Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 87(6): 3154-9, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25707296

RESUMO

Absorption spectroscopy and mapping from visible through mid-IR wavelengths has been achieved with spatial resolution exceeding the limit imposed by diffraction via the photothermal induced resonance technique. Correlated vibrational (chemical), and electronic properties are obtained simultaneously with topography with a wavelength-independent resolution of ≈20 nm using a single laboratory-scale instrument. This marks the highest resolution reported for PTIR, as determined by comparing height and PTIR images, and its first extension to near-IR and visible wavelengths.


Assuntos
Imagem Óptica/métodos , Nanotecnologia , Polimetil Metacrilato/química , Espectrofotometria Infravermelho
2.
Angew Chem Int Ed Engl ; 53(11): 2852-6, 2014 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-24615798

RESUMO

Recently, the use of mixtures of organic-building-block linkers has given chemists an additional degree of freedom for engineering metal-organic frameworks (MOFs) with specific properties; however, the poor characterization of the chemical complexity of such MixMOF structures by conventional techniques hinders the verification of rational design. Herein, we describe the application of a technique known as photothermal induced resonance to individual MixMOF microcrystals to elucidate their chemical composition with nanoscale resolution. Results show that MixMOFs isoreticular to In-MIL-68, obtained either directly from solution or by postsynthetic linker exchange, are homogeneous down to approximately 100 nm. Additionally, we report a novel in situ process that enables the engineering of anisotropic domains in MOF crystals with submicron linker-concentration gradients.

3.
Anal Chem ; 85(4): 1972-9, 2013 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-23363013

RESUMO

Photothermal induced resonance (PTIR) is a new technique which combines the chemical specificity of infrared (IR) spectroscopy with the lateral resolution of atomic force microscopy (AFM). PTIR requires a pulsed tunable laser for sample excitation and an AFM tip to measure the sample expansion induced by light absorption. The limited tunability of commonly available laser sources constrains the application of the PTIR technique to a portion of the IR spectrum. In this work, a broadly tunable pulsed laser relying on a difference frequency generation scheme in a GaSe crystal to emit light tunable from 1.55 µm to 16 µm (from 6450 cm(-1) to 625 cm(-1)) was interfaced with a commercial PTIR instrument. The result is a materials characterization platform capable of chemical imaging, in registry with atomic force images, with a spatial resolution that notably surpasses the light diffraction limit throughout the entire mid-IR spectral range. PTIR nanoscale spectra and images allow the identification of compositionally and optically similar yet distinct materials; organic, inorganic, and composite samples can be studied with this nanoscale analog of infrared spectroscopy, suggesting broad applicability. Additionally, we compare the results obtained with the two tunable lasers, which have different pulse lengths, to experimentally assess the recently developed theory of PTIR signal generation.


Assuntos
Nanoestruturas/química , Espectrofotometria Infravermelho/métodos , Compostos de Epóxi/química , Lasers , Microscopia de Força Atômica , Polimetil Metacrilato/química , Poliestirenos/química , Dióxido de Silício/química , Espectrofotometria Infravermelho/instrumentação , Temperatura
4.
Nano Lett ; 11(6): 2490-4, 2011 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-21604750

RESUMO

Photovoltaic devices using GaAs nanopillar radial p-n junctions are demonstrated by means of catalyst-free selective-area metal-organic chemical vapor deposition. Dense, large-area, lithographically defined vertical arrays of nanowires with uniform spacing and dimensions allow for power conversion efficiencies for this material system of 2.54% (AM 1.5 G) and high rectification ratio of 213 (at ±1 V). The absence of metal catalyst contamination results in leakage currents of ∼236 nA at -1 V. High-resolution scanning photocurrent microscopy measurements reveal the independent functioning of each nanowire in the array with an individual peak photocurrent of ∼1 nA at 544 nm. External quantum efficiency shows that the photocarrier extraction highly depends on the degenerately doped transparent contact oxide. Two different top electrode schemes are adopted and characterized in terms of Hall, sheet resistance, and optical transmittance measurements.


Assuntos
Arsenicais/química , Fontes de Energia Elétrica , Gálio/química , Nanoestruturas/química , Energia Solar , Teoria Quântica , Propriedades de Superfície
5.
Nano Lett ; 10(12): 4935-8, 2010 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-21053980

RESUMO

We present electronic transport measurements of GaAs nanowires grown by catalyst-free metal-organic chemical vapor deposition. Despite the nanowires being doped with a relatively high concentration of substitutional impurities, we find them inordinately resistive. By measuring sufficiently high aspect ratio nanowires individually in situ, we decouple the role of the contacts and show that this semi-insulating electrical behavior is the result of trap-mediated carrier transport. We observe Poole-Frenkel transport that crosses over to phonon-assisted tunneling at higher fields, with a tunneling time found to depend predominantly on fundamental physical constants as predicted by theory. By using in situ electron beam irradiation of individual nanowires, we probe the nanowire electronic transport when free carriers are made available, thus revealing the nature of the contacts.

6.
Nanoscale ; 9(23): 7771-7780, 2017 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-28426088

RESUMO

Improving the power conversion efficiency of photovoltaic (PV) devices is challenging because the generation, separation and collection of electron-hole pairs are strongly dependent on details of the nanoscale chemical composition and defects which are often poorly known. In this work, two novel scanning probe nano-spectroscopy techniques, direct-transmission near-field scanning optical microscopy (dt-NSOM) and photothermal induced resonance (PTIR), are implemented to probe the distribution of defects and the bandgap variation in thin lamellae extracted from polycrystalline CdTe PV devices. dt-NSOM provides high-contrast spatially-resolved maps of light transmitted through the sample at selected wavelengths. PTIR provides absorption maps and spectra over a broad spectral range, from visible to mid-infrared. Results show variation of the bandgap through the CdTe thickness and from grain to grain that is spatially uncorrelated with the distributions of shallow and deep defects.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa