Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Nat Methods ; 20(7): 1025-1028, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37264147

RESUMO

Characterizing multifaceted individual differences in brain function using neuroimaging is central to biomarker discovery in neuroscience. We provide an integrative toolbox, Reliability eXplorer (ReX), to facilitate the examination of individual variation and reliability as well as the effective direction for optimization of measuring individual differences in biomarker discovery. We also illustrate gradient flows, a two-dimensional field map-based approach to identifying and representing the most effective direction for optimization when measuring individual differences, which is implemented in ReX.


Assuntos
Individualidade , Neuroimagem , Reprodutibilidade dos Testes , Biomarcadores
2.
PLoS Comput Biol ; 17(9): e1009279, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34529652

RESUMO

Replicability, the ability to replicate scientific findings, is a prerequisite for scientific discovery and clinical utility. Troublingly, we are in the midst of a replicability crisis. A key to replicability is that multiple measurements of the same item (e.g., experimental sample or clinical participant) under fixed experimental constraints are relatively similar to one another. Thus, statistics that quantify the relative contributions of accidental deviations-such as measurement error-as compared to systematic deviations-such as individual differences-are critical. We demonstrate that existing replicability statistics, such as intra-class correlation coefficient and fingerprinting, fail to adequately differentiate between accidental and systematic deviations in very simple settings. We therefore propose a novel statistic, discriminability, which quantifies the degree to which an individual's samples are relatively similar to one another, without restricting the data to be univariate, Gaussian, or even Euclidean. Using this statistic, we introduce the possibility of optimizing experimental design via increasing discriminability and prove that optimizing discriminability improves performance bounds in subsequent inference tasks. In extensive simulated and real datasets (focusing on brain imaging and demonstrating on genomics), only optimizing data discriminability improves performance on all subsequent inference tasks for each dataset. We therefore suggest that designing experiments and analyses to optimize discriminability may be a crucial step in solving the replicability crisis, and more generally, mitigating accidental measurement error.


Assuntos
Conectoma , Genoma , Artefatos , Mapeamento Encefálico/métodos , Conjuntos de Dados como Assunto , Humanos , Reprodutibilidade dos Testes
3.
Int J High Perform Comput Appl ; 34(5): 491-501, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32831546

RESUMO

With an increase in awareness regarding a troubling lack of reproducibility in analytical software tools, the degree of validity in scientific derivatives and their downstream results has become unclear. The nature of reproducibility issues may vary across domains, tools, data sets, and computational infrastructures, but numerical instabilities are thought to be a core contributor. In neuroimaging, unexpected deviations have been observed when varying operating systems, software implementations, or adding negligible quantities of noise. In the field of numerical analysis, these issues have recently been explored through Monte Carlo Arithmetic, a method involving the instrumentation of floating-point operations with probabilistic noise injections at a target precision. Exploring multiple simulations in this context allows the characterization of the result space for a given tool or operation. In this article, we compare various perturbation models to introduce instabilities within a typical neuroimaging pipeline, including (i) targeted noise, (ii) Monte Carlo Arithmetic, and (iii) operating system variation, to identify the significance and quality of their impact on the resulting derivatives. We demonstrate that even low-order models in neuroimaging such as the structural connectome estimation pipeline evaluated here are sensitive to numerical instabilities, suggesting that stability is a relevant axis upon which tools are compared, alongside more traditional criteria such as biological feasibility, computational efficiency, or, when possible, accuracy. Heterogeneity was observed across participants which clearly illustrates a strong interaction between the tool and data set being processed, requiring that the stability of a given tool be evaluated with respect to a given cohort. We identify use cases for each perturbation method tested, including quality assurance, pipeline error detection, and local sensitivity analysis, and make recommendations for the evaluation of stability in a practical and analytically focused setting. Identifying how these relationships and recommendations scale to higher order computational tools, distinct data sets, and their implication on biological feasibility remain exciting avenues for future work.

4.
PLoS Comput Biol ; 13(3): e1005209, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28278228

RESUMO

The rate of progress in human neurosciences is limited by the inability to easily apply a wide range of analysis methods to the plethora of different datasets acquired in labs around the world. In this work, we introduce a framework for creating, testing, versioning and archiving portable applications for analyzing neuroimaging data organized and described in compliance with the Brain Imaging Data Structure (BIDS). The portability of these applications (BIDS Apps) is achieved by using container technologies that encapsulate all binary and other dependencies in one convenient package. BIDS Apps run on all three major operating systems with no need for complex setup and configuration and thanks to the comprehensiveness of the BIDS standard they require little manual user input. Previous containerized data processing solutions were limited to single user environments and not compatible with most multi-tenant High Performance Computing systems. BIDS Apps overcome this limitation by taking advantage of the Singularity container technology. As a proof of concept, this work is accompanied by 22 ready to use BIDS Apps, packaging a diverse set of commonly used neuroimaging algorithms.


Assuntos
Encéfalo/anatomia & histologia , Interpretação de Imagem Assistida por Computador/métodos , Neuroimagem/métodos , Sistemas de Informação em Radiologia/organização & administração , Software , Interface Usuário-Computador , Algoritmos , Humanos , Imageamento por Ressonância Magnética/métodos
5.
J Digit Imaging ; 31(3): 315-320, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29740715

RESUMO

Medical imaging analysis depends on the reproducibility of complex computation. Linux containers enable the abstraction, installation, and configuration of environments so that software can be both distributed in self-contained images and used repeatably by tool consumers. While several initiatives in neuroimaging have adopted approaches for creating and sharing more reliable scientific methods and findings, Linux containers are not yet mainstream in clinical settings. We explore related technologies and their efficacy in this setting, highlight important shortcomings, demonstrate a simple use-case, and endorse the use of Linux containers for medical image analysis.


Assuntos
Diagnóstico por Imagem/métodos , Processamento de Imagem Assistida por Computador/métodos , Sistemas de Informação em Radiologia , Humanos , Reprodutibilidade dos Testes , Fluxo de Trabalho
6.
PLoS One ; 19(1): e0296725, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38285635

RESUMO

Convolutional neural networks (CNNs) are currently among the most widely-used deep neural network (DNN) architectures available and achieve state-of-the-art performance for many problems. Originally applied to computer vision tasks, CNNs work well with any data with a spatial relationship, besides images, and have been applied to different fields. However, recent works have highlighted numerical stability challenges in DNNs, which also relates to their known sensitivity to noise injection. These challenges can jeopardise their performance and reliability. This paper investigates DeepGOPlus, a CNN that predicts protein function. DeepGOPlus has achieved state-of-the-art performance and can successfully take advantage and annotate the abounding protein sequences emerging in proteomics. We determine the numerical stability of the model's inference stage by quantifying the numerical uncertainty resulting from perturbations of the underlying floating-point data. In addition, we explore the opportunity to use reduced-precision floating point formats for DeepGOPlus inference, to reduce memory consumption and latency. This is achieved by instrumenting DeepGOPlus' execution using Monte Carlo Arithmetic, a technique that experimentally quantifies floating point operation errors and VPREC, a tool that emulates results with customizable floating point precision formats. Focus is placed on the inference stage as it is the primary deliverable of the DeepGOPlus model, widely applicable across different environments. All in all, our results show that although the DeepGOPlus CNN is very stable numerically, it can only be selectively implemented with lower-precision floating-point formats. We conclude that predictions obtained from the pre-trained DeepGOPlus model are very reliable numerically, and use existing floating-point formats efficiently.


Assuntos
Redes Neurais de Computação , Proteínas , Reprodutibilidade dos Testes , Sequência de Aminoácidos , Método de Monte Carlo
7.
JAMA Netw Open ; 7(2): e2355901, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38349653

RESUMO

Importance: Few investigations have evaluated rates of brain-based magnetic resonance imaging (MRI) incidental findings (IFs) in large lifespan samples, their stability over time, or their associations with health outcomes. Objectives: To examine rates of brain-based IFs across the lifespan, their persistence, and their associations with phenotypic indicators of behavior, cognition, and health; to compare quantified motion with radiologist-reported motion and evaluate its associations with IF rates; and to explore IF consistency across multiple visits. Design, Setting, and Participants: This cross-sectional study included participants from the Nathan Kline Institute-Rockland Sample (NKI-RS), a lifespan community-ascertained sample, and the Healthy Brain Network (HBN), a cross-sectional community self-referred pediatric sample focused on mental health and learning disorders. The NKI-RS enrolled participants (ages 6-85 years) between March 2012 and March 2020 and had longitudinal participants followed up for as long as 4 years. The HBN enrolled participants (ages 5-21 years) between August 2015 and October 2021. Clinical neuroradiology MRI reports were coded for radiologist-reported motion as well as presence, type, and clinical urgency (category 1, no abnormal findings; 2, no referral recommended; 3, consider referral; and 4, immediate referral) of IFs. MRI reports were coded from June to October 2021. Data were analyzed from November 2021 to February 2023. Main Outcomes and Measures: Rates and type of IFs by demographic characteristics, health phenotyping, and motion artifacts; longitudinal stability of IFs; and Euler number in projecting radiologist-reported motion. Results: A total of 1300 NKI-RS participants (781 [60.1%] female; mean [SD] age, 38.9 [21.8] years) and 2772 HBN participants (976 [35.2%] female; mean [SD] age, 10.0 [3.5] years) had health phenotyping and neuroradiology-reviewed MRI scans. IFs were common, with 284 of 2956 children (9.6%) and 608 of 1107 adults (54.9%) having IFs, but rarely of clinical concern (category 1: NKI-RS, 619 [47.6%]; HBN, 2561 [92.4%]; category 2: NKI-RS, 647 [49.8%]; HBN, 178 [6.4%]; category 3: NKI-RS, 79 [6.1%]; HBN, 30 [1.1%]; category 4: NKI-RS: 12 [0.9%]; HBN, 6 [0.2%]). Overall, 46 children (1.6%) and 79 adults (7.1%) required referral for their IFs. IF frequency increased with age. Elevated blood pressure and BMI were associated with increased T2 hyperintensities and age-related cortical atrophy. Radiologist-reported motion aligned with Euler-quantified motion, but neither were associated with IF rates. Conclusions and Relevance: In this cross-sectional study, IFs were common, particularly with increasing age, although rarely clinically significant. While T2 hyperintensity and age-related cortical atrophy were associated with BMI and blood pressure, IFs were not associated with other behavioral, cognitive, and health phenotyping. Motion may not limit clinical IF detection.


Assuntos
Encéfalo , Achados Incidentais , Adulto , Feminino , Humanos , Criança , Masculino , Estudos Transversais , Encéfalo/diagnóstico por imagem , Atrofia , Imageamento por Ressonância Magnética
8.
Nat Commun ; 15(1): 3511, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664387

RESUMO

Human cortical maturation has been posited to be organized along the sensorimotor-association axis, a hierarchical axis of brain organization that spans from unimodal sensorimotor cortices to transmodal association cortices. Here, we investigate the hypothesis that the development of functional connectivity during childhood through adolescence conforms to the cortical hierarchy defined by the sensorimotor-association axis. We tested this pre-registered hypothesis in four large-scale, independent datasets (total n = 3355; ages 5-23 years): the Philadelphia Neurodevelopmental Cohort (n = 1207), Nathan Kline Institute-Rockland Sample (n = 397), Human Connectome Project: Development (n = 625), and Healthy Brain Network (n = 1126). Across datasets, the development of functional connectivity systematically varied along the sensorimotor-association axis. Connectivity in sensorimotor regions increased, whereas connectivity in association cortices declined, refining and reinforcing the cortical hierarchy. These consistent and generalizable results establish that the sensorimotor-association axis of cortical organization encodes the dominant pattern of functional connectivity development.


Assuntos
Conectoma , Imageamento por Ressonância Magnética , Córtex Sensório-Motor , Humanos , Adolescente , Feminino , Masculino , Adulto Jovem , Criança , Córtex Sensório-Motor/fisiologia , Córtex Sensório-Motor/diagnóstico por imagem , Pré-Escolar , Rede Nervosa/fisiologia , Rede Nervosa/diagnóstico por imagem , Vias Neurais/fisiologia , Adulto , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiologia , Córtex Cerebral/crescimento & desenvolvimento
9.
bioRxiv ; 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37645999

RESUMO

Neuroimaging research faces a crisis of reproducibility. With massive sample sizes and greater data complexity, this problem becomes more acute. Software that operates on imaging data defined using the Brain Imaging Data Structure (BIDS) - BIDS Apps - have provided a substantial advance. However, even using BIDS Apps, a full audit trail of data processing is a necessary prerequisite for fully reproducible research. Obtaining a faithful record of the audit trail is challenging - especially for large datasets. Recently, the FAIRly big framework was introduced as a way to facilitate reproducible processing of large-scale data by leveraging DataLad - a version control system for data management. However, the current implementation of this framework was more of a proof of concept, and could not be immediately reused by other investigators for different use cases. Here we introduce the BIDS App Bootstrap (BABS), a user-friendly and generalizable Python package for reproducible image processing at scale. BABS facilitates the reproducible application of BIDS Apps to large-scale datasets. Leveraging DataLad and the FAIRly big framework, BABS tracks the full audit trail of data processing in a scalable way by automatically preparing all scripts necessary for data processing and version tracking on high performance computing (HPC) systems. Currently, BABS supports jobs submissions and audits on Sun Grid Engine (SGE) and Slurm HPCs with a parsimonious set of programs. To demonstrate its scalability, we applied BABS to data from the Healthy Brain Network (HBN; n=2,565). Taken together, BABS allows reproducible and scalable image processing and is broadly extensible via an open-source development model.

10.
Sci Data ; 10(1): 189, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024500

RESUMO

We present the Canadian Open Neuroscience Platform (CONP) portal to answer the research community's need for flexible data sharing resources and provide advanced tools for search and processing infrastructure capacity. This portal differs from previous data sharing projects as it integrates datasets originating from a number of already existing platforms or databases through DataLad, a file level data integrity and access layer. The portal is also an entry point for searching and accessing a large number of standardized and containerized software and links to a computing infrastructure. It leverages community standards to help document and facilitate reuse of both datasets and tools, and already shows a growing community adoption giving access to more than 60 neuroscience datasets and over 70 tools. The CONP portal demonstrates the feasibility and offers a model of a distributed data and tool management system across 17 institutions throughout Canada.


Assuntos
Bases de Dados Factuais , Software , Canadá , Disseminação de Informação
11.
PLoS One ; 16(11): e0250755, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34724000

RESUMO

The analysis of brain-imaging data requires complex processing pipelines to support findings on brain function or pathologies. Recent work has shown that variability in analytical decisions, small amounts of noise, or computational environments can lead to substantial differences in the results, endangering the trust in conclusions. We explored the instability of results by instrumenting a structural connectome estimation pipeline with Monte Carlo Arithmetic to introduce random noise throughout. We evaluated the reliability of the connectomes, the robustness of their features, and the eventual impact on analysis. The stability of results was found to range from perfectly stable (i.e. all digits of data significant) to highly unstable (i.e. 0 - 1 significant digits). This paper highlights the potential of leveraging induced variance in estimates of brain connectivity to reduce the bias in networks without compromising reliability, alongside increasing the robustness and potential upper-bound of their applications in the classification of individual differences. We demonstrate that stability evaluations are necessary for understanding error inherent to brain imaging experiments, and how numerical analysis can be applied to typical analytical workflows both in brain imaging and other domains of computational sciences, as the techniques used were data and context agnostic and globally relevant. Overall, while the extreme variability in results due to analytical instabilities could severely hamper our understanding of brain organization, it also affords us the opportunity to increase the robustness of findings.


Assuntos
Encéfalo/fisiologia , Conectoma , Modelos Neurológicos , Rede Nervosa/fisiologia , Humanos , Incerteza
12.
Apert Neuro ; 1(1)2021.
Artigo em Inglês | MEDLINE | ID: mdl-35079748

RESUMO

The validity of research results depends on the reliability of analysis methods. In recent years, there have been concerns about the validity of research that uses diffusion-weighted MRI (dMRI) to understand human brain white matter connections in vivo, in part based on the reliability of analysis methods used in this field. We defined and assessed three dimensions of reliability in dMRI-based tractometry, an analysis technique that assesses the physical properties of white matter pathways: (1) reproducibility, (2) test-retest reliability, and (3) robustness. To facilitate reproducibility, we provide software that automates tractometry (https://yeatmanlab.github.io/pyAFQ). In measurements from the Human Connectome Project, as well as clinical-grade measurements, we find that tractometry has high test-retest reliability that is comparable to most standardized clinical assessment tools. We find that tractometry is also robust: showing high reliability with different choices of analysis algorithms. Taken together, our results suggest that tractometry is a reliable approach to analysis of white matter connections. The overall approach taken here both demonstrates the specific trustworthiness of tractometry analysis and outlines what researchers can do to establish the reliability of computational analysis pipelines in neuroimaging.

13.
Gigascience ; 10(8)2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34414422

RESUMO

As the global health crisis unfolded, many academic conferences moved online in 2020. This move has been hailed as a positive step towards inclusivity in its attenuation of economic, physical, and legal barriers and effectively enabled many individuals from groups that have traditionally been underrepresented to join and participate. A number of studies have outlined how moving online made it possible to gather a more global community and has increased opportunities for individuals with various constraints, e.g., caregiving responsibilities. Yet, the mere existence of online conferences is no guarantee that everyone can attend and participate meaningfully. In fact, many elements of an online conference are still significant barriers to truly diverse participation: the tools used can be inaccessible for some individuals; the scheduling choices can favour some geographical locations; the set-up of the conference can provide more visibility to well-established researchers and reduce opportunities for early-career researchers. While acknowledging the benefits of an online setting, especially for individuals who have traditionally been underrepresented or excluded, we recognize that fostering social justice requires inclusivity to actively be centered in every aspect of online conference design. Here, we draw from the literature and from our own experiences to identify practices that purposefully encourage a diverse community to attend, participate in, and lead online conferences. Reflecting on how to design more inclusive online events is especially important as multiple scientific organizations have announced that they will continue offering an online version of their event when in-person conferences can resume.

14.
Gigascience ; 9(12)2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33269388

RESUMO

BACKGROUND: Data analysis pipelines are known to be affected by computational conditions, presumably owing to the creation and propagation of numerical errors. While this process could play a major role in the current reproducibility crisis, the precise causes of such instabilities and the path along which they propagate in pipelines are unclear. METHOD: We present Spot, a tool to identify which processes in a pipeline create numerical differences when executed in different computational conditions. Spot leverages system-call interception through ReproZip to reconstruct and compare provenance graphs without pipeline instrumentation. RESULTS: By applying Spot to the structural pre-processing pipelines of the Human Connectome Project, we found that linear and non-linear registration are the cause of most numerical instabilities in these pipelines, which confirms previous findings.


Assuntos
Conectoma , Análise de Dados , Humanos , Reprodutibilidade dos Testes
15.
Brain Commun ; 2(2): fcaa092, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32954337

RESUMO

Autism spectrum disorder is a highly prevalent and highly heritable neurodevelopmental condition, but studies have mostly taken traditional categorical diagnosis approach (yes/no for autism spectrum disorder). In contrast, an emerging notion suggests a continuum model of autism spectrum disorder with a normal distribution of autistic tendencies in the general population, where a full diagnosis is at the severe tail of the distribution. We set out to investigate such a viewpoint by investigating the interaction of polygenic risk scores for autism spectrum disorder and Age2 on neuroimaging measures (cortical thickness and white matter connectivity) in a general population (n = 391, with age ranging from 3 to 21 years from the Pediatric Imaging, Neurocognition and Genetics study). We observed that children with higher polygenic risk for autism spectrum disorder exhibited greater cortical thickness for a large age span starting from 3 years up to ∼14 years in several cortical regions localized in bilateral precentral gyri and the left hemispheric postcentral gyrus and precuneus. In an independent case-control dataset from the Autism Brain Imaging Data Exchange (n = 560), we observed a similar pattern: children with autism spectrum disorder exhibited greater cortical thickness starting from 6 years onwards till ∼14 years in wide-spread cortical regions including (the ones identified using the general population). We also observed statistically significant regional overlap between the two maps, suggesting that some of the cortical abnormalities associated with autism spectrum disorder overlapped with brain changes associated with genetic vulnerability for autism spectrum disorder in healthy individuals. Lastly, we observed that white matter connectivity between the frontal and parietal regions showed significant association with polygenic risk for autism spectrum disorder, indicating that not only the brain structure, but the white matter connectivity might also show a predisposition for the risk of autism spectrum disorder. Our findings showed that the fronto-parietal thickness and connectivity are dimensionally related to genetic risk for autism spectrum disorder in general population and are also part of the cortical abnormalities associated with autism spectrum disorder. This highlights the necessity of considering continuum models in studying the aetiology of autism spectrum disorder using polygenic risk scores and multimodal neuroimaging.

16.
Front Neuroinform ; 14: 33, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32848689

RESUMO

The Tomographic Quantitative Electroencephalography (qEEGt) toolbox is integrated with the Montreal Neurological Institute (MNI) Neuroinformatics Ecosystem as a docker into the Canadian Brain Imaging Research Platform (CBRAIN). qEEGt produces age-corrected normative Statistical Parametric Maps of EEG log source spectra testing compliance to a normative database. This toolbox was developed at the Cuban Neuroscience Center as part of the first wave of the Cuban Human Brain Mapping Project (CHBMP) and has been validated and used in different health systems for several decades. Incorporation into the MNI ecosystem now provides CBRAIN registered users access to its full functionality and is accompanied by a public release of the source code on GitHub and Zenodo repositories. Among other features are the calculation of EEG scalp spectra, and the estimation of their source spectra using the Variable Resolution Electrical Tomography (VARETA) source imaging. Crucially, this is completed by the evaluation of z spectra by means of the built-in age regression equations obtained from the CHBMP database (ages 5-87) to provide normative Statistical Parametric Mapping of EEG log source spectra. Different scalp and source visualization tools are also provided for evaluation of individual subjects prior to further post-processing. Openly releasing this software in the CBRAIN platform will facilitate the use of standardized qEEGt methods in different research and clinical settings. An updated precis of the methods is provided in Appendix I as a reference for the toolbox. qEEGt/CBRAIN is the first installment of instruments developed by the neuroinformatic platform of the Cuba-Canada-China (CCC) project.

17.
Front Neuroinform ; 13: 12, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30890927

RESUMO

Neuroscience has been carried into the domain of big data and high performance computing (HPC) on the backs of initiatives in data collection and an increasingly compute-intensive tools. While managing HPC experiments requires considerable technical acumen, platforms, and standards have been developed to ease this burden on scientists. While web-portals make resources widely accessible, data organizations such as the Brain Imaging Data Structure and tool description languages such as Boutiques provide researchers with a foothold to tackle these problems using their own datasets, pipelines, and environments. While these standards lower the barrier to adoption of HPC and cloud systems for neuroscience applications, they still require the consolidation of disparate domain-specific knowledge. We present Clowdr, a lightweight tool to launch experiments on HPC systems and clouds, record rich execution records, and enable the accessible sharing and re-launch of experimental summaries and results. Clowdr uniquely sits between web platforms and bare-metal applications for experiment management by preserving the flexibility of do-it-yourself solutions while providing a low barrier for developing, deploying and disseminating neuroscientific analysis.

19.
Gigascience ; 7(5)2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29718199

RESUMO

We present Boutiques, a system to automatically publish, integrate, and execute command-line applications across computational platforms. Boutiques applications are installed through software containers described in a rich and flexible JSON language. A set of core tools facilitates the construction, validation, import, execution, and publishing of applications. Boutiques is currently supported by several distinct virtual research platforms, and it has been used to describe dozens of applications in the neuroinformatics domain. We expect Boutiques to improve the quality of application integration in computational platforms, to reduce redundancy of effort, to contribute to computational reproducibility, and to foster Open Science.


Assuntos
Biologia Computacional/métodos , Software , Encéfalo/diagnóstico por imagem , Humanos , Neuroimagem , Reprodutibilidade dos Testes
20.
Gigascience ; 6(5): 1-10, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28327935

RESUMO

Modern technologies are enabling scientists to collect extraordinary amounts of complex and sophisticated data across a huge range of scales like never before. With this onslaught of data, we can allow the focal point to shift from data collection to data analysis. Unfortunately, lack of standardized sharing mechanisms and practices often make reproducing or extending scientific results very difficult. With the creation of data organization structures and tools that drastically improve code portability, we now have the opportunity to design such a framework for communicating extensible scientific discoveries. Our proposed solution leverages these existing technologies and standards, and provides an accessible and extensible model for reproducible research, called 'science in the cloud' (SIC). Exploiting scientific containers, cloud computing, and cloud data services, we show the capability to compute in the cloud and run a web service that enables intimate interaction with the tools and data presented. We hope this model will inspire the community to produce reproducible and, importantly, extensible results that will enable us to collectively accelerate the rate at which scientific breakthroughs are discovered, replicated, and extended.


Assuntos
Computação em Nuvem , Ciência , Conectoma , Humanos , Processamento de Imagem Assistida por Computador , Internet , Imageamento por Ressonância Magnética , Software
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa