Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38955135

RESUMO

Zincblende GaN has the potential to improve the efficiency of green- and amber-emitting nitride light emitting diodes due to the absence of internal polarisation fields. However, high densities of stacking faults are found in current zincblende GaN structures. This study presents a cathodoluminescence spectroscopy investigation into the low-temperature optical behaviour of a zincblende GaN/InGaN single quantum well structure. In panchromatic cathodoluminescence maps, stacking faults are observed as dark stripes, and are associated with non-radiative recombination centres. Furthermore, power dependent studies were performed to address whether the zincblende single quantum well exhibited a reduction in emission efficiency at higher carrier densities - the phenomenon known as efficiency droop. The single quantum well structure was observed to exhibit droop, and regions with high densities of stacking faults were seen to exacerbate this phenomenon. Overall, this study suggests that achieving efficient emission from zinc-blende GaN/InGaN quantum wells will require reduction in the stacking fault density. .

2.
Microsc Microanal ; 30(2): 208-225, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38578956

RESUMO

In this article, porous GaN distributed Bragg reflectors (DBRs) were fabricated by epitaxy of undoped/doped multilayers followed by electrochemical etching. We present backscattered electron scanning electron microscopy (BSE-SEM) for sub-surface plan-view imaging, enabling efficient, non-destructive pore morphology characterization. In mesoporous GaN DBRs, BSE-SEM images the same branching pores and Voronoi-like domains as scanning transmission electron microscopy. In microporous GaN DBRs, micrographs were dominated by first porous layer features (45 nm to 108 nm sub-surface) with diffuse second layer (153 nm to 216 nm sub-surface) contributions. The optimum primary electron landing energy (LE) for image contrast and spatial resolution in a Zeiss GeminiSEM 300 was approximately 20 keV. BSE-SEM detects porosity ca. 295 nm sub-surface in an overgrown porous GaN DBR, yielding low contrast that is still first porous layer dominated. Imaging through a ca. 190 nm GaN cap improves contrast. We derived image contrast, spatial resolution, and information depth expectations from semi-empirical expressions. These theoretical studies echo our experiments as image contrast and spatial resolution can improve with higher LE, plateauing towards 30 keV. BSE-SEM is predicted to be dominated by the uppermost porous layer's uppermost region, congruent with experimental analysis. Most pertinently, information depth increases with LE, as observed.

3.
Sensors (Basel) ; 19(20)2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31614420

RESUMO

AC photoelectrochemical imaging at electrolyte-semiconductor interfaces provides spatially resolved information such as surface potentials, ion concentrations and electrical impedance. In this work, thin films of InGaN/GaN were used successfully for AC photoelectrochemical imaging, and experimentally shown to generate a considerable photocurrent under illumination with a 405 nm modulated diode laser at comparatively high frequencies and low applied DC potentials, making this a promising substrate for bioimaging applications. Linear sweep voltammetry showed negligible dark currents. The imaging capabilities of the sensor substrate were demonstrated with a model system and showed a lateral resolution of 7 microns.

4.
Nano Lett ; 17(8): 4846-4852, 2017 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-28707893

RESUMO

We conducted a comprehensive investigation of dislocations in Al0.46Ga0.54N. Using aberration-corrected scanning transmission electron microscopy and energy dispersive X-ray spectroscopy, the atomic structure and atom distribution at the dislocation core have been examined. We report that the core configuration of dislocations in AlGaN is consistent with that of other materials in the III-Nitride system. However, we observed that the dissociation of mixed-type dislocations is impeded by alloying GaN with AlN, which is confirmed by our experimental observation of Ga and Al atom segregation in the tensile and compressive parts of the dislocations, respectively. Investigation of the optical properties of the dislocations shows that the atom segregation at dislocations has no significant effect on the intensity recorded by cathodoluminescence in the vicinity of the dislocations. These results are in contrast with the case of dislocations in In0.09Ga0.91N where segregation of In and Ga atoms also occurs but results in carrier localization limiting non-radiative recombination at the dislocation. This study therefore sheds light on why InGaN-based devices are generally more resilient to dislocations than their AlGaN-based counterparts.

5.
Sci Technol Adv Mater ; 17(1): 736-743, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27933113

RESUMO

We report on a comparative study of the low temperature emission and polarisation properties of InGaN/GaN quantum wells grown on nonpolar ([Formula: see text]) a-plane and ([Formula: see text]) m-plane free-standing bulk GaN substrates where the In content varied from 0.14 to 0.28 in the m-plane series and 0.08 to 0.21 for the a-plane series. The low temperature photoluminescence spectra from both sets of samples are broad with full width at half maximum height increasing from 81 to 330 meV as the In fraction increases. Photoluminescence excitation spectroscopy indicates that the recombination mainly involves strongly localised carriers. At 10 K the degree of linear polarisation of the a-plane samples is much smaller than of the m-plane counterparts and also varies across the spectrum. From polarisation-resolved photoluminescence excitation spectroscopy we measured the energy splitting between the lowest valence sub-bands to lie in the range of 23-54 meV for the a- and m-plane samples in which we could observe distinct exciton features. Thus the thermal occupation of a higher valence sub-band cannot be responsible for the reduction of the degree of linear polarisation at 10 K. Time-resolved spectroscopy indicates that in a-plane samples there is an extra emission component which is at least partly responsible for the reduction in the degree of linear polarisation.

6.
Nano Lett ; 15(2): 923-30, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25594363

RESUMO

Dislocations are one-dimensional topological defects that occur frequently in functional thin film materials and that are known to degrade the performance of InxGa1-xN-based optoelectronic devices. Here, we show that large local deviations in alloy composition and atomic structure are expected to occur in and around dislocation cores in InxGa(1-x)N alloy thin films. We present energy-dispersive X-ray spectroscopy data supporting this result. The methods presented here are also widely applicable for predicting composition fluctuations associated with strain fields in other inorganic functional material thin films.


Assuntos
Gálio/química , Índio/química , Nitrogênio/química , Microscopia Eletrônica de Transmissão e Varredura , Espectrometria por Raios X
7.
Nano Lett ; 15(11): 7639-43, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26488912

RESUMO

Nanocathodoluminescence reveals the spectral properties of individual InGaN quantum wells in high efficiency light emitting diodes. We observe a variation in the emission wavelength of each quantum well, in correlation with the Si dopant concentration in the quantum barriers. This is reproduced by band profile simulations, which reveal the reduction of the Stark shift in the quantum wells by Si doping. We demonstrate nanocathodoluminescence is a powerful technique to optimize doping in optoelectronic devices.

8.
Microsc Microanal ; 21(3): 544-56, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25926083

RESUMO

Various practical issues affecting atom probe tomography (APT) analysis of III-nitride semiconductors have been studied as part of an investigation using a c-plane InAlN/GaN heterostructure. Specimen preparation was undertaken using a focused ion beam microscope with a mono-isotopic Ga source. This enabled the unambiguous observation of implantation damage induced by sample preparation. In the reconstructed InAlN layer Ga implantation was demonstrated for the standard "clean-up" voltage (5 kV), but this was significantly reduced by using a lower voltage (e.g., 1 kV). The characteristics of APT data from the desorption maps to the mass spectra and measured chemical compositions were examined within the GaN buffer layer underlying the InAlN layer in both pulsed laser and pulsed voltage modes. The measured Ga content increased monotonically with increasing laser pulse energy and voltage pulse fraction within the examined ranges. The best results were obtained at very low laser energy, with the Ga content close to the expected stoichiometric value for GaN and the associated desorption map showing a clear crystallographic pole structure.

9.
Phys Status Solidi B Basic Solid State Phys ; 252(5): 1104-1108, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26212392

RESUMO

We report on the growth of semi-polar GaN (11[Formula: see text]2) templates on patterned Si (113) substrates. Trenches were etched in Si (113) using KOH to expose Si {111} sidewalls. Subsequently an AlN layer to prevent meltback etching, an AlGaN layer for stress management, and finally two GaN layers were deposited. Total thicknesses up to 5 [Formula: see text]m were realised without cracks in the layer. Transmission electron microscopy showed that most dislocations propagate along [0001] direction and hence can be covered by overgrowth from the next trench. The defect densities were below [Formula: see text] and stacking fault densities less than 100 cm [Formula: see text]. These numbers are similar to reports on patterned r-plane sapphire. Typical X-ray full width at half maximum (FHWM) were 500" for the asymmetric (00.6) and 450" for the (11.2) reflection. These FHWMs were 50 % broader than reported for patterned r-plane sapphire which is attributed to different defect structures and total thicknesses. The surface roughness shows strong variation on templates. For the final surface roughness the roughness of the sidewalls of the GaN ridges at the time of coalescence are critical.

10.
Microsc Microanal ; 20(1): 55-60, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24230966

RESUMO

We combine two scanning electron microscopy techniques to investigate the influence of dislocations on the light emission from nitride semiconductors. Combining electron channeling contrast imaging and cathodoluminescence imaging enables both the structural and luminescence properties of a sample to be investigated without structural damage to the sample. The electron channeling contrast image is very sensitive to distortions of the crystal lattice, resulting in individual threading dislocations appearing as spots with black-white contrast. Dislocations giving rise to nonradiative recombination are observed as black spots in the cathodoluminescence image. Comparison of the images from exactly the same micron-scale region of a sample demonstrates a one-to-one correlation between the presence of single threading dislocations and resolved dark spots in the cathodoluminescence image. In addition, we have also obtained an atomic force microscopy image from the same region of the sample, which confirms that both pure edge dislocations and those with a screw component (i.e., screw and mixed dislocations) act as nonradiative recombination centers for the Si-doped c-plane GaN thin film investigated.

11.
Ultramicroscopy ; 254: 113833, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37666104

RESUMO

The scanning capacitance microscope (SCM) is a powerful tool to characterise local electrical properties in GaN-based high electron mobility transistor (HEMT) structures with nanoscale resolution. We investigated the experimental setup and the imaging conditions to optimise the SCM contrast. As to the experimental setup, we show that the desired tip should be sharp (e.g., with the tip radius of ≤25nm) and its coating should be made of conductive doped diamond. Most importantly, its spring constant should be large to achieve stable tip-sample contact. The selected tip should be positioned close to both the edge and Ohmic contact of the sample. Regarding the imaging conditions, we also show that a dc bias should be applied in addition to an ac bias because the latter alone is not sufficient to deplete the two-dimensional electron gas (2DEG) in the AlGaN/GaN heterostructure. The approximate range of the effective dc bias values was found by measuring the local dC/dV-V curves, yielding, after further optimisation, two optimised dc bias values which provide strong, but opposite, SCM contrast. In comparison, the selected ac bias value has no significant impact on the SCM contrast. The described methodology could potentially also be applied to other types of HEMT structures, and highly-doped samples.

12.
ACS Photonics ; 10(9): 3374-3383, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37743941

RESUMO

Effective light extraction from optically active solid-state spin centers inside high-index semiconductor host crystals is an important factor in integrating these pseudo-atomic centers in wider quantum systems. Here, we report increased fluorescent light collection efficiency from laser-written nitrogen-vacancy (NV) centers in bulk diamond facilitated by micro-transfer printed GaN solid immersion lenses. Both laser-writing of NV centers and transfer printing of micro-lens structures are compatible with high spatial resolution, enabling deterministic fabrication routes toward future scalable systems development. The micro-lenses are integrated in a noninvasive manner, as they are added on top of the unstructured diamond surface and bonded by van der Waals forces. For emitters at 5 µm depth, we find approximately 2× improvement of fluorescent light collection using an air objective with a numerical aperture of NA = 0.95 in good agreement with simulations. Similarly, the solid immersion lenses strongly enhance light collection when using an objective with NA = 0.5, significantly improving the signal-to-noise ratio of the NV center emission while maintaining the NV's quantum properties after integration.

13.
Nanoscale ; 14(2): 402-409, 2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-34919106

RESUMO

Time-resolved cathodoluminescence offers new possibilities for the study of semiconductor nanostructures - including defects. The versatile combination of time, spatial, and spectral resolution of the technique can provide new insights into the physics of carrier recombination at the nanoscale. Here, we used power-dependent cathodoluminescence and temperature-dependent time-resolved cathodoluminescence to study the carrier dynamics at trench defects in InGaN quantum wells - a defect commonly found in III-nitride structures. The measurements show that the emission properties of trench defects closely relate to the depth of the related basal plane stacking fault within the quantum well stack. The study of the variation of carrier decay time with detection energy across the emission spectrum provides strong evidence supporting the hypothesis that strain relaxation of the quantum wells enclosed within the trench promotes efficient radiative recombination even in the presence of an increased indium content. This result shines light on previously reported peculiar emission properties of the defect, and illustrates the use of cathodoluminescence as a powerful adaptable tool for the study of defects in semiconductors.

14.
ACS Appl Electron Mater ; 3(2): 813-824, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33644761

RESUMO

The performance of transistors designed specifically for high-frequency applications is critically reliant upon the semi-insulating electrical properties of the substrate. The suspected formation of a conductive path for radio frequency (RF) signals in the highly resistive (HR) silicon substrate itself has been long held responsible for the suboptimal efficiency of as-grown GaN high electron mobility transistors (HEMTs) at higher operating frequencies. Here, we reveal that not one but two discrete channels distinguishable by their carrier type, spatial extent, and origin within the metal-organic vapor phase epitaxy (MOVPE) growth process participate in such parasitic substrate conduction. An n-type layer that forms first is uniformly distributed in the substrate, and it has a purely thermal origin. Alongside this, a p-type layer is localized on the substrate side of the AlN/Si interface and is induced by diffusion of group-III element of the metal-organic precursor. Fortunately, maintaining the sheet resistance of this p-type layer to high values (∼2000 Ω/□) seems feasible with particular durations of either organometallic precursor or ammonia gas predose of the Si surface, i.e., the intentional introduction of one chemical precursor just before nucleation. It is proposed that the mechanism behind the control actually relies on the formation of disordered AlSiN between the crystalline AlN nucleation layer and the crystalline silicon substrate.

15.
Materials (Basel) ; 11(10)2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-30248899

RESUMO

Nanoscale structure has a large effect on the optoelectronic properties of InGaN, a material vital for energy saving technologies such as light emitting diodes. Photoconductive atomic force microscopy (PC-AFM) provides a new way to investigate this effect. In this study, PC-AFM was used to characterise four thick (∼130 nm) In x Ga 1 - x N films with x = 5%, 9%, 12%, and 15%. Lower photocurrent was observed on elevated ridges around defects (such as V-pits) in the films with x ≤ 12 %. Current-voltage curve analysis using the PC-AFM setup showed that this was due to a higher turn-on voltage on these ridges compared to surrounding material. To further understand this phenomenon, V-pit cross sections from the 9% and 15% films were characterised using transmission electron microscopy in combination with energy dispersive X-ray spectroscopy. This identified a subsurface indium-deficient region surrounding the V-pit in the lower indium content film, which was not present in the 15% sample. Although this cannot directly explain the impact of ridges on turn-on voltage, it is likely to be related. Overall, the data presented here demonstrate the potential of PC-AFM in the field of III-nitride semiconductors.

16.
Materials (Basel) ; 11(10)2018 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-30248983

RESUMO

Europium is the most-studied and least-well-understood rare earth ion (REI) dopant in GaN. While attempting to increase the efficiency of red GaN light-emitting diodes (LEDs) by implanting Eu⁺ into p-type GaN templates, the Strathclyde University group, in collaboration with IST Lisbon and Unipress Warsaw, discovered hysteretic photochromic switching (HPS) in the photoluminescence spectrum of doubly doped GaN(Mg):Eu. Our recent work, summarised in this contribution, has used time-, temperature- and light-induced changes in the Eu intra-4f shell emission spectrum to deduce the microscopic nature of the Mg-Eu defects that form in this material. As well as shedding light on the Mg acceptor in GaN, we propose a possible role for these emission centres in quantum information and computing.

17.
ACS Omega ; 2(10): 7275-7280, 2017 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31457302

RESUMO

The measurement of ζ potential of Ga-face and N-face gallium nitride has been carried out as a function of pH. Both of the faces show negative ζ potential in the pH range 5.5-9. The Ga-face has an isoelectric point at pH 5.5. The N-face shows a more negative ζ potential due to larger concentration of adsorbed oxygen. The ζ potential data clearly showed that H-terminated diamond seed solution at pH 8 will be optimal for the self-assembly of a monolayer of diamond nanoparticles on the GaN surface. The subsequent growth of thin diamond films on GaN seeded with H-terminated diamond seeds produced fully coalesced films, confirming a seeding density in excess of 1011 cm-2. This technique removes the requirement for a low thermal conduction seeding layer like silicon nitride on GaN.

18.
Cryst Growth Des ; 16(2): 1010-1016, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-27065755

RESUMO

Non- and semipolar GaN have great potential to improve the efficiency of light emitting devices due to much reduced internal electric fields. However, heteroepitaxial GaN growth in these crystal orientations suffers from very high dislocation and stacking faults densities. Here, we report a facile method to obtain low defect density non- and semipolar heteroepitaxial GaN via selective area epitaxy using self-assembled multilayers of silica nanospheres (MSN). Nonpolar (11-20) and semipolar (11-22) GaN layers with high crystal quality have been achieved by epitaxial integration of the MSN and a simple one-step overgrowth process, by which both dislocation and basal plane stacking fault densities can be significantly reduced. The underlying defect reduction mechanisms include epitaxial growth through the MSN covered template, island nucleation via nanogaps in the MSN, and lateral overgrowth and coalescence above the MSN. InGaN/GaN multiple quantum wells structures grown on a nonpolar GaN/MSN template show more than 30-fold increase in the luminescence intensity compared to a control sample without the MSN. This self-assembled MSN technique provides a new platform for epitaxial growth of nitride semiconductors and offers unique opportunities for improving the material quality of GaN grown on other orientations and foreign substrates or heteroepitaxial growth of other lattice-mismatched materials.

19.
Nanoscale Res Lett ; 5(3): 608-612, 2009 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-20672074

RESUMO

Cavity-enhanced single-photon emission in the blue spectral region was measured from single InGaN/GaN quantum dots. The low-Q microcavities used were characterized using micro-reflectance spectroscopy where the source was the enhanced blue output from a photonic crystal fibre. Micro-photoluminescence was observed from several cavities and found to be ~10 times stronger than typical InGaN quantum dot emission without a cavity. The measurements were performed using non-linear excitation spectroscopy in order to suppress the background emission from the underlying wetting layer.

20.
Phys Rev Lett ; 99(19): 197403, 2007 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-18233112

RESUMO

We report direct evidence for the control of the oscillator strength of the exciton state in a single quantum dot by the application of a vertical electric field. This is achieved through the study of the radiative lifetime of a single InGaN-GaN quantum dot in a p-i-n diode structure. Our results are in good quantitative agreement with theoretical predictions from an atomistic tight-binding model. Furthermore, the increase of the overlap between the electron and hole wave functions due to the applied field is shown experimentally to increase the attractive Coulomb interaction leading to a change in the sign of the biexcitonic binding energy.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa