCF20 deficits impair neurogenesis in mouse. TCF20 deletion significantly reduces the number of neurons, which leads to abnormal brain functions. Furthermore, transcriptome analysis and ChIP-qPCR reveal that the DNA demethylation factor TDG is a downstream target gene of TCF20. As a nonspecific DNA demethylation factor, TDG potentially affects many genes. Combined TDG ChIP-seq and GO analysis of TCF20 RNA-Seq identifies T-cell factor 4 (TCF-4) as a common target. TDG controls the DNA methylation level in the promoter area of TCF-4, affecting TCF-4 expression and modulating neural differentiation. Overexpression of TDG or TCF-4 rescues the deficient neurogenesis of TCF20 knockdown brains. Together, our data reveal that TCF20 is essential for neurogenesis and we suggest that defects in neurogenesis caused by TCF20 loss are associated with ASD.


Assuntos
Transtorno Autístico , Animais , Transtorno Autístico/genética , Metilação de DNA , Humanos , Camundongos , Neurogênese/genética , Regiões Promotoras Genéticas , Fatores de Transcrição/genética
10.
Proc Natl Acad Sci U S A ; 116(48): 24122-24132, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31712428

RESUMO

Microglia, the resident immune cells of the central nervous system, play an important role in the brain. Microglia have a special spatiotemporal distribution during the development of the cerebral cortex. Neural progenitor cells (NPCs) are the main source of neural-specific cells in the early brain. It is unclear whether NPCs affect microglial development and what molecular mechanisms control early microglial localization. H2A.Z.2, a histone variant of H2A, has a key role in gene expression regulation, genomic stability, and chromatin remodeling, but its function in brain development is not fully understood. Here, we found that the specific deletion of H2A.Z.2 in neural progenitor cells led to an abnormal increase in microglia in the ventricular zone/subventricular zone (VZ/SVZ) of the embryonic cortex. Mechanistically, H2A.Z.2 regulated microglial development by incorporating G9a into the promoter region of Cxcl14 and promoted H3k9me2 modification to inhibit the transcription of Cxcl14 in neural progenitor cells. Meanwhile, we found that the deletion of H2A.Z.2 in microglia itself had no significant effect on microglial development in the early cerebral cortex. Our findings demonstrate a key role of H2A.Z.2 in neural progenitor cells in controlling microglial development and broaden our knowledge of 2 different types of cells that may affect each other through crosstalk in the central nervous system.


Assuntos
Encéfalo/embriologia , Quimiocinas CXC/metabolismo , Histonas/genética , Microglia/fisiologia , Células-Tronco Neurais/fisiologia , Animais , Encéfalo/citologia , Córtex Cerebral/embriologia , Córtex Cerebral/patologia , Quimiocinas CXC/genética , Epigênese Genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Camundongos Transgênicos , Microglia/citologia , Gravidez , Regiões Promotoras Genéticas , Processamento de Proteína Pós-Traducional
11.
Development ; 144(3): 441-451, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28003215

RESUMO

Sirt1 is a member of the sirtuin family of proteins and has important roles in numerous biological processes. Sirt1-/- mice display an increased frequency of abnormal spermatozoa, but the mechanism of Sirt1 in spermiogenesis remains largely unknown. Here, we report that Sirt1 might be directly involved in spermiogenesis in germ cells but not in steroidogenic cells. Germ cell-specific Sirt1 knockout mice were almost completely infertile; the early mitotic and meiotic progression of germ cells in spermatogenesis were not obviously affected after Sirt1 depletion, but subsequent spermiogenesis was disrupted by a defect in acrosome biogenesis, which resulted in a phenotype similar to that observed in human globozoospermia. In addition, LC3 and Atg7 deacetylation was disrupted in spermatids after knocking out Sirt1, which affected the redistribution of LC3 from the nucleus to the cytoplasm and the activation of autophagy. Furthermore, Sirt1 depletion resulted in the failure of LC3 to be recruited to Golgi apparatus-derived vesicles and in the failure of GOPC and PICK1 to be recruited to nucleus-associated acrosomal vesicles. Taken together, these findings reveal that Sirt1 has a novel physiological function in acrosome biogenesis.


Assuntos
Acrossomo/fisiologia , Sirtuína 1/fisiologia , Espermatogênese/fisiologia , Acrossomo/patologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Autofagia/genética , Autofagia/fisiologia , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular , Modelos Animais de Doenças , Proteínas da Matriz do Complexo de Golgi , Humanos , Infertilidade Masculina/etiologia , Infertilidade Masculina/genética , Infertilidade Masculina/patologia , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Modelos Biológicos , Proteínas Nucleares/metabolismo , Fenótipo , Sirtuína 1/deficiência , Sirtuína 1/genética , Espermatogênese/genética , Espermatozoides/patologia , Espermatozoides/fisiologia , Esteroides/biossíntese , Teratozoospermia/etiologia , Teratozoospermia/patologia
12.
Nucleic Acids Res ; 46(5): 2290-2307, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29294103

RESUMO

Defects in neurogenesis alter brain circuit formations and may lead to neurodevelopmental disorders such as autism and schizophrenia. Histone H2A.z, a variant of histone H2A, plays critical roles in chromatin structure and epigenetic regulation, but its function and mechanism in brain development remain largely unknown. Here, we find that the deletion of H2A.z results in enhanced proliferation of neural progenitors but reduced neuronal differentiation. In addition, neurons in H2A.z knockout mice exhibit abnormal dendrites during brain development. Furthermore, H2A.zcKO mice exhibit serial behavioral deficits, such as decreased exploratory activity and impaired learning and memory. Mechanistically, H2A.z regulates embryonic neurogenesis by targeting Nkx2-4 through interaction with Setd2, thereby promoting H3K36me3 modification to activate the transcription of Nkx2-4. Furthermore, enforced expression of Nkx2-4 can rescue the defective neurogenesis in the H2A.z-knockdown embryonic brain. Together, our findings implicate the epigenetic regulation by H2A.z in embryonic neurogenesis and provide a framework for understanding how disruption in the H2A.z gene may contribute to neurological disorders.


Assuntos
Encéfalo/metabolismo , Deleção de Genes , Histonas/genética , Transtornos do Neurodesenvolvimento/genética , Neurogênese/genética , Especificidade de Órgãos/genética , Animais , Encéfalo/embriologia , Linhagem Celular Tumoral , Córtex Cerebral/embriologia , Córtex Cerebral/metabolismo , Perfilação da Expressão Gênica , Células HEK293 , Histonas/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Transtornos do Neurodesenvolvimento/metabolismo , Interferência de RNA
13.
Nucleic Acids Res ; 46(17): 8817-8831, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-29982651

RESUMO

Astrocytes play crucial roles in the central nervous system, and defects in astrocyte function are closely related to many neurological disorders. Studying the mechanism of gliogenesis has important implications for understanding and treating brain diseases. Epigenetic regulations have essential roles during mammalian brain development. Here, we demonstrate that histone H2A.Z.1 is necessary for the specification of multiple neural precursor cells (NPCs) and has specialized functions that regulate gliogenesis. Depletion of H2A.Z.1 suppresses gliogenesis and results in reduced astrocyte differentiation. Additionally, H2A.Z.1 regulates the acetylation of H3K56 (H3K56ac) by cooperating with the chaperone of ASF1a. Furthermore, RNA-seq data indicate that folate receptor 1 (FOLR1) participates in gliogenesis through the JAK-STAT signaling pathway. Taken together, our results demonstrate that H2A.Z.1 is a key regulator of gliogenesis because it interacts with ASF1a to regulate H3K56ac and then directly affects the expression of FOLR1, which acts as a signal-transducing component of the JAK-STAT signaling pathway.


Assuntos
Receptor 1 de Folato/genética , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Neurogênese/genética , Neuroglia/fisiologia , Acetilação , Animais , Astrócitos/fisiologia , Proteínas de Ciclo Celular , Células Cultivadas , Proteínas Cromossômicas não Histona/metabolismo , Embrião de Mamíferos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Histonas/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Transgênicos , Chaperonas Moleculares , Células-Tronco Neurais , Gravidez , Transdução de Sinais/genética , Transcrição Gênica
14.
Development ; 143(15): 2732-40, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27287808

RESUMO

Disrupted in schizophrenia 1 (DISC1) is known as a high susceptibility gene for schizophrenia. Recent studies have indicated that schizophrenia might be caused by glia defects and dysfunction. However, there is no direct evidence of a link between the schizophrenia gene DISC1 and gliogenesis defects. Thus, an investigation into the involvement of DISC1 (a ubiquitously expressed brain protein) in astrogenesis during the late stage of mouse embryonic brain development is warranted. Here, we show that suppression of DISC1 expression represses astrogenesis in vitro and in vivo, and that DISC1 overexpression substantially enhances the process. Furthermore, mouse and human DISC1 overexpression rescued the astrogenesis defects caused by DISC1 knockdown. Mechanistically, DISC1 activates the RAS/MEK/ERK signaling pathway via direct association with RASSF7. Also, the pERK complex undergoes nuclear translocation and influences the expression of genes related to astrogenesis. In summary, our results demonstrate that DISC1 regulates astrogenesis by modulating RAS/MEK/ERK signaling via RASSF7 and provide a framework for understanding how DISC1 dysfunction might lead to neuropsychiatric diseases.


Assuntos
Encéfalo/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Fatores de Transcrição/metabolismo , Animais , Western Blotting , Linhagem Celular , Feminino , Humanos , Imuno-Histoquímica , Imunoprecipitação , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Camundongos Endogâmicos ICR , Proteínas do Tecido Nervoso/genética , Neurogênese/genética , Neurogênese/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Fatores de Transcrição/genética
15.
J Biol Chem ; 292(31): 12959-12970, 2017 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-28500132

RESUMO

The zinc finger E-box-binding transcription factor Zeb1 plays a pivotal role in the epithelial-mesenchymal transition. Numerous studies have focused on the molecular mechanisms by which Zeb1 contributes to this process. However, the functions of Zeb1 beyond the epithelial-mesenchymal transition remain largely elusive. Using a transdifferentiation system to convert mouse embryonic fibroblasts (MEFs) into functional neurons via the neuronal transcription factors achaete-scute family bHLH (basic helix-loop-helix) transcription factor1 (Ascl1), POU class 3 homeobox 2 (POU3F2/Brn2), and neurogenin 2 (Neurog2, Ngn2) (ABN), we found that Zeb1 was up-regulated during the early stages of transdifferentiation. Knocking down Zeb1 dramatically attenuated the transdifferentiation efficiency, whereas Zeb1 overexpression obviously increased the efficiency of transdifferentiation from MEFs to neurons. Interestingly, Zeb1 improved the transdifferentiation efficiency induced by even a single transcription factor (e.g. Asc1 or Ngn2). Zeb1 also rapidly promoted the maturation of induced neuron cells to functional neurons and improved the formation of neuronal patterns and electrophysiological characteristics. Induced neuron cells could form functional synapse in vivo after transplantation. Genome-wide RNA arrays showed that Zeb1 overexpression up-regulated the expression of neuron-specific genes and down-regulated the expression of epithelial-specific genes during conversion. Taken together, our results reveal a new role for Zeb1 in the transdifferentiation of MEFs into neurons.


Assuntos
Transdiferenciação Celular , Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas do Tecido Nervoso/metabolismo , Neurogênese , Neurônios/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células Cultivadas , Embrião de Mamíferos/citologia , Fibroblastos/citologia , Perfilação da Expressão Gênica , Vida Livre de Germes , Hipocampo , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Neurônios/transplante , Fatores do Domínio POU/genética , Fatores do Domínio POU/metabolismo , Interferência de RNA , Proteínas Recombinantes/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/antagonistas & inibidores , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética
16.
Stem Cells ; 35(6): 1479-1492, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28276603

RESUMO

Mitochondrial metabolism is a fundamental process in tissue development. How this process play functions in embryonic neurogenesis remains largely unknown. Here, we show that mitochondrial uncoupling protein 2 (UCP2) regulates the embryonic neurogenesis by inhibiting the production of reactive oxygen species (ROS), which affect the proliferation of progenitors. In the embryonic brains of UCP2 knockdown or condition knockout mice, the proliferation of progenitors is significantly increased, while the differentiation of progenitors is reduced. Furthermore, we identify that Yap is the response protein of UCP2-mediated ROS production. When UCP2 is inactive, the production of ROS is increased. The amount of Yap protein is increased as Yap degradation through ubiquitin-proteasome proteolytic pathway is decreased. The defect caused by UCP2 depression can be rescued by Yap downregulation. Collectively, our results demonstrate that UCP2 regulates embryonic neurogenesis through ROS-mediated Yap alternation, thus shedding new sight on mitochondrial metabolism involved in embryonic neurogenesis. Stem Cells 2017;35:1479-1492.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neocórtex/embriologia , Neocórtex/metabolismo , Neurogênese , Fosfoproteínas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteína Desacopladora 2/metabolismo , Animais , Ciclo Celular , Proteínas de Ciclo Celular , Diferenciação Celular , Proliferação de Células , Regulação para Baixo , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Camundongos , Modelos Biológicos , Neurônios/citologia , Transporte Proteico , Frações Subcelulares/metabolismo , Proteínas de Sinalização YAP
17.
J Biol Chem ; 291(26): 13560-70, 2016 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-27137935

RESUMO

Abnormalities in parvalbumin (PV)-expressing interneurons cause neurodevelopmental disorders such as epilepsy, autism, and schizophrenia. Unlike other types of neurons that can be efficiently differentiated from pluripotent stem cells, PV neurons were minimally generated using a conventional differentiation strategy. In this study we developed an adenovirus-based transdifferentiation strategy that incorporates an additional chemical compound for the efficient generation of induced PV (iPV) neurons. The chemical compound forskolin combined with Ascl1 induced ∼80% of mouse fibroblasts to iPV neurons. The iPV neurons generated by this procedure matured 5-7 days post infection and were characterized by electrophysiological properties and known neuronal markers, such as PV and GABA. Our studies, therefore, identified an efficient approach for generating PV neurons.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Transdiferenciação Celular/efeitos dos fármacos , Colforsina/farmacologia , Fibroblastos/metabolismo , Neurônios/metabolismo , Parvalbuminas/metabolismo , Animais , Transdiferenciação Celular/genética , Células Cultivadas , Fibroblastos/patologia , Camundongos , Camundongos Transgênicos , Neurônios/patologia , Esquizofrenia/genética , Esquizofrenia/metabolismo , Esquizofrenia/patologia
18.
Development ; 141(24): 4697-709, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25468938

RESUMO

The balance between self-renewal and differentiation of adult neural stem cells (aNSCs) is essential for the maintenance of the aNSC reservoir and the continuous supply of new neurons, but how this balance is fine-tuned in the adult brain is not fully understood. Here, we investigate the role of SIRT1, an important metabolic sensor and epigenetic repressor, in regulating adult hippocampal neurogenesis in mice. We found that there was an increase in SIRT1 expression during aNSC differentiation. In Sirt1 knockout (KO) mice, as well as in brain-specific and inducible stem cell-specific conditional KO mice, the proliferation and self-renewal rates of aNSCs in vivo were elevated. Proliferation and self-renewal rates of aNSCs and adult neural progenitor cells (aNPCs) were also elevated in neurospheres derived from Sirt1 KO mice and were suppressed by the SIRT1 agonist resveratrol in neurospheres from wild-type mice. In cultured neurospheres, 2-deoxy-D-glucose-induced metabolic stress suppressed aNSC/aNPC proliferation, and this effect was mediated in part by elevating SIRT1 activity. Microarray and biochemical analysis of neurospheres suggested an inhibitory effect of SIRT1 on Notch signaling in aNSCs/aNPCs. Inhibition of Notch signaling by a γ-secretase inhibitor also largely abolished the increased aNSC/aNPC proliferation caused by Sirt1 deletion. Together, these findings indicate that SIRT1 is an important regulator of aNSC/aNPC self-renewal and a potential mediator of the effect of metabolic changes.


Assuntos
Células-Tronco Adultas/fisiologia , Proliferação de Células/fisiologia , Giro Denteado/citologia , Regulação da Expressão Gênica/fisiologia , Células-Tronco Neurais/fisiologia , Sirtuína 1/metabolismo , Células-Tronco Adultas/metabolismo , Animais , Western Blotting , Bromodesoxiuridina , Proliferação de Células/efeitos dos fármacos , Desoxiglucose/efeitos adversos , Fluorescência , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Camundongos Knockout , Análise em Microsséries , Microscopia Confocal , Células-Tronco Neurais/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/fisiologia , Sirtuína 1/genética , Estatísticas não Paramétricas , Tamoxifeno
19.
Proc Natl Acad Sci U S A ; 111(1): 469-74, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24367100

RESUMO

Adult-born granule cells in the dentate gyrus of the rodent hippocampus are important for memory formation and mood regulation, but the cellular mechanism underlying their polarized development, a process critical for their incorporation into functional circuits, remains unknown. We found that deletion of the serine-threonine protein kinase LKB1 or overexpression of dominant-negative LKB1 reduced the polarized initiation of the primary dendrite from the soma and disrupted its oriented growth toward the molecular layer. This abnormality correlated with the dispersion of Golgi apparatus that normally accumulated at the base and within the initial segment of the primary dendrite, and was mimicked by disrupting Golgi organization via altering the expression of Golgi structural proteins GM130 or GRASP65. Thus, besides its known function in axon formation in embryonic pyramidal neurons, LKB1 plays an additional role in regulating polarized dendrite morphogenesis in adult-born granule cells in the hippocampus.


Assuntos
Dendritos/metabolismo , Giro Denteado/metabolismo , Hipocampo/metabolismo , Neurogênese , Neurônios/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases Ativadas por AMP , Animais , Animais Recém-Nascidos , Autoantígenos/metabolismo , Axônios/metabolismo , Proteínas de Transporte/metabolismo , Polaridade Celular , Proliferação de Células , Regulação da Expressão Gênica , Complexo de Golgi/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/citologia , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Fosforilação
20.
Stem Cells ; 33(6): 1794-806, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25786798

RESUMO

Chromodomain helicase DNA-binding protein 2 (CHD2) has been associated with a broad spectrum of neurodevelopmental disorders, such as autism spectrum disorders and intellectual disability. However, it is largely unknown whether and how CHD2 is involved in brain development. Here, we demonstrate that CHD2 is predominantly expressed in Pax6(+) radial glial cells (RGs) but rarely expressed in Tbr2(+) intermediate progenitors (IPs). Importantly, the suppression of CHD2 expression inhibits the self-renewal of RGs and increases the generation of IPs and the production of neurons. CHD2 mediates these functions by directly binding to the genomic region of repressor element 1-silencing transcription factor (REST), thereby regulating the expression of REST. Furthermore, the overexpression of REST rescues the defect in neurogenesis caused by CHD2 knockdown. Taken together, these findings demonstrate an essential role of CHD2 in the maintenance of the RGs self-renewal levels, the subsequent generation of IPs, and neuronal output during neurogenesis in cerebral cortical development, suggesting that inactivation of CHD2 during neurogenesis might contribute to abnormal neurodevelopment.


Assuntos
Diferenciação Celular/fisiologia , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Neurais/citologia , Neurogênese/fisiologia , Neurônios/citologia , Animais , Células Cultivadas , Córtex Cerebral/citologia , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa