Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Proteome Res ; 23(8): 2882-2892, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-38231884

RESUMO

ARID3C is a protein located on human chromosome 9 and expressed at low levels in various organs, yet its biological function has not been elucidated. In this study, we investigated both the cellular localization and function of ARID3C. Employing a combination of LC-MS/MS and deep learning techniques, we identified NPM1 as a binding partner for ARID3C's nuclear shuttling. ARID3C was found to predominantly localize with the nucleus, where it functioned as a transcription factor for genes STAT3, STAT1, and JUNB, thereby facilitating monocyte-to-macrophage differentiation. The precise binding sites between ARID3C and NPM1 were predicted by AlphaFold2. Mutating this binding site prevented ARID3C from interacting with NPM1, resulting in its retention in the cytoplasm instead of translocation to the nucleus. Consequently, ARID3C lost its ability to bind to the promoters of target genes, leading to a loss of monocyte-to-macrophage differentiation. Collectively, our findings indicate that ARID3C forms a complex with NPM1 to translocate to the nucleus, acting as a transcription factor that promotes the expression of the genes involved in monocyte-to-macrophage differentiation.


Assuntos
Diferenciação Celular , Núcleo Celular , Macrófagos , Monócitos , Proteínas Nucleares , Nucleofosmina , Humanos , Monócitos/metabolismo , Monócitos/citologia , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Macrófagos/metabolismo , Macrófagos/citologia , Núcleo Celular/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Ligação Proteica , Sítios de Ligação , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica , Espectrometria de Massas em Tandem
2.
Sci Rep ; 13(1): 22303, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102231

RESUMO

In this study, numerical simulation was employed to predict the performance and internal flow characteristics of the inlet of an axial-flow pump by assigning an absolute flow angle to the inlet guide vane (IGV) trailing-edge flow. Further, the finite volume method based on the three-dimensional Reynolds-averaged Navier-Stokes equations was employed to discretize the governing equations. The shear stress transport model was used as the turbulence model, and an appropriate number of nodes were selected for the hexahedral grid system through a grid-dependency test. The performance curve and changes in the internal flow field were investigated based on the variation in the flow angle at the inlet of the axial-flow pump. These results can be used to establish an efficient operational plan by adjusting the IGV angle of IGV when installing a variable IGV for an axial-flow pump.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa